Hyers-Ulam-Rassias Stability of First Order Partial Differential Equation

V. P. Sonalkar

Department of Mathematics, S. P. K. Mahavidyalaya Sawantwadi, Maharashtra-416510, India
vpsonalkar[at]yahoo.com

Abstract: In this paper, we prove the Hyers-Ulam-Rassias stability of first order partial differential equation:

\[p(x, t) u_x(x, t) + p_x(x, t) u(x, t) = g(x, t, u(x, t)). \]

Keywords: Hyers-Ulam-Rassias stability, Partial differential equations, Banach’s contraction principle.

AMS subject classification: 35B35; 26D10.

1. Introduction

Since S. M. Ulam’s [15] presentation of the problem on stability of group homomorphism in 1940 and D. H. Hyers [5] partial solution to it in 1941, there has been number of publications on stability of solutions of differential equations [3, 6, 7] and partial differential equations [8, 9]. This is now known as Hyers Ulam (HU) stability and its various extensions have been named with additional word. One such extension is Hyers Ulam Rassias (HUR) stability. HUR stability for linear differential operators of \(n \)-th order with non-constant coefficients is studied in [10] and [11]. HUR stability for special types of non-linear equations have been studied in [1, 2, 12, 13]. HUR stability of second order partial differential equation have been studied by using Banach’s Contraction Principle. In this paper, by using the result of [4] and [14], we prove the HUR stability of first order partial differential equation:

\[P(x, t) u_x(x, t) + p_x(x, t) u(x, t) = g(x, t, u(x, t)) \] (1.1)

Here \(p: J \times J \rightarrow \mathbb{R}^+ \) be a differentiable function at least once w. r. t. both the arguments and \(p(x, t) = 0, \forall x, t \in J, J = (-\infty, \infty) \) be a closed interval and \(g: J \times J \rightarrow \mathbb{R} \) be a continuous function.

Definition 1.1: A function \(u: J \times J \rightarrow \mathbb{R} \) is called a solution of equation (1.1) if \(u \in C^2 (J \times J) \) and satisfies the equation (1.1).

Preliminaries

Definition 2.1: The equation (1.1) is said to be HUR stable if the following holds:

Let \(\varphi: J \times J \rightarrow (0, \infty) \) be a continuous function. Then there exists a continuous function \(\Psi: J \times J \rightarrow (0, \infty) \), which depends on \(\varphi \) such that whenever \(u: J \times J \rightarrow \mathbb{R} \) is a continuous function with

\[|p(x, t) u_x(x, t) + p_x(x, t) u(x, t) - g(x, t, u(x, t))| \leq \varphi(x, t), \] (2.1)

There exists a solution \(u_0: J \times J \rightarrow \mathbb{R} \) of (1.1) such that

\[|u(x, t) - u_0(x, t)| \leq \Psi(x, t), \forall (x, t) \in J \times J. \]

We need the following.

Banach Contraction Principle:

Let \((Y, d) \) be a complete metric space, then each contraction map \(T: Y \rightarrow Y \) has a unique fixed point, that is, there exists \(b \in Y \) such that \(Tb = b \). Moreover, \(d(b, w) \leq \frac{1}{1-\alpha} d(w, Tw), \forall w \in Y \) and \(0 \leq \alpha < 1 \).

Following the results from Gordji et al. [4], we establish the following result.

2. Main Result

In this section we prove the HUR stability of first order partial differential equation (1.1).

Theorem 3.1: Let \(c \in J \). Let \(p \) and \(g \) be a sin (1.1) with additional conditions:

(i) \(p(x, t) = 1, \forall x, t \in J \).

(ii) \(\varphi: J \times J \rightarrow (0, \infty) \) be a continuous function and \(M: J \times J \rightarrow (0, \infty) \) be an integrable function.

