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Abstract: Dengue Fever (DF)is notably one of the   world’s common vector-borne viral disease. The current increase in the 

geographic distribution of its primary vector, mosquito Aedes aegypti, has led to a 30-fold increase in cases over the last 50 years in 

tropical regions of Asia, Africa, Central and South America.This paper presentsan SEITR-SI model, (Susceptible, Exposed, Infected, 

Treatment, and Recovered) host-vector, Aedes aegypti mosquitoto determine the dynamics of dengue feverespecially in tropical regions 

of Africawhere malaria is highly prevalent due to illegal mining activities and urbanization. We classified the human population into 

five epidemiological states and the mosquito population into two compartmental epidemiological states. The disease-free equilibrium 

point and its stability states were established and simulated. The model’s threshold parameter
0R was further estimated using the Next 

Generation and Jacobian matrix. Numerical simulations of the model revealsthat the emergence of new cases of DFin some Africa 

regions and Ghana call for proper diagnosis of malaria using adequate diagnostic tools and treatment to avoid transmission as a result 

of misdiagnosis of febrile illnesses as malaria. 
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1. Introduction 
 

Dengue virus infection is the most common arthropod-borne 

disease worldwide with an increasing incidence in the 

tropical regions of Asia, Africa and Central and South 

America. There are four serotypes of the virus and these are 

transmitted by mosquitoes [1]. Dengue fever has rapidly 

become the world’s most common vector-borne viral 

disease. An estimate of 390 million dengue infections 

annually occurs worldwide, with about 96 million resulting 

in illness.Dengue fever is transmitted by the bite of an 

Aedes mosquitoinfected with a dengue virus. The mosquito 

becomes infected when it bites a person with denguevirus in 

the blood. Most of the infectious cases occur in the tropical 

areas of the world, with greater risk occurring in the 

Southeast Asia, Indian subcontinent, Southern China, 

Taiwan, the Pacific islands, Mexico, Africa and many others 

[2]. 

 

The recent increase in the geographic distribution of its 

primary vector, the mosquito Aedes aegypti, has led to a 30-

fold increase in cases over the last 50 years [3], and is now 

found throughout the tropics. Although dengue fever itself is 

rarely fatal, one of its more severe forms is the dengue 

hemorrhagic fever (DHF) which causes 22,000 deaths 

annually mostly among children [4]. 

 

Ghana as a warm tropical climate country in West Africa 

has an abundance of Aedes aegypti mosquitoes [5]. Cote 

d’Ivoire and Burkina Faso reported Dengue Virus (DENV) 

outbreaks in 2015 and 2016, respectively. Nonetheless, 

DENV infection was confirmed in Ghana in two children 

and four adults in two separate studies in 2018 [6].A recent 

study conducted in Ghana revealed 218 (21.6%) children 

exposed to dengue. The study sampled a population of 

febrile illness patients who were screened for active dengue 

infection but were properly diagnosed and-confirmed as 

malaria patients [7]. 

 

Unfortunately, there are very limited control measures for 

most of the vector-borne diseases. Vaccines available for 

only a few diseases (yellow fever, Japanese encephalitis, 

tick-borne encephalitis, tularemia, plague) are not widely 

used, and vaccines for some widespread diseases, such as 

West Nile virus, malaria, and dengue fever are still not 

available [3]. People have to depend on vector control 

programs including the removal of breeding sites generated 

by humans in households (e.g., old toys, water containers, 

and tyres), larvicidal control, and Malathion spraying to 

target adult vector populations [4]. Other public health 

controls rely on shortening the mean vector span or directly 

reducing the vector biting rate in humans through netting, 

screens, and application of insecticides life to clothing or the 

application of insect repellents. However, these methods 

appear not to be sufficiently effective, as the frequency of 

outbreaks appears to be increasing in some areas, probably 

due to urbanization which readily increases the habitat of 

Aedes aegypti [5]. 

