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Abstract: Wind speed modelling and forecasting is pertinent in order to have a power system that is reliable and secured. The Vector 

Autoregressive model and the logistic regression model were applied on a 23-year monthly data obtained from the Meteorological 

Agency FCT Abuja Nigeria. The Vector Autoregressive model shows that none of the meteorological variables namely; Monthly 

rainfall, Monthly temperature, and Monthly relative humidity, significantly affect Monthly wind speed. It was also found that each of 

the meteorological variables have varying effects on Wind speed over a future time horizon as depicted by the variable. The Wind speed 

was also model using the logistic regression where it was found that there is no statistically significant difference between Wind speed 

and the meteorological variables. To this end, this study posits that wind speed is not significantly being influenced by the 

meteorological variables. That is to say most of this metrological variable will not be able to generate enough heat in other to influence 

the wind speed for a sufficient power generation.  
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1. Introduction 
 

1.1 Background to the Study 

 

With the advent of science and technology, the demand for 

electrical energy becomes inevitable. Nigeria is a country 

endowed with abundant energy resources like coal, solar, 

water (Dam), wind and so on which can be used as a form of 

electricity generation. Despite the abundance of these energy 

resources, there is inconsistent supply of electricity, which 

may be due to underutilization of the potentials. 

 

Wind energy is the fastest growing renewable source of 

energy. With respect to this, the need for wind speed 

modelling and forecasting becomes paramount. Energy 

generation by wind is of great advantage because wind 

turbines do not produce any form of pollution when sited 

strategically. Moreover, it blends with the natural landscape. 

The utilization of wind energy will ensure the growth of 

socio-economic development and improvement in the 

quality of life of the citizens. The demand for more 

sustainable energy sources is on the increase in order to 

address the growing needs of humans. It is also in line with 

taking care of the environment and the minimal use of 

natural resources, which means there is an urgent need for 

developing renewable energy. 

 

Wind energy is now becoming the current trend in 

renewable energy as it addresses rising energy demand 

while being nature friendly at the same time. In the long run, 

electricity generated from the wind turbines cost less than 

the conventional power plants since it does not consume 

fossil fuel. Researches on the potentials of wind energy in 

some major cities in Nigeria show high wind speed in 

Lagos, Maiduguri, Enugu, Jos, Kano, Funtua and Sokoto 

(Idriset al., 2012). 

 

The gathering of wind data is important for the wind farm 

beginning from its feasibility to its actual operation. Prior to 

the construction of a wind farm, at least one year of 

meteorological study is necessary and a detailed verification 

of the specific on-site wind conditions are necessary. 

Meteorological values, more specifically wind speed and 

wind direction are necessary for the calculation of the wind 

farm‟s yearly electrical generation profile. The harnessing of 

Kinetic energy through the wind has been used for centuries, 

be it in form of powering sail boats, wind mills, or furnaces 

(Aliyu and Mohammed 2014). But it was not until 1979 that 

the modern wind power industry began in earnest with the 

production of wind turbines. The use of wind energy as a 

form of renewable energy gained momentum in the 80s and 

90s and there are now thousands of wind turbines operating 

all over the world (Minh et al., 2011). The modern and most 

commonly used wind turbine has a horizontal axis with 

twoor more aerodynamic blades mounted on the shaft. These 

blades can travel at over several times the wind speed, 

generating electricity which is captured by a medium 

voltage power collection system and fed through the power 

transmission network (Garba and Al-Amin, 2014). 

 

Wind energy is unarguably the most economic renewable 

energy apart from hydropower, its usage, versatility and 

ability to use it as a decentralized energy form make its 

applications possible in rural areas where it is technically 

and economically feasible in the country. Winds are caused 

by the uneven heating of the atmosphere by the sun, 

irregularities of the earth‟s surface, and rotation of the earth. 

Wind flow patterns are modified by the earth‟s terrain, water 

bodies and vegetative cover (Reddy et al., 2015). The major 

challenge of using Wind as a source of energy is that winds 

are intermitted, and it is not available always when 

electricity is needed. 

 

Wind speed forecasting is essential for a secured and reliable 

power system for a particular site. This research forecasts 
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wind speed in Nasarawa state using the Vector Auto 

Regressive (VAR) model. The explanatory variables used 

are rainfall, Temperature, and relative humidity, in addition, 

the wind significance influence were also studied in relation 

to wind speed using the Logistic Regression model. 

 

1.2 Statement of the Problem 

 

The growing demands of energy supply by mankind has 

triggered the potentials of using wind energy due to its 

constant availability and nature-friendly environment. The 

importance of wind energy cannot be over emphasized. 

Wind energy can be seen as the energy of the future for 

Nigerians if properly harnessed and utilized. For example, 

the 10MW Katsina wind farm project which is owned by the 

Federal Ministry of Power is a pioneer project in Nigeria 

aiming to generate 10MW of power via wind turbine with 

the Federal Government‟s desire to boost electricity 

generation and have constant power supply. Wind Speed 

modelling and forecasting are necessary for a reliable and 

secure power system. It is therefore of paramount 

importance to study the impact of meteorological variables 

on wind speed. Cherisetal (2014) used vector autoregressive 

model in modelling wind speed in the presence of some 

meteorological variables which are humidity, temperature, 

and pressure. The result of this study showed that none of 

the meteorological variables namely Humidity, Temperature 

and Pressure significantly affected wind speed over time. 

 

However, the researcher apply the vector autoregressive 

model, and logistics regression model in studying the wind 

speed and direction of influence in Nasarawa State with 

some selected meteorological variables which are rainfall, 

temperature and relative humidity. 

 

1.3 Aim and Objectives of the Study 

 

To model and forecast wind speed using vector 

autoregressive model, variance decomposition and logistics 

regression in the presence of some metrological variables.  

 

1.4 Objectives  

 

1) VAR modeling of wind speed on rain fall, temperature 

and relative humidity 

2) To perform logistics regression modeling of wind speed 

on rain fall, temperature and relative humidity.  

 

1.5 Significance of the Study 

 

This study will serve as a contribution to existing literatures 

on modelling of wind speed in the scientific world. In 

addition, the result of the study will be of paramount 

importance to the Nasarawa State Government, the Federal 

Government and also the Nigeria meteorological agency as 

it creates awareness on the important of wind speed; can 

also provide valuable information on the expected daily and 

seasonal load. The model which will be adopted can be used 

as a tool by the government in making forecasts on wind 

speed in order to facilitate policy planning. 

 

 

 

1.6 Scope of the Study 

 

The data used for this study is a 23 year monthly data from 

1998 to 2020 obtained from the Nigeria meteorological 

Agency. 

 

Techniques for Data Analysis and Model Specification 

The techniques used in this research for data analysis is 

Vector autoregressive model (VAR MODEL). 

 

What is VAR.? It is a simple autoregressive model. 