(iii) Assume that there exists \(\alpha > 0 \) such that

\[\int_{t_0}^t M(t, \tau) \varphi(t, \tau) d\tau \leq \alpha \varphi(x, t), (3.1) \]

Suppose that the following holds:

\[C1: |g(\tau, t, m(\tau, t)) - g(\tau, t, m(t, t))| \leq M(\tau, t) |l(\tau, t) - m(\tau, t)|, \forall \tau, t \in J \]

\[C2: u: J \times J \rightarrow \mathbb{R} \] be a function satisfying the inequality (2.1).

Then there exists a unique solution \(u_0: J \times J \rightarrow \mathbb{R} \) of the

Volume 10 Issue 8, August 2021
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
equation (1.1) of the form
\[
 u_0(x, t) = (p(x, t))^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, u_0(t, t)) dt \right]
\]

Such that
\[
 |u(x, t) - u_0(x, t)| \leq \frac{a}{(1-a^2)} \varphi(x, t), \quad \forall \ x, t \in J.
\]

Proof: Consider
\[
 |p(x, t)u_0(x, t) - g(x, t, u(x, t))| = |p(x, t)u(x, t)| - |g(x, t, u(x, t))| \]

From the inequality (2.1), we get
\[
 |\{p(x, t)u(x, t)\}_t - g(x, t, u(x, t))| \leq \varphi(x, t).
\]

Thus
\[
 \begin{align*}
 \Rightarrow & \quad \{p(x, t)u(x, t)\}_t - \{p(x, t)u(x, t)\}_t = \{g(x, t, u(x, t))\}_t \\
 & \Rightarrow \{p(x, t)u(x, t)\}_t - \{p(x, t)u(x, t)\}_t = \{g(x, t, u(x, t))\}_t \leq \varphi(x, t).
 \end{align*}
\]

Integrating from \(c\) to \(x\) we get,
\[
 p(x, t)u(x, t) - p(c, t)u(c, t) = \int_c^x g(t, t, u(t, t)) dt
\]

\[
 \Rightarrow p(x, t) \left\{ u(x, t) - \{p(x, t)\}^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, u(t, t)) dt \right] \right. \\
 \left. + \int_c^x g(t, t, u(t, t)) dt \right\} \leq \int_c^x \varphi(t, t) dt.
\]

\[
 \Rightarrow \left\{ u(x, t) - \{p(x, t)\}^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, u(t, t)) dt \right] \right. \\
 \left. + \int_c^x g(t, t, u(t, t)) dt \right\} \leq \int_c^x \varphi(t, t) dt.
\]

\[
 \Rightarrow \left\{ u(x, t) - \{p(x, t)\}^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, u(t, t)) dt \right] \right. \\
 \left. + \int_c^x g(t, t, u(t, t)) dt \right\} \leq \int_c^x \varphi(t, t) dt.
\]

\[
 \Rightarrow \left\{ u(x, t) - \{p(x, t)\}^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, u(t, t)) dt \right] \right. \\
 \left. + \int_c^x g(t, t, u(t, t)) dt \right\} \leq \int_c^x \varphi(t, t) dt.
\]

Since \(M: J \times J \rightarrow [1, \infty) \) be an integrable function, we have
\[
 u(x, t) - \{p(x, t)\}^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, u(t, t)) dt \right] \leq \int_c^x M(t, t) \varphi(t, t) dt.
\]

Using inequality (3.1) we have,
\[
 \left\{ u(x, t) - \{p(x, t)\}^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, u(t, t)) dt \right] \right. \\
 \left. + \int_c^x g(t, t, u(t, t)) dt \right\} \leq \int_c^x M(t, t) \varphi(t, t) dt \leq \alpha \varphi(t, t).
\]

Thus
\[
 \left\{ u(x, t) - \{p(x, t)\}^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, u(t, t)) dt \right] \right. \\
 \left. + \int_c^x g(t, t, u(t, t)) dt \right\} \leq \alpha \varphi(t, t).
\]

In a similar way, from the left inequality of (3.2), we obtain
\[
 \left\{ u(x, t) - \{p(x, t)\}^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, u(t, t)) dt \right] \right. \\
 \left. + \int_c^x g(t, t, u(t, t)) dt \right\} \leq \alpha \varphi(t, t).
\]

