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Abstract: This paper outlines the core principles underlying flight control, including both analysis and design aspects. The Linear 

Quadratic Regulator (LQR) control methodology is employed to attain performance, stability, and robustness. It delves into essential 

concepts such as load minimization and drift minimization. The control system's design is subsequently simulated and subjected to 

analysis using Simulink. 
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1. Introduction  
 

This paper provides an overview of an initial design for a 

flight control system for the Ames I crew launch vehicle [1]. 

It employs LQR control to attain the desired performance 

and addresses the ‘load minimum’ and ‘drift minimum’ 

concepts. Section 2 presents the mathematical model of the 

launch vehicle and offers a system overview. Section 3 

details the control methodology employed, focusing on 

parameter selection to balance performance and control 

effort. This section gives the choice of Q and R matrices for 

the ‘Load minimum’ and ‘Drift minimum’ control design. 

The entire system and control design are simulated in 

Simulink in Section 4. Results are presented in Section 5 for 

both cases, and Section 6 concludes the paper. 

 

2. Launch Vehicle Model 
 

Consider a simplified dynamic model of a launch vehicle [2] 

as illustrated in Fig. 1, as follows: 

 

 
Figure 1: Dynamic model in 2D plane 

 Where θ is the pitch attitude, α is the angle of attack,   Z is 

the inertial Z-axis drift position of the center-of-mass,  Z^. is 

the inertial drift velocity, m is the vehicle mass, T0 is the 

ungimbled sustainer thrust, T is the gimbled thrust, 𝑁 =
 𝑁𝛼𝛼 the aerodynamic normal (lift) force acting on the 

centre of pressure, D is the aerodynamic axial force (Drag),  

F is the total x-axis force, δ the gimbal deflection angle, V is 

the vehicle velocity, 𝛼𝑤 = 𝑉𝑤/𝑉 the wind induced angle of 

attack,  𝑉𝑤   is the disturbance velocity and the corresponding 

3rd order dynamical model is given by: 

 

 
  

 
 

Consider the parameters given by Greensite in [3] as  

 

Iy = 2.43E6 slug-ft
2
,   m = 5830 slug,     T=341,000 lb  

F=375,000 lb,           xcp=38 ft,      xcg=32.3 ft  

V=1320 ft/sec,      Vw=132 ft/sec,    αw=5.73 deg  

Nα=240,000 lb/rad,   Mα=3.75 s
−2

,   Mδ=4.54 s
−2 

 

Above parameters can be substituted in the above-mentioned 

model and this system can be further used in the analysis of 

control system design in Matlab. 

 

3. Linear Quadratic Regulator  
 

Linear Quadratic Regulator is a control technique used to 

design optimal control systems for linear time-invariant 

dynamic systems. It aims to find a state feedback control law 

that minimizes a quadratic function, typically defined as the 

sum of two terms: 
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 The quadratic deviation of the state variables from their 

desired values (Q matrix). 

 The quadratic effort applied in the control input (R 

matrix). 

 

The objective is to find a control law that minimizes this 

cost function while ensuring system stability and desired 

performance. 

 

A set of full state feedback control gains, (k1,k2,k3), can be 

found by using LQR control method [3-6] as follows: 

 
and 

where x= [  ]
T
 and K= [k1, k2, k3] 

 

The choice of Q and R matrices is crucial in LQR control 

design. These matrices influence the tradeoff between 

system performance and control effort.  

 The Q matrix is diagonal and defines the importance of 

each state variable. Larger values in Q indicate that 

minimizing the deviation of that state variable is more 

critical for the control objective. 

 The R matrix is also diagonal and reflects the control 

effort. Larger values in R represent a preference for 

smoother control inputs. 

 The values in Q and R are typically chosen based on the 

designer's knowledge of the system, performance 

requirements, and engineering intuition. Trial and error 

or optimization techniques can be used to tune these 

matrices. 