 

Autoregressive is due to the appearance of the lagged value 

of the dependent variable in the right-hand side and the term 

vector is due to the fact that vector of two of more variables 

is included in the model. 

 

The VAR approach by passed the need for structural 

modeling by treating every variable as endogenous in the 

model as a function of the lagged value of all endogenous 

variable in the system. 

 

VAR is commonly used for forecasting system of inter-

related time series and for analysis the dynamic impact of 

random disturbance on the system of variable.  

 

1.7 Model Specification 

 

LNMWSt= α1 + a𝑘
𝑠=1 1iLNMWSt-s +  𝑏𝑘

𝑚=1 1mLNMRFt-m + 

 𝑐𝑘
𝑗=1 1jLNMTEMPt-j +  d𝑘

𝑛=1 1n 

LNMRHt-n + U1t 

LNMRFt= α2+  a𝑘
𝑠=1 2i LNMWSt-s +  𝑏𝑘

𝑚=1 2mLNMRFt-m + 

 𝑐𝑘
𝑗=1 2jLNMTEMPt-j +  d𝑘

𝑛=1 2n 

LNMRHt-n + U2t 

LNMTEMPt= α3 + a𝑘
𝑠=1 3i LNMWSt-s +  𝑏𝑘

𝑚=1 3mLNMRFt-m 

+  𝑐𝑘
𝑗=1 3jLNMTEMPt-j +  d𝑘

𝑛=1 3n 

LNMRHt-n + U3t 

LNMRHt= α4 + a𝑘
𝑠=1 4i LNMWSt-s +  𝑏𝑘

𝑚=1 4mLNMRFt-m + 

 𝑐𝑘
𝑗=1 4jLNMTEMPt-j +  d𝑘

𝑛=1 4n 

LNMRHt-n + U4t 

Where  

k is the optimal lag 

αis the Intercept 

ai, bm, cj, dnare short run coefficient of the model adjusted 

Uitare the Residuals in the equations. 

Which can be also be re-arranged in matrix form as: 

 

 

𝑊𝑛𝑑𝑠𝑃𝑡

𝑅𝑛𝐹𝑡

𝑇𝑚𝑃𝑡

𝑅𝑕𝑀𝑡

 +  

α1

α2

α3
α4

 

+

 
 
 
 
 

𝑎11           𝑏11𝑐11         𝑑11  

𝑎21      𝑏21         𝑐21         𝑑21

  𝑎31       𝑏31         𝑐31         𝑑31    

𝑎41        𝑏41         𝑐41         𝑑11          
 
 
 
 

 

WndP𝑡−1

RnF𝑡−1

𝑇𝑚𝑃𝑡−1

Rhm𝑡−1

 +  

𝑢1𝑡

𝑢2𝑡

𝑢3𝑡
𝑢4𝑡

  

 

2. Model Selection 
 

Most recent approaches used as criteria for choosing the 

order of a model without going through hypothesis testing 

are: 
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2.1 Final Prediction Error (FPE). 
 

The FPE criterion for pthcrder model is given by pth order 

model is given by 

𝐹𝑃𝐸𝑝 = 𝜎𝑝
2  1 +

𝑃

𝑁
  

Where 

𝜎𝑝
2is the unbiased estimates of 𝜎2  after fitting the pth order 

model. That is. 𝜎 𝑝
2 =

𝑅𝑆𝑆𝑝

𝑁−𝑝
 

 

2.2 Akaike Information Criterion (AIC) 

 

Akaike (1973, 1974a) introduced an intonation criterion 

called AK in the literature. It is defined as 𝐴𝐼𝐶 𝑘 =
−2𝐼𝑛 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑) + 2𝑘 

Where 

k is the number of parameters in the model. Minimizing 

Ln(L), AIC reduces to 𝐴𝐼𝐶 𝑘 = 𝑛𝐿𝑛𝜎𝑒
2 + 2𝑘 where L 

stands for likelihood function of sample and n is the 

effective number of observations. 

 

2.3 Bayesian Information Criterion (BIC) 

 

Shibata (1976) showed that the AIC criterion tends to 

overestimate the order of the autoregression. Akaike (1978, 

1979) developed a Bayesian extensilon of the minimum AIC 

procedure called BIG which is given by 

𝐵𝐼𝐶 𝑘 = 𝑛𝐼𝑛 𝜎 𝑒
2 −  𝑛 − 𝑘 𝐼𝑛  1 −

𝑘

𝑛
 + 𝑘𝐼𝑛 𝑛 

+ 𝑘𝐼𝑛  (
𝜎 𝑥

2

𝜎 𝑒
2
− 1)/𝑘   

Where 

𝜎 𝑒
2is the maximum likelihood estimate of 𝜎𝑒

2 

k is the number of parameters and  

𝜎 𝑥
2is the sample variance of the series. Through a simulation 

study, Akaike (1978) claimed that the BIC is less likely to 

overestimate the order of the autoregression. 

 

2.4 Schwartz’s Bayesian Information Criterion (SBIC) 

 

This criterion is similar to Akaike‟s BIG. Schwartz (1978) 

suggeste a Bayesian Criterion of model selection given as 

𝑆𝐵𝐼𝐶 𝑘 = 𝑛𝐼𝑛𝜎 𝑒
2 + 𝑘𝐼𝑛(𝑛) 

For all the criteria considered, the optimal model order is 

determined for which the criterion is minimum. 

 

2.5 Test of Stationarity 

There are two (2) basic tests for stationarity in a variable 

namely: Augmented Dickey Fuller (ADF) and Philiph 

Perron (PP).  

The ADF test: This assumed that the error term µt was 

uncorrelated. Therefore, a test was developed known as 

(ADF) by adding a lagged value of the dependent variable 

∆y. 

∆Wndspt = αt + α2t + δWndspt-1 + µt 

∆Wndspt = αt + α2t + δwndspt-1 + αi + Σ∆Wndspt-1  +єt 

That is, 

∆Wndspt-1    = (Wndspt-1 - Wndspt-2) 

∆Wndspt-2    = (Wndspt-2 - Wndspt-3)while 

 

The (PP) Test: This assumed that error terms µt are 

independently and identically distributed. 

Therefore, ADF adjust the DF test to take care of possible 

serial correlation in the error terms by adding lagged 

difference term of the regression while the PP test use non 

parametric statistical methods to take care of the serial 

correlation in the error terms without adding lagged 

difference terms even though the asymptotic distribution of 

the ADF & PP are using the same test Statistic. 

 

In conclusion: The ADF is recommended for his study. 