 

Recent surveys have uncovered dengue exposure throughout 

sub-Saharan Africa and West Africa has been identified as a 

potential hotspot for transmission because of the existence 

of the Aedes mosquito vector, rapid urbanization with 

inadequate sanitation, and low clinical knowledge of 

flavivirus infections [8].Research finding of Lam et 

al.[3]estimated the annual number of cases DF worldwide 

from 100 million in 1997 to 500 million in 2012. 

 

Onstad et al.[9] reviewed the early vector-borne disease 

models, and many other authors have studied vector-borne 

diseases, such as malaria [10] and West Nile virus [11]. 
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Mathematical modelling of infectious diseases is an 

important way of studying the dynamics of epidemiological 

diseases such as DF. Mathematical models often serve as a 

framework to convey how the vector components of a host-

parasite interacts by means of how the disease 

spreads,forecast future course of an outbreak andevaluate 

how an epidemic can be controlled [1]. 

 

According to Aguiar et al. [12] mathematical modeling is an 

interesting tool for understanding the epidemiology of 

infectious diseases and its dynamics. Moreover, due to 

inadequate control measures for vector-borne disease, 

mathematical modelling usually incorporate the ideas of 

how to curb the disease by focusingon the dynamics 

transmission of the disease using several different forms 

including the duration of disease, the duration of infectivity, 

the infection rate, the waning immunity using differential 

equation models as a simplified representation and making 

predictions about the number of infected and susceptible 

people over time. 

 

A study by Chen and Hsieh [13] investigated the 

transmission dynamic modeling of dengue fever in 

Subtropical Taiwan by introducing temperature-dependent 

entomological parameters of Aedes aegypti. The vector-host 

transmission model was used to explore the temperature 

variation of pre-adult mosquito maturation, ovipositional 

rate, adult mosquito death rate, and virus incubation rate in 

the mosquito.  

 

This paper presentsan SEITR-SI model, (Susceptible, 

Exposed, Infected, Treatment, and Recovered) host-vector, 

Aedes aegypti mosquitoto determine the dynamics of 

dengue fever in Africaas a result of high malaria prevalence 

and misdiagnosis the disease. 

 

 

 

 

2. Materials and Methods 
 

2.1 Methods 

 

A SEITR-SI Host-Vector model for the occurrence of 

Dengue fever is formulated using ordinary differential 

equations. The host population 
HN  of the SEITR-SI Model 

is grouped into five classes namely, the Susceptible, 

Exposed, Infectious, Treatment and Recovery classes. The 

vector population
VN is also grouped into two classes 

namely, the Susceptible and Infectious. There is no 

recovered class in vector population since infection period 

in mosquito’s ends with their death. 

 

The study further used next generating matrix method to 

determine the expression for the basic reproductive number 

(R0). The equilibrium stability of an Ordinary Differential 

Equations (ODE’s) was determined by the sign of real part 

eigenvalues of the Jacobian matrix. Birkhof and Rota’s [14] 

theorem among others and functions were used to develop 

the mathematical modelling of Dengue Fever. 

 

Model Assumptions 

The following are the model assumptions: 

1) The susceptible Host has no inherited immunity. 

However, once an Infected Host recovers, the person 

receives permanent immunity. Every member of the 

population mixes homogeneously  

2) Age, sex, social status, race coupled with climatic 

conditions does not affect the probability of an 

individual being infected.  

3) The death rate for the host population is balanced by a 

birth rate given by
H .   

4) It is assumed that once an individual is infected, he or 

she became exposed to the environment before 

becoming infectious and finally,   

 

The disease is transmitted in a closed environment. Hence 

the human population, 
HN  of individuals remains constant. 

