
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 8, August 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Interfacing BLE Module on FPGA using Nios II 
 

Shama. S. Naik
1
, Pritam Thomke

2 

 
1Student of M. E (Microelectronics, Goa College of Engineering), Farmagudi, Goa, India 

shamanaik10[at]gmail.com 

 

Hardware Developer, Siemens Limited, Verna Goa 

pritam. thomke[at]siemens. com 

 

 

Abstract: This paper presents the implementation of Bluetooth Low Energy (BLE) on Field Programmable Gate Array (FPGA) using 

System on Programmable chip (SOPC). The design is implemented using the soft intellectual property (IPs) of the Nios II processor. 

The test results are verified on the serial terminal. This implementation has applications in the designing of wireless gateway on FPGA.  

 

Keywords: Nios II Processor, BLE, UART 

 

1. Introduction 
 

Bluetooth Low Energy (BLE) is an upcoming technology 

designed as both, a complementary technology to classic 

bluetooth as well as the lowest possible power wireless 

technology that can be designed and built. BLE is deployed 

in high volumes, in devices that do not have wireless 

technology today. Bluetooth incorporated basic rate (BR) 

with a maximum physical data rate of 1 megabit per second. 

Version 2.0 of Bluetooth had enhanced data rate to increase 

the physical layer data rate of 3MBps [1].  

 

This design implements dual UART in the Intel FPGA board 

embedded with the Nios II soft core processor as shown in 

fig 1. Universal asynchronous Receiver Transmitter is a 

component used for communication between serial input and 

serial output devices where the parallel data is converted to 

serial data. It is generally used for short distance 

communication and for low - cost data transfer between a 

computer and its peripherals. The design is implemented on 

the Altera Development board. This design implements dual 

UART for communication within the FPGA.  

 

Nios II processor is a soft embedded core in the Altera 

Development boards. This processor adopts Reduced 

Instruction Set Computer (RISC) architecture with length of 

32 - bits. Nios II architecture uses separate instruction and 

data buses which is referred to as Harvard architecture. The 

Hardware Abstraction Layer (HAL) provides a simple 

device driver interface for programs to connect to the 

underlying hardware. It serves as a device driver package for 

the Nios II processor, providing a consistent interface to the 

peripherals in the system. The library drivers present in the 

HAL system enables the designer to access the UART core 

using the ANSI C standard library functions. [2] 

 

The BLE module SI MGM series is interfaced with the 

FPGA. A free source Serial Terminal app is used over the 

Android device to send the data to the PC using UART 

communication 

 

 
Figure 1: Block diagram of interfacing BLE on the FPGA. 

 

2. Implementation 
 

The dual UART RS - 232 is implemented on the FPGA 

using the Platform Based Design (PBD) from the IPs 

available in the Quartus Prime Lite software. The IPs used in 

the design include UART RS - 232 (UART_0, UART_1), 

JTAG_UART, On - chip memory, Parallel I/O (LED).  

 

a) UART RS - 232 Core 

 

 
Figure 2: UART - RS232 IP design 

 

The UART core provides a method of implementation for 

serial communication which allows streaming of characters 

between an embedded system to an Intel FPGA or the 

external device. The core implements RS - 232 protocol and 

allows modification of the baud rate, parity and data bits. 

The core provides Avalon Memory - mapped (MM) slave 

interface that communicates with the Avalon Memory - 

Paper ID: SR21817232729 DOI: 10.21275/SR21817232729 1020 

mailto:shamanaik10@gmail.com


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 8, August 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Mapped master peripherals by reading and writing control 

and data registers.  

 

The implementation of the UART core is done using the RS 

- 232 asynchronous transmit and receive logic. The data is 

sent and received via RXD and TXD ports. The UART 

consists of an 8 - bit data shift receiver and transmitted 

register corresponding to the 8 - bit holding register. These 

two registers provide double buffering. The master 

peripheral can write new data into the holding registers 

while previously written characters can be shifted out to the 

register.  

 

The internal baud rate of the UART core is derived from the 

Avalon - MM clock input. The internal baud rate can be 

generated by using a clock divider. The reconfigurable 

parameters of the UART core are set to as follows 

 

Table 1: Values of the Parameters used in UART - RS232 
Parameter Value 

Data bit 8 - bits 

Parity None 

Stop bit 1 bit 

Flow Control None 

Baud Rate 115200 

 

Two UART - RS232 cores are used in the design to 

implement dual UART. UART_0 occupies the address of 

0x0004_1020 to 0x0004_103f while UART_1 occupies the 

address of 0x0004_1000 to 0x0004_101f for the Avalon - 

MM slave on the Nios II processor [3].  