 

Estimating of Parameters 

The parameters of a vector autoregressive model (VAR) can 

be estimated using either; 

1) Least squares method or  

2) Maximum Likelihood equivalent  

 

Least Square Method 

Suppose the sample  𝑋𝑡 𝑡=1
𝑛  is available such that: 

𝑋𝑡 = ∅0 + ∅1𝑋𝑡−1 + ⋯ ∅𝑝𝑋𝑡−𝑝 + 𝑎𝑡  

Then VAR(p) model can be written as 

𝑋𝑡
1 = 𝑋𝑡

1𝛽 + 𝑎𝑡
1 

Where 𝑍𝑡 = (1, 𝑋𝑡−1
1 , … , 𝑋𝑡−𝑝

1 )1 𝑎𝑠 (𝑘𝑝 + 1) dimensional 

vectors and  

𝛽1 =  ∅0, ∅1 , … , ∅𝑝 𝑘 𝑘 𝑥  𝑘𝑝 + 1  𝑚𝑎𝑡𝑟𝑖𝑥. 

The Least square estimate of 𝛽 is  

𝛽   𝑍𝑡

𝑝

𝑡=𝑝+1

𝑍𝑡
1 

−1

 𝑍𝑡
𝑝

𝑝

𝑡=𝑝+1

𝑍𝑡  

 

 

The Least square residual is 

𝑎1 = 𝑋𝑡 −  ∅ 

𝑝

𝑡=1

𝑋𝑡−1,    𝑡 = 𝑝 + 1 … , 𝑛. 

 

And the Least Square estimate is ∑ is  

 =
1

𝑛 −  𝑘 − 1 𝑝 − 1

𝑛

𝑖=1 

 𝑎 𝑡

𝑛

𝑡=𝑝+1

𝑎 𝑡
1 

For a stationary VAR(p) model with independent error terms 

𝑎𝑡 , it can be shown that the least square estimate ∅  is 

consistent. 

If 𝑏 = 𝑣𝑒𝑐 𝛽 , the 𝑏  is asymptotically normal with mean 

Vec[𝛽] and covariance matrix 

𝐶𝑜𝑣 𝛽  =  ⊗

𝑛

  𝑋𝑡

𝑛

𝑡=𝑝+1

𝑍𝑡
1 

−1

 

Where 

⊗denotes the kuecker product. 

 

2.6 Maximum Likelihood Method  

 

The coefficients of the model are the same as those of least 

square estimate in 11.4.1. However, the estimate of ∑ is  

 =
1

𝑛 − 𝑝
 𝑎 𝑡

𝑛

𝑡=𝑝+1

𝑎 𝑡
1

𝑛

 

 

2.7 Order Determination  

 

There are two basic approaches  
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1) Sequential Chi-Square Test 

Let P be a positive integer (max.lag) for k > 0, consider the 

hypothesis 

HO:  VAR(k) 

HI:   VAR(k – 1) 

To test HO: ∅𝑘 = 0    
HI∅𝑘 ≠ 0   𝑖𝑛 𝑎𝑢𝑡𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 

𝑋𝑡 = ∅0 + ∅1𝑋𝑡−1 + ⋯ , ∅𝑘𝑋𝑡−𝑘 + 𝑎𝑡  

In multivariate case, we ca use the likelihood ratio (LR) test 

in multivariate linear regression. 

Let  𝑛
𝑖 be the ML estimate of ∑ ting a VAR(i) model to 𝑋𝑡 , 

then the LR test statistic is 

𝑀(𝑘) = − 𝑛 − 𝑝 −
3

2
− 𝑚𝑘 𝐼𝑛  

  𝑘 

  𝑘 − 1 
  

Where 

 𝑛
𝑖 are ML estimate of ∑ using 𝑡 = 𝑝 + 1 … , 𝑛 for large n, 

M(k) is approximately a chi-square distribution with m
2
 

degree of freedom. 

 

2) Information Criteria: AIC, IC, etc. 

They are 

𝐴𝐼𝐶 𝐾 = 𝐼𝑛   

𝑛

𝑘

 +
2

𝑛
/𝑚2 

𝐵𝐼𝐶 𝑘 = 𝐼𝑛   

𝑛

𝑘

 +
𝐼𝑛(𝑛)

𝑛
/𝑚2 

𝐻𝑄 𝐾 = 𝐼𝑛   

𝑛

𝑘

 +
2𝐼𝑛(𝐼𝑛 𝑛 )

𝑛
/𝑚2 

Where 

 𝑛
𝑘 is MLE of ∑ under normality. 

Note that: Asymptotically, AIC overestimate the true order 

with positive probability whereas BIC and HQ criteria 

estimate the order consistently. 

 

Model Checking  

Use either of the following: 

1) Residual Plot or 

2) 𝑄𝑘
𝑚 statistic already defined above. 

 

Basic Assumptions and Properties of VAR Processes 

 

Stable VAR (p) Processes 

The object of interest in the following is the VAR(p) model 

(VAR model of order p), 

𝑦𝑡 =  𝑣 +  𝐴1𝑦𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝜇𝑡, 𝑡

=  𝑂, ±1, ±2, . . . ,      (2.1.1) 
Where 

𝑦𝑗 𝑖𝑠 𝑡𝑕𝑒 (𝑦𝑡 , . . . , 𝑦𝐾𝑡)’ 𝑖𝑠 𝑎 (𝐾 𝑥 1) random vector, the Ai 

are fixed (K x K) coefficient matrices, 𝑣 =  (𝑣1, … , 𝑣𝑘)’ is a 

fixed (K x 1) vector of intercept terms allowing for the 

possibility of a nonzero mean 𝐸(𝑦𝑡). Finally, 𝜇𝑡  =
 (𝜇1𝑡 … , 𝜇𝐾𝑡)’ is a K-dimensional white noise or innovation 

process, that is, 𝐸(𝑢𝑡) 0, 𝐸(𝜇𝑡𝜇𝑡
′ )  =   𝜇  𝑎𝑛𝑑  (𝜇1𝜇𝑡

′ ) =
 0 𝑓𝑜𝑟 𝑠 ≠  𝑡. The covariance matrix is• assumed to be 

nonsingular if not otherwise stated. 

 

At this stage, it may be worth thinking a little more about 

which process is describe by (2.1.1). In order to investigate 

the implications of the model let us consider the VAR(1) 

model. 

