
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 9, September 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Cognitive Computing in Fault Tolerance of 

Software 
 

Kaushik I 
 

Department of Computer Science and Engineering, National Institute of Technology, Karnataka, Surathkal, India 

ORCID - 0000-0003-4258-2048 

 

 

Abstract: This paper intends to give a brief description of cognitive computing research in the field of fault tolerance. We have 

referred over ten articles and research papers of various ongoing projects in this context for this paper to be authored. As always, we 

have tried to mention all the specific details of the algorithm that we intend to develop to tolerate the faultiness of the system and 

provide correction to the same. 

 

Keywords: Cognitive Computing, Fault Tolerance, Deep Learning, Neural Networks, Perceptron 

 

1. Introduction 
 

Fault tolerance, as we know, is the ability of the system or 

the software to acknowledge the error in the system itself to 

either ignore or correct the fault before it becomes a bigger 

problem to the system leading to the malfunctioning or the 

crashing of the system. In this era of fast-moving and fast 

development of software and systems, fault tolerance has be-

come an essential development criterion. For this reason, 

this concept has become one of the most essential and 

problematic parts of the developers. On the lighter side, fault 

tolerance and its concepts are the reason for high-

performance systems and software. Another important field 

of computer science is that of cognitive computing and deep 

learning. Cognitive comput-ing is the phenomenon of using 

human thinking capability to develop an algorithm that can 

lead to the implication of the artificial duplication of the 

same process in computing. These two vast concepts of 

computer science can be used to build a better algorithm that 

helps in a highly effective system for fault tolerance. 

 

Cognitive computing deals with only two processes in the 

system. As in the brain neuron, the chemical process that 

happens only gives out either of the two results, “yes or no”. 

In deep learning, we use this procedure to develop the 

algorithm to proceed with the tolerating service. The concept 

of perceptron can be put to use here. As we have mentioned 

earlier, the result of the process in the neuron is either yes or 

no, so in this case, scientists have developed a virtual 

machine called a perceptron that does the same process as 

that of the neuron but with a bias as the weights of the 

quantities to which we compare and say yea or no, as in the 

case of perceptron its “case 1 or case 2”. The perceptron is a 

built concept from the human brain and uses much similar 

action of the neuron. The deep learning algorithm is solely 

based on perception, and its implementation has been 

regarded as one of the best yet. The algorithm focuses solely 

on the development of the system such that it can give us the 

correct and the possible choice from the previous cases of 

study by the algorithm. We are using this concept in the 

implementation and development of our algorithm. 

 

 

 

 

2. Methodology 
 

So, the question that comes to our mind is how this abstract 

concept can be implemented and, most importantly, where it 

can be implemented. In this field of software development, 

fault tolerance is a vast concept of development and error 

correction, as is cognitive computing and deep learning. As 

in this case, we develop a deep learning algorithm that 

inspects the system to process the implementation and 

provide us with the best solution to the system. Now, let us 

assume algorithm A is created with the same concepts as 

above; it now gains access to the system software 

implementation and processes the code or the UX to check 

for errors and bugs. This also happens only in the 

application of the system as the design is only in the 

application part and nowhere near the implementation part 

of the development of the system. Once it finds or comes 

across errors and bugs, it reports immediately to the user and 

asks for authentication to process the error to provide the 

solution. 

 

The concept of fault tolerance is to try to tolerate or ignore 

the error if possible else correct it. The algorithm then 

processes the error and provides the user with a solution to 

either remove the implementation or continue with the code 

aspect. To develop such an algorithm, we need to provide 

the algorithm with errors so that the algorithm learns at a 

specific rate and can correct and detect faults in the system. 

As mentioned above, the concept of perceptron has two 

cases with bias on each based on the algorithm’s previous 

supervised learning. In this problem of detection and 

correction of the error, we use two cases is the case. One is 

to detect the error, but it can be ignored or tolerated due to 

its severity. Case two is that the algorithm discovers that the 

error or the fault cannot be fixed by the average user and has 

to be removed or quarantined immediately to prevent serious 

errors. 

 

So, how does the algorithm know to proceed with case 1 or 

case 2? Well, the answer to this lies in the development 

stage of the system itself. In the development stage of the 

system, the algorithm is being connected to the main module 

of the system. Here in every stage of the system 

development, the algorithm goes through every stage of 

error the developers are encountering during 

Paper ID: SR21809150244 DOI: 10.21275/SR21809150244 50 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 9, September 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

implementation. This includes the errors in the code, UX 

and UI problems, bugs, sematic errors, and various other 

errors in the system that occur. During this recording and 

learning of the errors, the algorithm also notes the 

developers’ solution to the errors. This helps the algorithm 

build bias for each type of error occurring and, in the end, 

generate a report that contains all types of errors and might 

again occur in the future. The algorithm then proceeds to be 

in the module of the system as though it is a part of the 

system and continues to monitor the system’s errors. So, if 

an error occurs, as mentioned in the above paragraph, the 

algorithm quickly registers it into the database and comes 

with a solution to the user and corrects the system in the 

process itself. Though the algorithm here is allowed to take 

its own decisions authentication system can be implemented 

to allow safer correction. 