 
Figure 1: The Compartmental Model of Dengue Fever SEITR-SI 

 

Model Formulation  

The birth and death rate for the host population are assumed 

to be equal and represented as 𝜇. Hence 𝜇𝐻𝑁𝐻  will be the 

rate at which individuals are born into the susceptible class 

without any immunity and 𝜇𝐻𝑆𝐻  is the rate at which they 

leave the susceptible class through death. The rate at which 

the susceptible class changes is equal to the rate at which 

infections occur. This occurs when the disease is passed 

from an infective vector to a susceptible human. The 

number of susceptible- infective contacts is proportional to 
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the product of 𝑆 𝑡 and 𝐼(𝑡). Hence the rate of change in the 

susceptible individuals is given by Equation (1) 

( )H H
H H H H V

H

dS b
N S S I

dt N m


  


 (1) 

where, H
H V

H

b
S I

N m




 is the rate of infection and negative 

because the number of susceptible individual decreases. The 

rate at which individuals leave the susceptible population is 

equal to the rate at which they enter the exposed population. 

Thisincreases the number of individuals in the exposed 

class.  

Let 𝜀𝐸 be the rate at which an exposed individual becomes 

infectious. Then the rate of change of the exposed 

population is given by Equation (2) 

( )H H
H V H H

H

dE b
S I E

dt N m


   


   (2) 

The rate of change of the infectious population is given by 

Equation (3)  

( )H
H H H

dI
E I

dt
          (3) 

Let 𝛾𝐼 be the rate at which an infected individual may 

recover. The rate of change of the Treated is given by 

Equation (4) 

( )H
H H H

dT
I T

dt
        (4) 

The rate of change of the recovered is given by Equation (5) 

H
H H H

dR
I R

dt
       (5) 

This leads to the system equations in Equation (6) 

( )

( )

( ) I

( )

H H
H H H H V
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H H
H V H H
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H
H H H

H
H H H

H
H H H
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V H V V

H
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V H V V

H

dS b
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dt N m
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dT
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dR
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dt

dS b
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

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
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  

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

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 

  (6) 

where 𝜇𝐻 and 𝜇𝑉  are the per capita mortality rates of 

humans and mosquito vector, respectively, 𝑏, the biting rate 

(i.e., average number of bites per mosquito per day); 𝑚, the 

number of alternative hosts available as the blood source; 𝐴, 

a constant recruitment rate for the vector; and 𝛽𝐻  and 𝛽𝑉  , 

the transmission probabilities from the vector to human and 

human to vector respectively. Again, the total host 

population is expressed as 
H H H H H HN S E I T R      

and the total vector population is given as 
V V VN S I   

 

Table I gives the description of the parameters used in the 

model and their symbols. 

 

Table I: Description of Parameters 

Symbols Description 

𝐴 A constant recruitment rate for the vector 

𝛽𝐻  The transmission probabilities from the vector to human 

𝛽𝑉  The transmission probabilities from the human to vector 

𝑏 
The biting rate (i.e., average number of bites per 

mosquito per day) 

𝜇𝐻  The per capita mortality rates of humans 

𝜇𝑉  The per capita mortality rates of mosquitoes 

𝑚 
The number of alternative hosts available as the blood 

source 

𝛿 The disease-induced death rate. 

𝛾 The recovery rate of humans 

𝜀 
The rate at which the exposed individuals become 

infective or infectious. 

𝜆 The rate at which the infectious individuals are treated. 

 

Invariant Region 

It is assumed that all the model parameters are positivefor 

all 0t  and the initial conditions of the model are stated and 

analysed in a suitable feasible region as follows: 

𝑆𝐻 0 ≥ 0,  𝐸𝐻 0 ≥ 0,  𝐼𝐻 0 ≥ 0,  𝑇𝐻 0 ≥ 0,  𝑅𝐻 0 ≥
0,  𝑆𝑉 0 ≥ 0  and 𝐼𝑉 0 ≥ 0 

 

Positivity of Solution of the Model 

Theorem 1: Given𝑆𝐻 0 ≥ 0,  𝐸𝐻 0 ≥ 0, 𝐼𝐻 0 ≥
0, 𝑇𝐻 0 ≥ 0,  𝑅𝐻 0 ≥ 0,  𝑆𝑉 0 ≥ 0,  𝐼𝑉 0 ≥ 0the 

solutions [𝑆𝐻 t ,  𝐸𝐻 t ,  𝐼𝐻 t , 𝑇𝐻 𝑡 ,  𝑅𝐻 t ,  𝑆𝑉 t and 

𝐼𝑉 t ] on the model are positively invariant for all 𝑡 > 0. 