𝑦𝑡 = 𝑣 + 𝐴1𝑦𝑡−1 + 𝜇𝑡 . .                            (2.1.2) 

If this generation mechanism starts at some time t = 1, say, 

we get 

𝑦1 = 𝑣 + 𝐴1𝑦0 + 𝜇1, 
𝑦2 = 𝑣 + 𝐴1𝑦2 + 𝜇2 = 𝑣 + 𝐴1 𝑣 + 𝐴1𝑦𝑜 + 𝜇1 + 𝜇2 

=  𝐼𝐾 + 𝐴1 𝑣 + 𝐴1
2𝑦0 + 𝐴1𝜇1 + 𝜇2, 

𝑦𝑡 =  𝐼𝐾 + 𝐴1 + ⋯ + 𝐴1
𝑡−1 𝑣 + 𝐴1𝑦0

𝑡 +  𝐴1𝜇 𝑡−1
𝑖

𝑡−1

𝑖=0

 

Hence, the vectors 𝑦1, … , 𝑦𝑡 are uniquely determined by 

𝑦0, 𝜇1, … , 𝜇𝑡 . Also, the joint distribution of 𝑦1, … , 𝑦𝑡 is 

determined by the joint distribution of 𝑦0, 𝜇1 … , 𝜇𝑡  

 

Although we will sometimes assume that a process is started 

in a specified period, it is often convenient to assume that it 

has been started in the infinite past. This assumption is in 

fact made in (2.1.1). What kind of process is consistent with 

the mechanism (2.1.1) in that case? To investigate this 

question we consider again the VAR(1) process (2.1.2). 

From (2.1.3) we have 

𝑦𝑡 = 𝑣 + 𝐴1𝑦𝑡 + 𝜇1, 

=  𝐼𝐾 + 𝐴1 + ⋯ + 𝐴1
𝑗
 𝑣 + 𝐴1

𝑗+1
𝑦𝑡−𝑗−1 +  𝐴1𝜇 𝑡−1

𝑖

𝑡−1

𝑖=0

 

If all Eigen values of A1 have modulus less than 1, the 

sequence A, i = 0, 1, … is absolutely summable (see 

Appendix A, Section A.9.1). Hence, the infinite sum 

 𝐴1𝜇 𝑡−1
𝑖

∞

𝑖=0

 

exists in mean square (Appendix C, Proposition C.9). 

Moreover  

=  𝐼𝐾 + 𝐴1 + ⋯ + 𝐴1
𝑗
 𝑣𝑗→∞

→ (𝐼𝐾 − 𝐴1)−1𝑣 

(Appendix A, Section A.9.1). Furthermore, 𝐴1
𝑗+1

converges 

to zero rapidly as 𝑗 →  ∞ and, thus, we ignore the term 

𝐴1
𝑗+1

𝑦𝑡−𝑗−1 in the limit. Hence, if aJl eigenvalues of A1 

have modulus less than 1, by saying that yj is the VAR(1) 

process (2.1.2) we mean that yt is the well-defined stochastic 

process 

𝑦𝑡 = 𝜇 𝐴1𝜇 𝑡−1
𝑖

∞

𝑖=0

,   𝑡 = 0, ±1 ± 2, … ,                           2.1.4 

Where: 

𝜇 =  𝐼𝐾 + 𝐴1 
−1𝑣 

The distributions and join distributions of the yt„s are 

uniquely determined by the distributions of the µt process. 

From Appendix C3, Proposition C.10, the first and second 

moments of the yt process are seen to be 

𝐸 𝑦𝑡 = 𝜇           𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 
And  

𝛤𝑦 𝑕 = 𝐸 𝑦𝑡 − 𝜇 (𝑦𝑡−𝑕 − 𝜇)′  

= 𝑙𝑖𝑚  𝐴1
𝑖 𝐸

𝑛

𝑗 =0

𝑛

𝑖=0

 𝜇𝑡−1𝜇𝑡−𝑕−𝑗
′  (𝐴1

𝑗
)′  

= 𝑙𝑖𝑚 𝐴1
𝑕+1 𝜇𝐴1

𝑖 ′ =  𝐴1
𝑕+𝑖 𝜇𝐴1

𝑖 ′
∞

𝑖=0

𝑛

𝑖=0

 

Because  (𝜇1𝜇𝑡
′ ) =  0 𝑓𝑜𝑟 𝑠 ≠  𝑡 and E(𝜇1𝜇𝑡

′ ) = 𝜇  for all t. 

 

Because the condition for the eigenvalues of the matrix A1 

is of importance, we call a VAR(1) process stable if all 

eigenvalues of A1 have modulus less than 1. By Rule (7) of 

Appendix A.6, the condition is equivalent to 
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det 𝐼𝐾 − 𝐴1𝑍 ≠ 0   𝑓𝑜𝑟/𝑧/≤ 1. 
 

It is perhaps worth pointing out that the process 𝑦𝑡for 

𝑡 =  0, ±1, ±2, ... may also be defined if the stability 

condition (2.1.7) is not satisfied. We will not do so here 

because we will always assume stability of processes 

defined for all 𝑡 ∈ 𝑍. 

 

The previous discussion can be extended easily to VAR(p) 

processes with p > 1 because any VAR(p) process can be 

written in VAR(1) form. More precisely, if 𝑦𝑡 is a VAR(p) 

as in (2.1.1), a corresponding Kp-dimensiona1 VAR(1) 

𝑌𝑡 = 𝑣 + 𝐴𝑌𝑡−1 + 𝑈𝑡  
 

Can be defined, where 

𝑌𝑡 ≔

 
 
 
 
 

𝑦𝑡

𝑦𝑡−1

⋮
𝑦𝑡−𝑝+1

(𝐾𝑝𝑥1) 
 
 
 
 

, 𝑣 ≔

 
 
 
 
 

𝑣
0
⋮
0

(𝐾𝑝𝑥1) 
 
 
 
 

 

𝐴 ≔

 
 
 
 
 
 
 
 𝐴1 𝐴2 ⋯

𝐼𝑘
0
𝐼𝑘

⋯

0
⋮
0 0

⋱
⋯

𝐴𝑝−1 𝐴𝑝

0
0
0
⋮

0
⋮
𝐼𝐾

0

(𝐾𝑝  x 𝐾𝑝)  
 
 
 
 
 
 
 

, 𝑈𝑡 ≔

 
 
 
 
 

𝑈𝑡

0
⋮
0

(𝐾𝑝𝑥1) 
 
 
 
 

 

Following the foregoing discussion, Yt is stable if 

 
Its mean vector is 

 
and the autocovariances are 

 
Where 

 

 
The process Yt is obtained as Yt = JYt, Because Yt is a well-

defined stochastic process, the same is true for Yt Its mean is 

E(yt) = Jµ which is constant for all t and the autocovariances 

Γy(h) = JΓY(h)J‟ are also time invariant. 

It is easy to see that 

 
(see Problem 2.1). Given the definition of the characteristic 

polynomial of a matrix, we call this polynomial the reverse 

characteristic polynomial of the VAR(p) process. Hence, the 

process (2.1.1) is stable if its reverse characteristic 

polynomial has no roots in and on the complex unit circle. 

Formally Yt is stable if  

 
 

This condition is called the stability condition. 

