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Abstract: With modern collaborative data publishing techniques, the problem is that a central data publisher is liable for aggregating 

sensitive data from multiple parties then anonymizing it before publishing for data processing. In such scenarios, the user demands to 

know the utility of their published data since most anonymization techniques have side effects on data utility. Moreover, a corrupt data 

publisher is capable of misusing the collected data for their gains. We could call this an "insider attack". In this paper, we address this 

problem and briefly discuss a few proposed solutions.  
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1. Introduction 
 

It is evident that, at present, people are spending a 

considerable amount of time on the Internet, and this, in 

turn, results in a glut of data being shared over the internet. 

Although this use of the Internet has greatly increased the 

level of communication available, it has also had detrimental 

effects on the privacy of the data owners.  

 

The central data aggregator is liable for the collection, 

maintenance, preserving privacy, preserving anonymization, 

and sharing of data and the emergence of new cloud 

computing technology allows the easier exchange of 

information for mutual benefits but also at the same time has 

also resulted in the rise of unethical activities related to 

misuse of data. For example, Facebook data leak scandal in 

2018 about 87 million Facebook users’ data were collected 

by a cloud - based Facebook quiz app and then paired with 

information taken from their social media profile including 

their gender, age, relationship status, and location. This same 

set of data could be repurposed in different ways to infer 

certain sensitive personal information about people causing 

an uproar about the importance of privacy preservation 

techniques. In such cases, how to protect users’ privacy is 

extremely critical. This is the so - called "privacy - 

preserving collaborative data publishing problem". A lot of 

privacy models and corresponding anonymization 

mechanisms are proposed within the literature like k - 

anonymity and differential privacy. k - anonymity and its 

variants (e. g., l - diversity and t - closeness) protect privacy 

by generalizing the records such they will not be 

distinguished from another record. Differential privacy Is a 

much more rigorous privacy model. It requires that the 

released data is insensitive to the addition or removal of a 

single record.  

 

2. Related Work 
 

Designing such a privacy - preserving data releasing 

structure is rather challenging. To date, a few related 

approaches related to k - anonymity, l - diversity and t - 

closeness have been proposed [3], [4], [5], [6], [7], [8], [9], 

[10], [11]. However, these approaches cannot fulfill all the 

privacy requirements needed in the cloud - based data - 

driven application scenario because such models cannot 

handle the curse of dimensionality. Dimensionality 

reduction - based approaches [8], [9], [10], [11] have been 

proposed to preserve privacy while maintaining most of the 

utility. However, despite their good experimental 

performance on several public data sets, those approaches 

didn’t introduce any uncertainty to hide the sensitive 

information, which failed to show the needed guarantees on 

the privacy targets mathematically.  

 

3. Proposed System  
 

A privacy - preserving utility verification mechanism that 

works as a two parts system, a differentially private 

anonymization algorithm (DiffPart) designed for set - valued 

data is proposed. This adds anomaly to the frequencies of 

the records supported a context - free taxonomy tree and no 

items within the original data are generalized. This proposal 

solves the challenge to verify the utility of the published data 

supported by the encrypted frequencies of the data records 

rather than their plain values. As a result, it can protect the 

data from the verifying parties because they can't learn 

whether or what percentage times a specific record appears 

within the raw data - set without knowing its real frequency. 

In addition, since the encrypted frequencies are provided by 

the publisher, a scheme for the verifying parties to 

incrementally verify its correctness is presented. Then the 

above mechanism is extended to the second part, differential 

generalization (DiffGen), which refers to a deferentially 

private anonymization algorithm designed for relational 

data. Different from the former part, the latter may 

generalize the attribute values before confounding the 

frequency of every record. Information losses are caused by 

both the generalization and therefore the disturbance. These 

two kinds of information losses are measured independently 

of each other making use of the same utility metrics. We 

take both into consideration. This analysis shows that the 

utility verification for generalization operations is often 

administered with only the published data. As a result, this 

verification doesn't need any protection. The utility metric 

for the disturbance is analogous thereupon for DiffPart. We 

thus adopt the proposed privacy - preserving mechanism to 

this verification. A series of experiments are conducted on 

real - world relational data to evaluate the efficiency of the 

proposed mechanisms. The results show that these 
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mechanisms are efficient enough as long as both publishing 

and utility verification of information is carried out offline.  

 

RSA algorithm for two - level Encryption and Decryption: 

[2] 

 

RSA is the algorithm used by modern computers to encrypt 

and decrypt messages. It is an asymmetric cryptographic 

algorithm. Asymmetric means that there are two different 

keys. This is also called public - key cryptography because 

one of them can be given to everyone. The other key must 

be kept private.  

 

RSA involves a public key and a private key. The public key 

is often known to everyone, it's utilized to encrypt messages. 

Messages encrypted using the public key can only be 

decrypted with the private key.  

 

 

 

 

 

 

4. Figures and Tables 

 
Figure 1: System Architecture 

 

 
Figure 2: Sequence Diagram 
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Figure 3: Activity Diagram 

 

5. Conclusion  
 

In conclusion, we develop a new strategic module for data 

privacy for data on non - publishing sites, this project 

provides high - level security. Preserves the communication 

trust between reader, publisher, and writer. With this 

technique users are fully conscious of data security, privacy, 

and data redundancy. So this system fully satisfied our 

objective. In future work, we would want to implement the 

same system on multimedia content and data. There is big 

scope for the use of similar architecture on multimedia 

content.  
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