From the inequalities (3.3) and (3.4) we get,
\[
 \left\{ u(x, t) - \{p(x, t)\}^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, u(t, t)) dt \right] \right. \\
 \left. + \int_c^x g(t, t, u(t, t)) dt \right\} \leq \alpha \varphi(t, t).
\]

Let \(Y \) be the set of all continuously differentiable functions \(y: J \times J \rightarrow \mathbb{R} \). We define a metric \(d \) and an operator \(T \) on \(Y \) as follows:

\[
 d(l, m) = \sup_{x, t \in J} \frac{|(l(x, t)) - (m(x, t))|}{\varphi(x, t)}
\]

\[
 (Tm)(x, t) = \{p(x, t))^{-1} \left[p(c, t)u(c, t) + \int_c^x g(t, t, m(t, t)) dt \right] \\
 \left. + \int_c^x g(t, t, m(t, t)) dt \right\} \leq \alpha \varphi(t, t).
\]

Consider,
\[
 d(Tl, Tm) = \sup_{x, t \in J} \frac{|(Tl(x, t)) - (Tm(x, t))|}{\varphi(x, t)}
\]

\[
 \leq \sup_{x, t \in J} \frac{|(l(x, t)) - (m(x, t))|}{\varphi(x, t)} \leq \sup_{x, t \in J} \frac{|(l(x, t)) - (m(x, t))|}{\varphi(x, t)} \leq \sup_{x, t \in J} \frac{|(l(x, t)) - (m(x, t))|}{\varphi(x, t)}.
\]

By using condition C1 we get,
\[
 d(Tl, Tm) \leq \sup_{x, t \in J} \frac{|(l(x, t)) - (m(x, t))|}{\varphi(x, t)}.
\]
By using inequality (3.1) we get,
\[
d(Tl,Tm) \leq d(l,m).
\]

By using Banach contraction principle, there exists a unique \(u_0 \in X\) such that
\[
Tu_0 = u_0,
\]
that is
\[
(u_0(x,t))^{-1} p(c,t)u(c,t) + \int_c^x g(r,t,u_0(r,t)) \, dr = u_0(x,t),
\]
(by using equation (3.6))
and
\[
d(u_0,u) \leq \frac{1}{(1-\alpha)} d(u,Tu).
\]

Now by using inequality (3.5) we get,
\[
|u(x,t) - (Tu)(x,t)| \leq \alpha \phi(x,t).
\]
\[
\Rightarrow \sup_{x,t \in J} \frac{|u(x,t) - (Tu)(x,t)|}{\phi(x,t)} \leq \alpha.
\]

Thus
\[
d(u,Tu) \leq \alpha.
\]

Again
\[
d(u_0,u) = \sup_{x,t \in J} \left| \frac{u_0(x,t) - u(x,t)}{\phi(x,t)} \right|.
\]

From equation (3.7) we get,
\[
d(u_0,u) \leq \frac{1}{(1-\alpha)} d(u,Tu).
\]
\[
\sup_{x,t \in J} \left| \frac{u_0(x,t) - u(x,t)}{\phi(x,t)} \right| \leq \frac{1}{(1-\alpha)} d(u,Tu).
\]
\[
\Rightarrow \sup_{x,t \in J} \left| \frac{u_0(x,t) - u(x,t)}{\phi(x,t)} \right| \leq \frac{1}{(1-\alpha)} d(u,Tu).
\]

From equation (3.8) we get,
\[
\left| \frac{u_0(x,t) - u(x,t)}{\phi(x,t)} \right| \leq \frac{1}{(1-\alpha)} \alpha.
\]
\[
\Rightarrow \frac{u_0(x,t) - u(x,t)}{\phi(x,t)} \leq \frac{\alpha}{1-\alpha} \phi(x,t), \forall x, t \in J .
\]

Hence the result.

3. Conclusion

In this paper we have proved the HUR stability of the first order partial differential equation (1.1) by employing Banach’s contraction principle.

References

[13] M. N. QarawaniHyers-Ulam stability of a generalized...