 

3. Theory 
 

The theory behind this procedure is mainly the perceptron 

and its features. In the fault tolerance algorithm, we use the 

algorithm based on the perceptron handling request, which is 

the fault occurring in the system. So, in this section, we will 

deal with understanding perceptron and its purpose in this 

problem. A perceptron is an algorithm for supervised 

learning of binary classifiers. A vector of numbers or 

functions represents these. In mathematics, the field of ML 

is also contained by perceptron and its calculations. 

 

A. Visualization of Perceptron 

 
Figure 1: Function 

 

In Fig-1, the set of inputs x1, x2, x3 are the faults that are 

occurring in the systems along with their weights (severity) 

to the function in the perceptron. 

 

Function: 

 
 

The above algorithm states the perceptron’s output based on 

the threshold of the weighted values of each fault that enters 

as a request into the system of the algorithm. 

 

This algorithm is used mainly by all the perceptrons that run 

under the influence of bias-based systems and thresholds. 

 

Here in the case of our problems, the bias of the fault is 

given based on the extensive study of the algorithm during 

the system’s development process and learning the severity 

of each fault. Also, the algorithm learns the solution that the 

developers take action over the fault that has occurred. This 

allows the perceptron to build up a base and accurately 

predict the current fault’s solution. 

 

4. Efficiency 
 

Now that we have implemented the algorithm, the question 

arises this process effective to some extent? The answer lies 

in the implementation itself. As we have mentioned that the 

algorithm goes through all the previous errors of the system 

that occurs in the development stage and also keeps track of 

all the processes that are happening in the system; the 

algorithm has a complete detailed description of the system 

in the form of a database generated by it. In this case of fault 

tolerance, it will contain all the type of errors and their 

severity of the error. Also, in the real-time application of the 

code system, there is a possibility of contradictions of errors 

that can be resolved using this algorithm. 

 

So, as for the efficiency, though we are not in the stage of 

giving the numbers, the efficiency of the deep learning 

algorithm is very high and very much appreciated in this 

field of technological sciences. Deep Learning can be 

optimized using various accelerator algorithms and provide 

much better algorithmic outcomes if needed. Nevertheless, 

the algorithm itself is very efficient and can be in this 

context of fault tolerance. 

 

5. Feasibility and Scope 
 

This algorithm is just a concept yet to implement. But. Since 

the concept mainly revolves around the importance of fault 

tolerance and combining this with the algorithms in deep 

learning, this concept can be implemented in big 

organizations. Moreover, it can be used to its utmost 

efficiency by using various acceleration methods to optimize 

the perceptron’s output. Also, the algorithm is very well 

known to scientists, and our algorithm needs only a bit of 

tweaking and changes to the previously existing algorithm. 

 

The scope of this implementation is excellent. As mention 

already, fault tolerance is an essential component of 

develop-ment systems and cannot be ignored at all times as 

a whole. So, this implementation can help developers think 

of new ways to optimize the way we look at fault tolerance 

and help in the increase generation of better high-

performance systems, and lead to the new evolution in the 

field of deep learning and cognitive computing. 

 

6. Conclusion 
 

After discussing the new concept of fault tolerance, we can 

find out that this method of tolerating errors is one of the 

best ways to correct and detect the software. Moreover, this 

can be implemented very quickly since it uses deep learning 

algorithms and some concepts of the perceptron to analyze 

the system and find the correct solution for the problem to 

the detected errors. 

Paper ID: SR21809150244 DOI: 10.21275/SR21809150244 51 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 9, September 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

References 
 

[1] J. Octavio Gutierrez-Garcia, Emmanuel Lopez´-Neri, 

Dept. of Com-puter. Science., Inst. Technology. 

Autonomo de Mexico, Mexico City, Mexico, Cognitive 

Computing – a brief Survey and open research 

challenges, IEEE Okayama, Japan, 12-16 July 2015 

[2] Haluk Demirkan, Seth Early, Robert R. Harmon, 

University of Washing-ton Tacoma, Cognitive 

Computing, IEEE computer Society, 17 August 2017. 

[3] Deepali Mittal, ASET, Amity University, Delhi, INDIA, 

Neha Agarwal, A review paper on Fault Tolerance in 

Cloud Computing, IEEE New Delhi, India,04 May 2015. 

[4] S.Malik, M.J.Rahman, Fac. of Eng. Sci., Mohammad Ali 

Jinnah Univ., Islamabad, Pakistan, A framework for fault 

tolerance in distributed real time systems, Islamabad, 

Pakistan, 18-18 Sept. 2005. 

[5] A. Manzone Centro Ricerche FIAT, Torino, Italy,A. 

Pincetti, D. De Costantini, Fault tolerant automotive 

systems: an overview, Taormina, Italy, Italy, 9-11 July 

2001 

Paper ID: SR21809150244 DOI: 10.21275/SR21809150244 52 