 

Proof 

Let  𝑡1 = sup⁡(𝑡 > 0 | 𝑆𝐻 > 0,  𝐸𝐻 > 0,  𝐼𝐻 > 0,  𝑇𝐻 >
0,  𝑅𝐻 > 0,  𝑆𝑉 > 0  and  𝐼𝑉 > 0)   ∈ [0, 𝑡] 
From Equation (6), 

 
 

 H H H V

H H H H

H

dS t bS t I
N S t

dt N m


   


   

This is reformulated as Equation (7) 

 
 H H V

H H H H

H

dS t bI
N S t

dt N m


 

 
   

 
   

 
 H H V

H H H H

H

dS t bI
S t N

dt N m


 
 

   
 

 (7) 

Let   0H

H

b

N m


  


 

 
   H

H V H H H

dS t
I S t N

dt
       (8) 

From Equation (8) one obtains the integrating factor   as 

in Equation (9) 

   0

t

H V
H V

I dt I t
e e

   


      (9) 

Multiplying through by 𝐼. 𝐹 and rearranging, one obtains the 

integral form as Equation (12) 

  
       

  

H V H V

H V

I t I tH

H V H

I t

H H

dS t
e e I S t

dt

e N

   

 

 



 



 



     (10) 

       H V H VI t I t

H H H

d
S t e e N

dt

   


 
   (11) 
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    ( ) ( )

0 0

e eH V H V

t t

I t I t

H H H

d
S t dt N dt

dt

     
       (12) 

The solution eventually comes out as Equation (13) 

   ( ) ( )

0

e eH V H V

t

I t I t

H H HS t N dt
    

    (13)         

      ( ) ( )
e e 0H V H VI t I tH H

H H

H V

N
S t S

I

   

 

 
 


 (14) 

    ( )
0 e H VI tH H

H H

H V

N
S t S

I

 

 

 
 


  (15) 

    ( )
0 e H VI tH H

H H

H
H V

H

N
S t S

b
I

N m

 




 
 




 (16) 

Therefore,   0HS t  . 

Similarly, it can be shown that 𝑆𝐻 > 0,  𝐸𝐻 > 0,  𝐼𝐻 >
0,  𝑇𝐻 > 0,  𝑅𝐻 > 0,  𝑆𝑉 > 0  and  𝐼𝑉 > 0 for all 0t   

Hence proved. 

 

Identification of the Biological Interest of the Model 

Let 

 _ , , , , :s

H H H H H H H H

H H H

D H S E I T R S E I

T R N

   

  


 

𝒟𝑉 = 2( :),H H H VH

V

S I S I
A

N or




 
 

 
   

Ω =  , , , , , ,H H H H H H HS E I T R S I  

Stability Analysis of the Equilibrium Points or Steady States 

In order to find the steady state, all the derivatives are set to 

zero.That is, the equilibrium points can be obtained by 

equating the rate of changes to zero; 

0V VH H H H H
dS dIdS dE dI dT dR

dt dt dt dt dt dt dt
       (17) 

Estimating the steady state conditions, the following two 

steady states were obtained. 

 

Disease-free equilibrium 

The disease-free equilibrium point is where there are no 

infections in the population. Thus, equating the system of 

equations to zero and solving to obtain the disease-free 

steady state as; 

 , , , , , , ,0,0,0,0, ,0H H H H H V V H

V

A
S E I T R S I N



 
  
 

. 