 

b) JTAG UART Core 

 

 
Figure 3: JTAG UART IP design 

 

The JTAG UART core with Avalon interface implements a 

method of communication which allows streaming of 

characters between host PC and Platform Designer System 

of the FPGA. The JTAG UART uses the JTAG circuitry 

built in the Intel FPGA through any Intel FPGA download 

cable. Software support in the Nios II processor is provided 

in the Hardware Abstraction Layer (HAL) system library, 

allowing the software to access the core using ANSI C 

standard library stdio. h routines.  

 

The JTAG UART core also provides an Avalon slave 

interface to the JTAG circuitry on the Intel FPGA. The 

interface of the JTAG UART consists of 32 - bits data and 

control registers that are accessed via Avalon slave port. The 

Nios II processor (Avalon Master) accesses the registers, 

controls the core and transfers the data over the JTAG 

connection. This core provides an active - high interrupt 

output. This allows the core to request an interrupt when 

read data is available or when the write FIFO is available to 

write the data. The core provides bidirectional FIFOs to 

improve bandwidth over JTAG communication. The FIFO 

depth is parameterizable to accommodate the available on - 

chip memory.  

 

Intel FPGAs contain in - built JTAG circuitry between the 

JTAG pins and the logic inside the device. The Intel Quartus 

Prime software generates the JTAG UART logic. Manual 

design is not necessary to connect the JTAG circuitry inside 

the device.  

 

The Avalon - MM slave of the JTAG UART uses the 

address 0x0004_1050 to 0x0004_1057 from the Nios II 

processor [3].  

 

c) On - Chip Memory 

 

 
Figure 4: On - chip memory RAM 

 

Intel FPGAs contain inbuilt On - chip memory that can be 

used as RAM or ROM. This memory has fast access time in 

comparison to the off - chip memory. On - chip memory can 

be automatically instantiated within the Platform based 

design and certain memory blocks have initialized content 

when the block powers up. This memory is used to store the 

data constants and also to store the processor boot code. 

Nios II /e core processor does not include instruction cache 

and data cache. The OCRAM provides the memory required 

by the processor to store the data constants [3].  

 

d) Nios II core 

 

 
Figure 5: Nios II IP design 

 

Nios II/e version is used in the above implementation. This 

is the economical version which aims at using minimum 

FPGA resources. The Nios II along Avalon interface 

provides a connection of the master to the other embedded 

IPs. The processor controls the data transfer via 8 - bit data 

bus of the Avalon - MM master to UART - RS232, JTAG - 

Paper ID: SR21817232729 DOI: 10.21275/SR21817232729 1021 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 8, August 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

UART and PIO. The 8 - bit instruction_master signal 

(Avalon - master) communicates with the Avalon - MM 

slave of the on - chip memory RAM. The core provides an 

interrupt receiver which receives the interrupt requests from 

other cores [4].  

 

e) Parallel I/O 

 

 
Figure 6: PIO IP design 

 

The parallel input/output core along with Avalon interface 

provides connection between Avalon Memory - mapped 

slave port and general purpose input output ports. The input 

output pins connect to the pins that are connected to the 

devices external to the FPGA. The PIO core allows display 

LEDs for the verilog code which is executed [3].  

 

A. Hardware Design 

 

The Platform design is programmed on the Development 

board in Active Serial mode. The SRAM object file (. sof) 

created after the compilation process is converted to JTAG 

Indirect Configuration file (.jic). The MSEL [4:0] switch on 

the board is set to “10010” to use flash as the configuration 

device. The configuration file (.jic) is downloaded into the 

serial configuration device (EPCS128). The configuration 

file in EPCS128 is retained even when the Development 

board is restarted. A Serial Flash Loader (SFL) 

Megafunction is used to program the serial configuration via 

JTAG interface.  

 

B. Software Design 

 

The UART design is implemented using the Nios II 

Software Build Tools (SBT). The UART .c code implements 

the main UART function for read/write operations. The file 

contains the receiver (RX) and transmitted (TX) buffers, 

data transmission and collection and registers check 

procedures. The Main .c file contains the main C function.  

 

3. Result and Conclusion 
 

The test results were verified on the Nios II console and on 

the Putty serial terminal software. The BLE module was 

connected to the RX and TX pins of UART_0 and the PC 

was connected to the RX and TX pins of UART_1 via TTL 

to UART converter. Serial Bluetooth terminal App is used 

on the Android device to send data to the BLE module 

which is received on the Putty serial terminal software on 

the PC via the two UARTs.  

 

 
Figure 7 (a): Data sent from the Serial Terminal App 

 

 
Figure 7 (b): Data at the Serial Terminal (Putty) on the PC 

 

References 
 

[1] Kang Eun Jeon, James She, Perm Soonsawad, and Pai 

Chet N”BLE Beacons for Internet of Things 

Applications: Survey, Challenges and Opportunities” 

[2] Nios® II Software Developer 

 

Handbook 

[3] Embedded Peripherals IP User Guide 

[4] Nios II Classic Processor Reference Guide 

Paper ID: SR21817232729 DOI: 10.21275/SR21817232729 1022 