 

In summary, we say that y is a stable VAR(p) process if 

(2.1.12) holds and 

 
Because the Ut := (𝑈𝑡

′ , 0,... , 0)‟ involve the white noise 

process „uj, the process Yt is seen to be determined by its 

white noise or innovation process. Often specific 

assumptions regarding „Ut are made which determine the 

process yt by the foregoing convention. An important 

example is the assumption that µt is Gaussian white noise 

that is, „Ut~𝑁(0,  𝜇 ) for all t and µt and µs are independent 

for s ≠ t. In that case, it can be shown that yt is a Gaussian 

process, that is, sub-collection yt, …,yt+hhas multivariate 

normal distributions for all t and h. 

 

The condition (2.1.12) provides an easy tool for checking 

the stability of a VAR process. Consider, for instance, the 

three-dimensional VAR(1) process. 

 

The Moving Average Representation of a VAR Process 

In the previous subsection we have considered the VAR(1) 

representation 

 
of the VAR(p) process (2.1.1). Under the stability 

assumption, the process has a representation 

 
This form of the process is called the moving average (MA) 

representation, where Yt is expressed in terms of past and 

present error or innovation vectors U and the mean term it. 

This representation can be used to determine the 

autocovariances of Y and the mean and autocovariances of y 

can be obtained as outlined in Section 2.1.1. Moreover, an 

IVIA representation of y can be found by premultiplying 

(2.1.16) by the (K x Kp) matrix J := [1K 0 : 0] (defined in 

(2.1.11)), 

 

 
Here µ:= Jµ, ɸi :=JA

i
J‟ and, due to the special structure of 

the white noise process Ut, we have Ut = J‟JUt and JUt = µt. 

Because the A
i
 are absolutely summable, the same is true for 

the ɸi, 

 

Lj_will also consider other MA representation of a stable 

VAR(p) process. The unique feature of the present 

representation is that the zero-order coefficient matrix ɸ0 = 

IK and the white noise process involved consists of the error 

terms t of the VAR representation (2.1.1). In Section 2.2.2, 

the t will be seen to be the errors of optimal forecasts made 

in period t - 1. Therefore, 

 

Stationary Processes 

A stochastic process is stationary if its first and second 

moments are time invariant, In other words, a stochastic 

process y is stationary if 
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and 

 
 

Condition (2.1.26a) means that all yt have the same finite 

mean vector µ and (2.1.26b) requires that the autocovariance 

of the process do not depend on t but just on the time period 

h the two vectors yt and yt-h are apart. Note that, if not 

otherwise stated, all quantities are assumed to be finite. For 

instance, µ is a vector of finite mean terms and Γy(h) is a 

matrix of finite covariances. Other definitions of stationarity 

are often used in the literature for example, the joint 

distribution of n consecutive vectors may be assumed to be 

time invariant for all n. „We shall, however, use the 

foregoing definition in the following. We call a process 

strictly stationary if the joint distributions of n consecutive 

variables are time invariant and there is a reason to 

distinguish between our form. By our definition, the white 

noise process µt used in (2.1.1) is an obvious example of a 

stationary process. Also, from (2.1.18) we know that a stable 

VAR(p) process is stationary. We state this fact as a 

proposition. 

 

Proposition 2.1 (Stationarity Condition) 

A stable VAR(p) process y, t 0, ±1, +2, . . ., is stationary. 

 

Because stability implies stationarity, the stability condition 

(2.1.12) is often referred to as stationarity condition in the 

time series literature. The converse of proposition 2.1 is not 

true. In other words, an unstable process is not necessarily 

nonstationarity. Because unstable stationary processes are 

not of interest in the following, we will not discuss this 

possibility here. 

 

At this stage, it may be worth thinking about the generality 

of the VAR(p) processes considered in this and many other 

chapters. In this context, an important result due to Wold 

(1938) is of interest. He has shown that every stationary 

process can be written as the sum of two uncorrelated 

processes zt and yt 

 
Where 

zt is a deterministic process that can be forecast perfectly 

from its own past and yt is a process with MA representation  

 
Where 

ɸ0 𝑖𝑠 𝑡𝑕𝑒 𝐼𝐾 , the µt constitute a white noise process and the 

infinite sum is defined as a limit in mean square although the 

ɸi are not necessarily absolutely summable (Hannan (1970, 

Chapter III)). The term deterministic will be explained more 

formally in Section 2.2. This result is often called Wold‟s 

Decomposition Theorem. If we assume that in the system of 

interest the only deterministic component is the mean term, 

then theorem state that the system has an MA representation. 

Suppose the ɸi are absolutely summable and there exists an 

operator A(L) with absolutely summable coefficient 

matrices satisfying A(L)ɸP(L) = IK.Then, ɸ(L) is invertible 

A(L) = ɸ(L)
-1

) and yt has a VAR representation of possibly 

infinite order, 

 
Where 

 
The A can be obtained from the by recursions similar to 

(2.1.22). 

 

The absolute summability of the Ai implies that the VAR 

coefficient matrices converge to zero rapidly. In other 

words, under quite general conditions, every stationary, 

purely nondeterministic process (a process without a 

deterministic component) can be approximated well by a 

finite order VAR process. 

 

This is a very powerful result which demonstrates the 

generality of the processes under study. Note that economic 

vriab1es can rarely be predicted without error. Thus, the 

assumption of having a nondeterministic system except 

perhaps for a mean term is not a very restrictive one. The 

crucial and restrictive condition is the stationarity of the 

system however. We will consider nonstationary processes 

later. For that discussion it is useful to understand the 

stationary case first. 

 

An important implication of Wold‟s Decomposition 

Theorem is worth noting at this point. The theorem implies 

that any sub-process of a purely nondeterministic, stationary 

process yt consisting of any subset of the components of yt 

also has an MA representation. Suppose, for instance that 

interest centers on the first M components of the K-

dimensional process yt, that is, we are interested in xt = Fµ 

and Fyt, where, where F = [IM : 0] is an (M x K) matrix. 

Then E(xt) = FE(yt) Fµ and Γx(h) F Γx(h)F‟ and, thus, xt is 

stationary. Application of Wold‟s theorem then implies that 

xt has an MA representation. 

 

Computation of Autocovariances and Autocorrelations 

of Stable VAR Processes 

Although the autocovariances of a stationary, stable VAR(p) 

process can be given in terms of its MA coefficient matrices 

as iii (2.1.18), that formula is unattractive in practice, 

because it involves an infinite sum. For practical purposes it 

is easier to compute the autocoyariances directly from the 

VAR coefficient matrices. In this section, we will develop 

the relevant formulas. 

 

Autocovariances of a VAR(1) Process 

In order to illustrate the computation of the autocovariances 

when the process coefficients are given, suppose that Pt is a 

stationary, stable VAR(1) process 
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with white noise covariance matrix 𝐸(𝜇𝑡𝑢𝑡
′ )  =  𝜇  .. 