 

Disease-endemic equilibrium  

The disease-endemic equilibrium of 

 , , , , , ,H H H H H V VS E I T R S I      
 with positive components is 

obtained as follows: 

 
1

H

V H H V H H V

W
S

Ab m N b     

 
 

2

2(

)

H

H H H H V H V

H H V V

W
E

b Ab Ab m m

N

       

   

 
   
 
 

  

2

3

H

W
I

W

  ,
 

2

3

H

H

W
T

W



 

 


, 2

3( )
H

H H

W
R

W

 

  

 


, 

4

1

( )V H

V

H

N m W
S

b W





 
 , 2

1

( )H
V

H

N m W
I

b W

 
  

where, 

1 2

2

(

) ( )

H V H V H V H V

H H V V H V H V

H H V H V H V H H V

H H V V H

b N m m N

N m m N
W

N m m N

N N m

         

         

         

  

   
 
    
    
 
   

 

2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2

(

2 2

2

2

2 2

)

H H H V V H V

H V H H V H V

H H V V H V H V

H H V H V H H V

H V H V H H V H H V

H H V H H V

Ab N m m

m N mN N

N m m m N
W

mN N N

m m m N mN

N N

        

       

          

       

        

    

  

  

   
  

   

 










 
 

 

2 2

3 2 2

2 2 3

(

)

V H H H H H H

H H H H H V H V

H H V H H V H V H V

H H V H H V H V H V

Ab Ab Ab Ab

Ab Ab m m
W

N N m m

N N m m

      

         

           

         

   
 
    

     
 
     

 

2 2

2 2 2

2 2 2 24

2 2 2

2

2

2

H H H H H

H H H H H H

H H H H H H H

H H H H H H H H

H V H V H H V

H H V H H V H H V

H V H V H H

Ab m Ab m Ab N

Ab N Ab m Ab m

Ab N Ab N Abm

Abm Ab N AbN

m m m N
W

mN N N

m m m N

      

       

      

      

         

        

         

 

  

  

  

  


  

  

2 2 2 2

2 2 2 3 2

3 2 2 2 3

2

2

2 )

V

H H V H H V H H V

H V H V H H V

H H V H H V H H V

mN N N

m m m N

mN N N

        

      

      

 
 
 
 
 
 
 
 
 
 
 
 
   
 
   

    

 

 

To determine the stability of the model, the steady state of 

the system was evaluated. In solving the equations, we 

considered only one state at a time. The disease-free steady 

state, where 0H VI I   

 

Stability of the Equilibrium Points 

The stability of the system is determined by linearizing the 

systems of equations about the equilibrium points using the 

Jacobian matrix. The Jacobian matrix is given by Equation 

(18) 

 

Local Stability of the Disease-Free Equilibrium 

For the disease-free equilibrium, we evaluate the Jacobian 

matrix at the equilibrium points 

 0 , , , , , , ,0,0,0,0, ,0H H H H H V V H

V

A
w S E I T R S I N



 
  
 

 with 

the theorem below. 

Theorem 1: The disease-free equilibrium point 

 0 , , , , , ,H H H H H V Vw S E I T R S I is locally asymptotically 
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stable if all the eigenvalues of the Jacobian matrix 0i  , or 

it is unstable if 0i  . 

 

Proof: The Jacobian matrix evaluated at the disease-free 

equilibrium is given by Equation 18 

 

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

H

H

H

H

V

J



 



 





 
 

  
 
 

   
 
 

 
 
 

(18) 

The characteristic equation resulting from the Jacobian 

matrix is 

 2 5 4 3 2

4 3 2 1 0 0a a a a a              (20) 

where,   2

0 H H H Va          

2 3 2 3 2

1 4 3

2 3 3

4

H H V H H V H H V

H H V

a
        

  

     
     

 

2 2

2 3 2

2 3 3 3 3

4 6

H V H H V H H V

H H V

a
       

  

     
     

 

 2

3 3 3 6 4H V H V H H Va                

 4 4 H Va         

 