 Higher values in Q lead to a stronger emphasis on 

tracking the desired state trajectory, resulting in better 

state tracking performance but potentially requiring more 

control effort. 

 Higher values in R lead to smoother control inputs, 

reducing control effort but possibly sacrificing tracking 

performance. 

 

Careful tuning of Q and R is essential to find a balance that 

meets the control system’s performance and effort 

requirements. 

 

A: Load Minimum 

In the context of flight control systems, refers to a design or 

control strategy aimed at minimizing the loads or forces 

experienced by the aircraft's structure, especially during 

maneuvers or turbulent conditions. Load minimum [7-10] 

control techniques involve adjusting control surfaces and the 

control law to reduce abrupt changes in aircraft attitude and 

forces. This can be important for passenger comfort and 

aircraft structural integrity. In this case the goal is to 

minimize the angle of attack which is the combination the 

angle of rotation of the rocket and the drift velocity with 

respect to the main velocity of the rocket:  

 

α =  𝑍𝑑𝑜𝑡 /V +𝛼𝑤  

 

The choice of the Q matrix for minimizing the angle of 

attack is 

 

 
 

B: Drift Minimum 

This refers to the design or control approach that minimizes 

the lateral or sideways movement (drift) [11-14] of the 

aircraft during various flight conditions. Lateral drift can 

occur during turns, crosswind landings, or other flight 

maneuvers. Minimizing drift is essential for maintaining 

proper flight path control. The choice of matrix Q for this 

type of control is  

 

 
 

Choosing a higher value of R penalizes the amount of work 

that TVC has to do. For this paper the R = 0.1 

 

4. Simulation 
 

The dynamic system of the launch vehicle given in section 2 

is modeled in Simulink as shown in Fig.2. LQR control 

gains are calculated in Matlab by using the lqr command. 

The resulting values of [k1, k2, k3] are [3.81,3.56,0.001].   

 

 
Figure 2: Simulink implementation 

 

5. Results 
 

Outputs are shown for both load minimum and drift 

minimum cases. The values of Q and R used in the 

simulation are given in sections 3.1 and 3.2. The plots for 

pitch angle, pitch rate, and drift are shown below. X-axis is 

time in all plots 

 

Load Minimum 

For this scenario, the attitude of the aircraft of penalized, and 

the choice of Q matrix is given in Section 3.1. As observed 

pitch angle converges as seen in Fig. 3, and the pitch rate 

remains small giving a stable load to the aircraft shown in 

Fig. 4.  However, Fig. 5, represents the large drift of the 

aircraft.  
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Figure 3: Pitch Angle 

 
Figure 4: Pitch Rate 

 

 
Figure 5: Drift 

 

Drift Minimum 

In this scenario, the drift is penalized in the Q matrix which 

was discussed in section 3.2, and as a result aircraft drift is 

lower as seen in Fig. 6 than the previous case. However, the 

pitch angle overshoots represented in Fig. 7, and the pitch 

rate observed in Fig. 8, are more compared to the load 

minimum case. 

 

 
Figure 6: Drift 

 

 
Figure 7: Pitch Angle 

 

 
Figure 8: Pitch Rate 

 

6. Conclusion  
 

In summary, this paper has applied Linear Quadratic 

Regulator (LQR) control to enhance the design of a launch 

vehicle flight control system. Through extensive analysis, it 

has successfully achieved the desired performance while 

simultaneously enhancing system stability and robustness. 

The study's examination of load minimum and drift 

minimum scenarios has provided valuable insights, 

showcasing the efficacy of the LQR approach in reducing 

excessive loads and minimizing drift during flight 

maneuvers. These findings represent a significant stride 

toward improving safety, passenger comfort, and structural 
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integrity in launch vehicle operations. Future research can 

build upon these insights, focusing on real-world 

implementations to further advance launch vehicle 

technology and ensure the secure and efficient transportation 

of astronauts and payloads to their intended destinations. 
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