Alternatively, the process may be written in mean-adjusted 

form as 

 
Where 

𝜇 = 𝐸(𝑦𝑡), as before. Post multiplying by (𝑦𝑡−𝑕 − 𝜇)′  and 

taking expectations gives 

 
Thus, for h = 0, 

 

 
And so on. Some more innovation responses re depicted in 

Figure 2.9. Although they are similar to those given in 

Figure 2.5, there is an obvious difference in the response of 

consumption to an income innovation. While consumption 

responds with a time lag of one period in Figure 2.5, there is 

an instantaneous effect in Figure 2.9. 

 

Logistic Regression  

This regression is widely used in medical fields because of 

the nature of outcome variable that is always found in the 

field. The common type of outcome variable in medical 

research is the binary response variable. That is the 

dependent variable has only two possible outcome likes 

“Yes or No”, “Success or Failure”, “Normal or Abnormal”, 

“Sick or Health” and so on. Logistic regression analysis is a 

popular used analysis that is alike to linear regression 

analysis except that the outcome is dichotomous. The 

epidemiology module on Regression Analysis provides a 

brief explanation of the rationale for logistic regression and 

how it is an extension of multiple linear regression. In 

essence, we examine the odds of an outcome occurring or 

not, and by using the natural log of the odds of the outcome 

as the dependent variable the relationships can be linearized 

and treated much like multiple linear regression. 

 

Simple logistic regression analysis refers to the regression 

application with one dichotomous outcome and one 

independent variable; multiple logistic regression analysis 

applies when there is a single dichotomous outcome and 

more than one independent variable.  

 

The outcome in logistic regression analysis is often coded as 

0 or 1, where 1 indicates that the outcome of interest is 

present, and 0 indicates that the outcome of interest is 

absent. If we define p as the probability that the outcome is 

1, the multiple logistic regression model can be written as 

follows: 

𝑝 =
𝑒𝛽0+ 𝛽1𝑋1𝑖+𝛽2𝑋2𝑖+ .  .  .+𝛽𝑘𝑋𝑘𝑖

1 + 𝑒𝛽0+ 𝛽1𝑋1𝑖+𝛽2𝑋2𝑖+ .  .  .+𝛽𝑘𝑋𝑘𝑖
 

𝑝 is the expected probability that the outcome is present, 

X1 through Xkt are distinct independent variables; and 

b0 through bp are the regression coefficients. The multiple 

logistic regression model is sometimes written differently. In 

the following form, the outcome is the expected log of the 

odds that the outcome is present, 

𝐼𝑛  
𝑝 

1 − 𝑝 
  

𝐼𝑛  
𝑝 

1−𝑝 
  = 𝛽0 +  𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +  .  .  . +𝛽𝑘𝑋𝑘𝑖  

Response function in logistic regression  

Consider the simple linear regression model: 

𝑌𝑖 = 𝑎 + 𝛽𝑋𝑖 + 𝜀𝑖             𝜖{0,1} 

 

As defined earlier, the response (outcome) 𝑌𝑡  is binary 

taking the values of either 0 or 1. The expected response 

E(𝑌𝑖) has a special meaning in this case. Since E(𝜖𝑖) = 0, 

we have: 

E(𝑌𝑖) =  𝑎 + 𝛽𝑋𝑖  

 

Consider 𝑌𝑖  to be a Bernoulli random variable for which we 

can state the probability distribution as follows: 

 

Table 15.1: Standard coding of Binary logistics 

𝑌𝑖  Probability 

1 𝑃 𝑌𝑖 = 1 = 𝑃𝑖  

0 𝑃 𝑌𝑖 = 0 = 1 − 𝑃𝑖  

 

Thus, P is the probability that 𝑌𝑖 = 1 and 1 − 𝑃𝑖  is the 

probability that 𝑌𝑖 = 0. By definition of expected value of a 

random variable we obtain: 

E(𝑌𝑖) =  𝑎 + 𝛽𝑋𝑖 = 1 × 𝛽𝑋𝑖 = 1 × 𝑃𝑖 + 0 ×  1 − 𝑃𝑖 = 𝑃𝑖  

 

The mean response: 

E(𝑌𝑖) =  𝑎 + 𝛽𝑋𝑖  

𝑌𝑖 = 1for𝑃𝑖 ≥ 𝑇𝑖  

𝑌𝑖 = 0for𝑃𝑖 < 𝑇𝑖  

Let 𝑌𝑖 = 1, if an individual is hypertensive and Pi be the 

probability that the individual hypertensive, 𝑌𝑖 = 0, if an 

individual is normal. 

 

3. Results and Discussion  
 

3.1 Introduction 

 

In this study, Wind speed was modelled in the presence of 

some selected meteorological variables which are rainfall, 

temperature and relative humidity. Before we went into the 

actual modelling, some preliminary works were carried out. 

The Augmented Dickey Fuller (ADF) test shows that all the 

variables are stationary, which prompted us to use the 

Vector Autoregressive model. The AIC was used to select a 

lag order of 2 for the Vector Autoregressive model. The 

variables were also tested for autocorrelation of its residuals. 

There exist no heteroscedasticity from the test result but 

there exist no autocorrelation at the first two lags. The 

Vector Autoregressive model was fitted and it was found 

that there is a linear dependence between Wind speed and 

temperature in the presence of other meteorological 

variables. The result of Autoregressive model shows that 

none of the meteorological variables namely; Monthly 

rainfall, Monthly temperature, and Monthly relative 

humidity, significantly affect Monthly wind speed. It was 

also found that each of the meteorological variables have 

varying effects on Wind speed over a future time horizon as 

depicted by the variable. The Wind speed was also model 

using the logistic regression where it was found that there is 

no statistically significant difference between Wind speed 

and the meteorological variables. To this end, this study 

posits that wind speed is not significantly being influenced 

by the meteorological variables. That is to say most of this 

metrological variables will not be able to generate enough 
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heat in other to influence the wind speed for a sufficient 

power generation.  

 

Time series plot 

The first stage in the analysis of any time series data is to 

plot the data. This gives the time series plot. This plot 

enables us to visually see the nature of the data and its 

behavior over time. 

 

From the plots fiqure 1 to 4,given below, consisting of wind 

speed, rainfall,Temperature,and relative humidity,it can be 

seen that each of these meteorological variables appear to be 

stationary over time. A stationarity test was further 

conducted to certify this claim. 
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Figure 1: Time Plot of Monthly Rainfall (MRF) 
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Figure 2: Time Plot of Monthly Relative Humidity (MRH) 
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Figure 3: Time Plot of Monthly Temperature (MTEMP) 
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Figure 4: Time Plot of Monthly Wind Speed (MWS) 

 

Table 1: ADF Unit Root Test for stationarity at level 
Variables t-Statistic Prob. Val. 

LNMRH -3.499083 0.0191 

LNMRF -3.295332 0.0328 

LNMTEMP 4.556240 0.0000 

LNMWS -3.435128 0.0233 

Source: Author Review Eview 10 

 

Table 1 above shows that at level LNMRH, LNMRF, 

LNMTEMP, and LNMWS are stationary at level. 