0 0 0 0 0

( ) 0 0 0 0

0 ( ) 0 0 0 0

0 0 ( ) 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

H V H H

H

H H

H V H H
H

H H

H

H

H

V V V H

V

H H

V V V H

V

H H

bI bS

N m N m

bI bS

N m N m

J

bS bI

N m N m

bS bI

N m N m

 


 
 

   

  

 

 


 


 
   

 
 
 

  
  

   
 

   
 
 
 

   
 

 
 

 
  

  (19) 

 

The eigenvalues from the characteristic equation given by 

Equation (20) are 
1 2 0   , 

3 4 H     , 

5 H     , 
6 V    and 

7 H     . 

The eigenvalues are all negatives except 
1 0  and 

2 0   

 

Theorem 2: The disease-free equilibrium is locally 

asymptotically stable for 𝑅0 < 1 and unstable for 𝑅0 > 1. 

 

The Basic Reproduction Number  0R  

The basic reproductive number (𝑅0) is the average number 

of new cases of an infection caused by one typical infected 

individual in a population consisting of susceptible only 

[15]. The model Equation (6), always has a disease-free 

equilibrium 

 , , , , , , ,0,0,0,0, ,0H H H H H V V H

V

A
S E I T R S I N



 
  
 

.  

Let  , , , , , ,
T

H H H H H V VX S E I T R S I . Then the model (6) 

can be written as ( ) ( )
dX

F X X
dt

   

Now applying the Next Generation Operator approach gives 

the transmission (ℱ) and transition (𝒱) states of the model 

as Equation (21) and (22): 

( ) 0

H

H

H

V

V H

H

b
S

N m

F x

b
S I

N m





 
 


 
 
 
 
  

     (21) 

( )

( ) ( )

H H

H H H

V V

E

x E I

I

 

    



 
 

     
 
 

 (22) 

The Jacobian matrix of the transmission (ℱ) and transition 

(𝒱) states of the model evaluated at the disease-free 

equilibrium are as follows: 

0 0

0 0 0

0 0

H

H

H

H

H

H

b
S

N m

F

b
S

N m





 
 


 
 
 
 
  

     (23) 

 

 

0 0

0

0 0

H

H

V

V

 

   



 
 

    
 
 

   (24) 

This inverse of the Equation (24) is obtained as Equation 

(25) 
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 

    
1

1
0 0

1
0

1
0 0

H

H H H

V

V

 



       





 
 

 
 

  
     

 
 
 
 

(25) 

 

    
1

1

0 0

0 0

0 0

1
0

1
0 0

0

0 0

H
H

H

H

H

H H H

H

V

H

b
S

N m

FV

b
S

N m

 



       









 
 

 
 
 

     
 
 
 

 
 


 
 
 
 











 

    

1

0 0
( )

0 0 0

0
( ) ( )

H H

H V

H H H H

H V H H H V H

bN

N m

bN bN

FV

N m N m





  

         



 
 

 
 
 
 
    



   

  (26) 

The Basic reproduction number (𝑅0) is calculated as the 

Spectral radius (𝜌) which is also known as the dominant 

eigenvalue of 
1FV 
, thus 

𝑅0 = 𝜌 𝐹𝑉−1   (27) 

𝑅0 =
2

2

( )

( )(N m)

H H H H V H H

H H H H H V

A N b       

      

    

     
(28) 

This can further be simplified as, 

𝑅0 =
( )( )

( )( )(N m)

H H V H H

H H H V

A N b      

     

  

   
 (29) 

Proof of the Stability of the Disease-Free Equilibrium 

We now investigate the linear stability of the Disease-free 

equilibrium point, by substituting the parameter values in 

Table 4 above into Equation (6). When 
0 1.854008341R  > 

1, the eigenvalues corresponding to the infectious free 

equilibrium are  

𝜆 =

0.00500

0.00500

0.58221

0.100

0.6168 0.35699

0.61681 0.35699

0.122625

i

i

 
 

 
 
 

 
  
 
  
 
 

  (32) 

Because one of eigenvalues in Equation (32) is positive, the 

disease-free equilibrium is a saddle point therefore unstable. 