 

Table 2: ADF Unit Root Test for stationarity at first 

difference 
Variables t-Statistic Prob. Val. 

LNMRH -4.455040 0.0025 

LNMRF -4.462273 0.0025 

LNMTEMP -8.720498 0.0000 

LNMWS -4.505728 0.0023 

Source: Author Review Eview 10 

 

The table 2 above shows that at first difference all the 

variables are stationary. 

 

Hence we summarize the unit root test in the table below 

 

Table 3: Summary of the Unit Root test of the variables 
VARIABLES Staionarity 

LNMRH I(0) 

LNMRF I(0) 

LNMTEMP I(0) 

LNMWS I(0) 

Source: Author Review Eview 10 

 

Table 4: Obtaining optima lag 

Variables 
Akaike information criterion 

(AIC) 

Schwarz information 

criterion (SC) 

LNMRH -4.240278 -4.140800 

LNMRF -1.325057 -1.275317 

LNMTEMP -4.964696 -4.914957 

LNMWS -2.367977 -2.318238 

Source: Author Review Eview 10 
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Using the Schwarz information criteria, from the table four 

above all the variables are having lag structure at one 

 

Estimation of unrestricted VAR model 

 

Table 5: The model estimation of the Vector autoregression 

estimate 
Vector Autoregression Estimates   

Date: 04/03/21   Time: 13:29   

Sample (adjusted): 2000 – 2020   

Included observations: 21 after adjustments  

Standard errors in ( ) & t-statistics in [ ]  

     

 INMRF INMRH INMTEMP INMWS 

INMRF(-1) 0.089644 -0.086343 0.063138 

-

0.071033 

 (0.45920) (0.04173) (0.02284) (0.12285) 

 [ 0.19522] 

[-

2.06922] [ 2.76393] 

[-

0.57820] 

INMRH(-1) -0.897560 -0.053397 -0.450392 0.119470 

 (6.15298) (0.55912) (0.30609) (1.64615) 

 [-0.14587] 

[-

0.09550] [-1.47145] 

[ 

0.07258] 

INMTEMP(-1) 10.98025 2.326880 1.788826 1.668318 

 (9.18724) (0.83484) (0.45703) (2.45792) 

 [ 1.19516] [ 2.78723] [ 3.91403] 

[ 

0.67875] 

INMWS(-1) 1.725376 0.891617 0.009417 1.027368 

 (3.13557) (0.28493) (0.15598) (0.83888) 

 [ 0.55026] [ 3.12928] [ 0.06037] 

[ 

1.22469] 

C -46.46214 -5.829809 -1.324016 

-

10.94107 

 (34.7602) (3.15864) (1.72918) (9.29963) 

 [-1.33665] 

[-

1.84567] [-0.76569] 

[-

1.17651] 

     

     

R-squared 0.527387 0.879313 0.950925 0.689503 

Adj. R-squared 0.212312 0.798855 0.918209 0.482505 

Sum sq. resids 26.78396 0.221161 0.066281 1.917082 

S.E. equation 1.493987 0.135757 0.074320 0.399696 

F-statistic 1.673844 10.92883 29.06569 3.330965 

Log likelihood -32.35216 18.01286 30.66515 

-

4.663671 

Akaike AIC 3.938301 -0.858367 -2.063348 1.301302 

Schwarz SC 4.385953 -0.410715 -1.615695 1.748954 

Mean 

dependent 4.014211 4.179263 3.265678 3.978076 

S.D. dependent 1.683331 0.302697 0.259868 0.555619 

     

     

Determinant resid covariance (dof adj.)  5.00E-06  

Determinant resid covariance  5.33E-07  

Log likelihood   32.47362  

Akaike information criterion   0.335846  

Schwarz criterion   2.126456  

Number of coefficients   36  

Source: Author Review Eview 10 

 

Table five above, shows the output of the vector 

autoregression (VAR) model estimation at lag one as seen in 

the table. Furthermore, The LNMRF shows a significant 

influence on itself with the past realization of LNMRF 

associated with 9% increase on LNMRF, subsequently 

LNTEMP,LNMWS also have a strong significant influence 

on LNMRF, But LNMRH do not have any significant 

influence on LNMRF. The LNMRH did not show any 

significant influence on itself. Subsequently LNMTEMP and 

LNMWS also have a strong significant influence on 

LNMRH. The LNMTEMP shows a significant influence on 

itself, with the past realization of LNMTEMP associated 

with 179% increase on LNMTEMP, subsequently LNMWS 

and LNMRF also have a strong significant influence on 

LNMTEMP, But LNMRH do not have any significant 

influence on LNMTEMP. The LNMWS shows a significant 

influence on itself with the past realization of LNMWS 

associated with 103% increase on LNMWS, subsequently 

LNTEMP and LNRH also have a strong significant 

influence on LNMWS, But LNMRF do not have any 

significant influence on LNMWS.  

 

Table 6: The model estimation of the Vector autoregression 

estimates 
VAR Residual Serial Correlation LM Tests 

Date: 02/20/21   Time: 02:15 

Sample: 1998 2020 

Included observations: 22 

Null hypothesis: No serial correlation at lag h 

Lag LRE* stat df Prob. Rao F-stat Df Prob. 

1 21.12682 16 0.1737 1.440230 (16, 31.2) 0.1865 

Null hypothesis: No serial correlation at lags 1 to h 

Lag LRE* stat Df Prob. Rao F-stat df Prob. 

1 21.12682 16 0.1737 1.440230 (16, 31.2) 0.1865 

*Edgeworth expansion corrected likelihood ratio statistic.  

Source: Author Review Eview 10 

 

The table 6 above that there is no serial correlation at 

probability value of 0.1865 which quite okay for the work.  

 

Table 7: Normality test 
VAR Residual Normality Tests 

Orthogonalization: Cholesky (Lutkepohl) 

Null Hypothesis: Residuals are multivariate normal 

Date: 02/20/21   Time: 02:20 

Sample: 1998 2020 

Included observations: 22 

Component Skewness Chi-sq df Prob.* 

1 -0.214421 0.168580 1 0.6814 

2 -1.386507 7.048804 1 0.0079 

3 -0.469118 0.806928 1 0.3690 

4 -0.145911 0.078063 1 0.7799 

Joint  8.102376 4 0.0879 

Source: Author Review Eview 10 

 

From the table seven above the residual of LNMRH, 

LNMTEMP, LNMWS are normally distributed, while that 

of the LNMRF cannot be account for, but however the joint 

normality test for the whole variable show that the residual 

are normally distributed at lag one. 

 

Table 8: Heteroskedasticity test 
VAR Residual Heteroskedasticity Tests (Levels and Squares) 

Date: 02/20/21   Time: 02:32 

Sample: 1998 2020 

Included observations: 22 

Joint test:  

Chi-sq Df Prob. 