This implies that the presence of a person infected will 

eventually result in an outbreak of the disease. 

When the parameters are varied with𝑅0 < 1, all the 

eigenvalues corresponding to the infectious free equilibrium 

become negative. 

𝜆 =

0.00550

0.00550

0.58271566490

0.25000

0.4222262091 0.20650392

0.422262091 0.20650392

0.042547581

i

i

 
 

 
 
 

 
  
 
  

  

 

Numerical simulations of the model 

Numerical simulations of the model are done to determine 

the effect the effect of the model parameters on the spread 

of the disease. The assumed parameters used are shown in 

TableII. 

 

Table II: Parameter Values used in the Model 

Parameters Values/ Range Reference Units 

𝐴 5000 [16]  

𝛽𝐻  0.1 - 0.9 [17]  

𝛽𝑉  0.4 - 0.9 [17]  

𝑏 0 – 1 [17] day−1 

𝜇𝐻  0 - 0.005 [17] day−1 

𝜇𝑉  0.025 - 0.3 [17] day−1 

𝑚 0 – 100 [16]  

𝜆 0.3 – 1 [16] day−1 

𝛾 0.167 - 0.333 [16] day−1 

𝜀 0 – 1 [18] day−1 

𝛿 0.001 [16] day−1 

𝑁𝑉  0-10000 [17]  

 

The basic reproductive number 𝑅0 is calculated 

bysubstituting the parameter values in Table II into 

Equation (29), we have, 

(0.005 0.5 0.001)(0.005 0.5)(500)(0.8)(10000)

*(0.7)(0.4)(0.5)

(0.005 0.5 0.001)(0.005 0.5)(10000 100)(0.05)

   
 
 

   
(30) 

0 2.621963740R     (31) 
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Since the reproductive number
0 1R  , it signifies that an 

outbreak of dengue will result in an epidemic. 

 

When basic reproduction number is less than one, the 

disease-free equilibrium point is asymptotically stable, 

therefore an outbreak wouldn’t result in an epidemic. On the 

other hand, when the basic reproduction number is greater 

than one, the equilibrium point is unstable, therefore an 

outbreak would result in an epidemic. Looking at the basic 

Reproductionnumber, 

𝑅0 =
( )( )

( )( )(N m)

H H V H H

H H H V

A N b      

     

  

   
 

one key parameter that influences the 𝑅0 is the death rate of 

the vector population (𝜇𝑉). 

 

Table III: Parameter Values For Stability 

Parameters Values Units 

𝐴 1000  

𝛽𝐻  0.7  

𝛽𝑉  0.4  

𝑏 0.8 day−1 

𝜇𝐻  0.005 day−1 

𝜇𝑉  0.1 day−1 

𝑚 100  

𝜆 0.5 day−1 

𝛾 0.167 day−1 

𝜀 0.5 day−1 

𝛿 0.001 day−1 

𝑁𝑉  10000  

 

3. Results and Discussion 
 

In these simulations we use the parameter values given in 

Table II, for the model equations to depict the dynamics of 

the compartments during an outbreak. The initial 

proportions for , , , , , ,H H H H H V VS E I T R S I is assumed to 

be8000, 1000, 1000, 0, 0, 6000, and 4000respectively. 

 

It was observed that, most of the parameter values were not 

readily available,so some were estimated. However,with 

initial conditions taken at time zero (0) and the final time 

was considered as 500, 500, 500, 500, 520, 2000, 2000, 

2000, 7000, 8000 and 10000 [19]. The results of the 

simulation study are presented in Fig. 2. 

 

The simulated result in Fig. 2 shows that the susceptible 

human population decreases steadily at first but begins to 

rise and fall but eventually maintains equilibrium with time. 

The exposed human population in Fig.3 increases sharply 

and decreases steadily with time whiles the Infectious 

human population increases at certain point in time 

decreases until it becomes asymptotically stable. From Fig. 

5, the simulation study shows that the Treated human 

population increases from 0 to approximately 3500 sharply, 

then decreases steadily until it attains equilibrium. 

Moreover, the simulated result in Fig. 6 shows that the 

recovered human population increases to approximately 

9000, then begins to decrease to approximately 8000 until it 

attains equilibrium with time. 

 

Again Fig. 8, exhibits a decline in the susceptible vector 

population and then increases to approximately 9500 and 

then eventually maintains some equilibrium with time and 

finally, the simulated result in Fig. 10 shows the relationship 

between both hosts (human) and vector (mosquito) 

population. 

 

The positivity of solution to the model was proved as shown 

in Equation (4) to (17). The Basic Reproduction Number 
0R  

was computed from the deterministic model that was 

developed in Equation (4). The model's equilibria were 

determined and conditions for the equilibria were also 

established with their stabilities investigated in terms of the 

classic threshold
0R . The disease-free equilibrium (DFE) 

was found to be locally asymptotically stable for 
0 1.R   as 

shown in Equation (37). The endemic equilibrium
eeE  of the 

model was also found to be locally asymptotically stable for

0 1.R   However, it was very difficult to deal with the 

stability of the endemic equilibrium analytically due to the 

nature of transmission model developed. Applying the 

different initial conditions for the simulation, the obits show 

the same points as time increases. 

 

Table IV: Parameter Values for Simulation 

Parameters Values/ Range Units 

𝐴 500  

𝛽𝐻  0.7  

𝛽𝑉  0.4  

𝑏 0.8 day−1 

𝜇𝐻  0.005 day−1 

𝜇𝑉  0.05 day−1 

𝑚 100  

𝜆 0.5 day−1 

𝛾 0.167 day−1 

𝜀 0.5 day−1 

𝛿 0.001 day−1 

𝑁𝑉  10000 day−1 

   

 
Figure 2: Dynamics of Susceptible Host 
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Figure 3: Dynamics of Exposed Host 

 
Figure 4: Dynamics of Infected Hosts 

 

Figure 5: Dynamics of Treated Hosts 

 
Figure 6: Dynamics of Recovered Hosts 

 
Figure 7: Dynamics of Hosts Populations 

 
Figure 8: Dynamics of Susceptible Vectors 
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Figure 9: Dynamics of Infected Vectors 

 
Figure 10: Dynamics of Population 

 

4. Conclusions 
 

A Mathematical model of dengue Fever has been 

formulated using nonlinear differential equations and Next 

Generation method.The criteria for stability states of the 

various equilibrium points have been established while the 

simulationsof the model were carried out using different 

parameter values from literature. The simulated dynamics of 

dengue fever was discussed and illustration as shown in 

Figs. 2 to 10.The basic reproduction number formodelling 

DF was derived and estimated. The reproduction number 

estimated was greater than one,
0 2.62R  and can easily be 

brought to a number less than one by incorporating control 

and preventive measures that will minimize the spread of 

the disease. The study concludes that the emergence of new 

cases of DF in some Africa regions and Ghana call for 

proper diagnosis of malaria using adequate diagnosis and 

treatment to avoid transmission as a result of misdiagnosis 

of febrile illnesses as malaria. The papersuggests 

anintensive education for Healthcareofficials on how to curb 

the disease through adequate malaria treatment and proper 

laboratorydiagnosis to avoid misdiagnosis. The paper 

further suggeststhat, to preventthe spread of the disease, 

educational campaign jeered towards sensitizing the masses 

on the danger of dengue fever to help keep to the 

precautionary measures, such as; keeping the environments 

clean, avoiding wetlands or stagnant water, mass insecticide 

spraying to control mosquito breeding habitats. 
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