92.23422 80 0.1650 

Source: Author Review Eview 10 

The table above shows that there is no heteroscedasticity in 

the variables  
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Logistics Regression Analysis 

#R-Result [Output] 

Call: 

glm(formula = WS ~ AvRF + AvTemp + AvRH, family = 

poisson(link = "log"),  

data = data1) 

 

Deviance Residuals:  

Min                1Q             Median         3Q           Max   

-0.123068   -0.039543   0.008172   0.035151   0.092225   

 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

(Dispersion parameter for poisson family taken to be 1) 

 

Null deviance: 23.758290  on 22  degrees of freedom 

Residual deviance:  0.062191  on 19  degrees of freedom 

AIC: 174.09 

Number of Fisher Scoring iterations: 3 

 

Table 8: Logistics regression output 
Coefficients Estimate Std. Error  z value  Pr(>|z|) 

(Intercept) 4.4837791 0.7807688 5.743  9.31e-09 

*** 

AvRF 0.0047521 0.0011791 4.030  5.57e-05 

*** 

AvTemp 0.0005196 0.0319560 0.016     0.987 

AvRH 0.0045010 0.0079829 0.564     0.573 

Source: Author Review Statistical R package  

 

The output begins with echoing the function call. The 

information on deviance residuals is displayed next. 

Deviance residuals are approximately normally distributed if 

the model is specified correctly. In our case, it shows a little 

bit of positive skeweness since median is not quite zero. 

 

The generalized linear Poisson regression with „loglink‟ 

coefficients for each of the variables along with the standard 

errors, z-scores, p-values and 95% confidence intervals for 

the coefficients. The coefficient for AvRF is approximately 

0.0048. This means that the expected log count for a -unit 

increase in AvRF is 0.0048, this signifies rain fall has 

potential effect on the wind speed. The indicator 

variable AvTemp compares between AvRH, the expected 

log count for AvTemp increases by about 0.0005 which is 

nearly zero. It is therefore not statistically significant in the 

model as reported by P-value > 0.05. The indicator 

variable AvRH is as well not statistically significant based 

on the P-value > 0.05. 

 

Since, the residual difference is small enough, the goodness 

of fit test will not be significant, indicating that the model 

fits the data. We conclude that the model fits reasonably 

well 

 

4. Summary of Findings  
 

In this study, Wind speed was modelled in the presence of 

some selected meteorological variables which are rainfall, 

temperature and relative humidity. Before we went into the 

actual modelling, some preliminary works were carried out. 

The Augmented Dickey Fuller (ADF) test shows that all the 

variables are stationary, which prompted us to use the 

Vector Autoregressive model. The AIC was used to select a 

lag order of 2 for the Vector Autoregressive model. The 

variables were also tested for autocorrelation of its residuals. 

There exist no heteroscedasticity from the test result but 

there exist no autocorrelation at the first two lags. The 

Vector Autoregressive model was fitted and it was found 

that there is a linear dependence between Wind speed and 

temperature in the presence of other meteorological 

variables. Though the result of this model shows that each of 

these variables have no significant influence on Wind speed. 

The Jarque-Berra test was also used to check the normality 

of the fitted model, which shows it is  normally 

distributed.considering the fact that the sample size is 

reasonably large (276>30). The logistic regression model 

was also applied in modelling Wind speed and wind 

influence on meteorological variables. 

 

5. Conclusion 
 

This research work modelled wind speed with some selected 

meteorological variables (Rainfall, temperature,and relative 

humidity. The result of the stationarity test shows that all the 

meteorological variables are stationary. Using the Vector 

Autoregressive model of order 2, it was discovered that 

there exists a linear dependence between wind speed and 

temperature in the presence of other meteorological 

variables. But noneof these variables significantly affect 

wind speed, though there exist some degree of relationship 

among them. A five years forecast was also generated using 

variance decomposition model and the Vector 

Autoregressive model shows that,The LNMRF shows a 

significant influence on itself with the past realization of 

LNMRF associated with 9% increase on LNMRF, 

subsequentlyLNTEMP, LNMWS also have a strong 

significant influence on LNMRF, But LNMRH do not have 

any significant influence on LNMRF. The LNMRH did not 

show any significant influence on itself. Subsequently 

LNMTEMP and LNMWS also have a strong significant 

influence on LNMRH. The LNMTEMP shows a significant 

influence on itself, with the past realization of LNMTEMP 

associated with 179% increase on LNMTEMP, subsequently 

LNMWS and LNMRF also have a strong significant 

influence on LNMTEMP, But LNMRH do not have any 

significant influence on LNMTEMP. The LNMWS shows a 

significant influence on itself with the past realization of 

LNMWS associated with 103% increase on LNMWS, 

subsequently LNTEMP and LNRH also have a strong 

significant influence on LNMWS, But LNMRF do not have 

any significant influence on LNMWSeve after simulating 

wind speed the result exhibit pattern. 

 

The forecast error variance in LNMRF is explained by the 

variable itself, while other variables are strongly exogenous, 

showing weak forecast influence on LNMRF, meanwhile on 

the long run, the forecast influence of the LNMRF on itself 

continues to increase. The forecast error variance in 

LNMRH is explained by the variable itself, while other 

variables are strongly exogenous, showing weak forecast 

influence on LNMRH, meanwhile on the long run, the 

forecast influence of the LNMRH on itself continues to 

increase. The forecast error variance in LNMTEMP is 

explained by the variable itself, while other variables are 

strongly exogenous, showing weak forecast influence on 

LNMTEMP, meanwhile on the long run, the forecast 
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influence of the LNMTEMP on itself continues to increase. 

The forecast error variance in LNMWS is explained by the 

variable itself, while other variables are strongly exogenous, 

showing weak forecast influence on LNMWS, meanwhile 

on the long run, the forecast influence of the LNMWS on 

itself continues to increase. The generalized linear Poisson 

regression with „loglink‟ coefficients for each of the 

variables along with the standard errors, z-scores, p-values 

and 95% confidence intervals for the coefficients. The 

coefficient for AvRF is approximately 0.0048. This means 

that the expected log count for a -unit increase in AvRF is 

0.0048, this signifies rain fall has potential effect on the 

wind spead. The indicator variable AvTemp compares 

between AvRH, the expected log count 

for AvTemp increases by about 0.0005 which is nearly zero. 

It is therefore not statistically significant in the model as 

reported by P-value > 0.05. The indicator variable AvRH is 

as well not statistically significant based on the P-value > 

0.05.Since, the residual difference is small enough, the 

goodness of fit test will not be significant, indicating that the 

model fits the data. We conclude that the model fits 

reasonably well 

 

That is to say most of this metrological variable will not be 

able to generate enough heat in other to influence the wind 

speed for a sufficient power supply.  
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