
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 6, June 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

A Comprehensive Study of Elasticsearch 
 

Nikita Kathare
1
, O. Vinati Reddy

2
, Dr. Vishalakshi Prabhu

3 

 
1, 2Student, Dept. of Computer Science and Engineering, R V College of Engineering, Bengaluru, India 

 
3Assistant Professor, Dept. of Computer Science and Engineering, R V College of Engineering, Bengaluru, India 

 

Abstract: With the ever-increasing demand for data storage, querying and retrieving data from abundant data sources is a tedious and 

time-consuming task. Hence, we require a system for querying data that is highly available, has high capacity and can scale out easily 

without the need to add more hardware onto a single device. In the paper, we discuss one such heavy full-text search and analytics 

engine called Elasticsearch. Elasticsearch is designed to work with various types of data such as structured, unstructured, geospatial, 

graphical and numerical data. It was built on top of Lucene and has been improvised with better features. The power of Elasticsearch is 

amplified with the help of a number of technologies that provide a visualization platform, data processing pipeline, monitoring, 

machine learning, data shipping etc. They, together with Elasticsearch, are called the Elastic Stack (ELK Stack). Comparison of 

Elasticsearch with other recent search engine technologies such as Solr, Sphinx and Azure search is provided, which would help 

readers better understand which technology to choose. Elasticsearch is being used in a number of organizations today as a powerful 

search engine and has been preferred over databases like MongoDB for querying over stored data, both being JSON document 

oriented, distributed datastores. But Elasticsearch provides a better searching capability like full-text search unlike MongoDB which is 

only preferred for CRUD operations. Elasticsearch is also relatively very fast compared to its counterparts and comes with real-time 

search capabilities thereby having negligible latency, hence making it viable to analyze billions of documents within a few seconds. 

Besides that, it also has a high throughput, being able to search through and analyze a number of documents concurrently within a 

limited response time. Elasticsearch also deals with failure of any node of a cluster and loss of shards on it by replicating primary 

shards into a number of replica shards and distributing them across multiple nodes. This distributed nature of Elasticsearch makes it 

highly available and robust.  

 

Keywords: cluster, Elasticsearch, Elastic stack, node, search engine, shard 

 

1. Introduction 
 

Elasticsearch
[1]

 is a heavy full-text search and analytics 

engine. It is an open source and distributed search engine 

which is capable of handling various types of data such as 

alphabetic, numerical, structured as well as unstructured 

data. It is a distributed document store system built on top of 

Lucene
[2]

. Because of its distributed nature, it is said to be a 

highly available search engine and can also be scaled easily. 

It bestows us with JSON based REST API which helps us 

cite Lucene features. It facilitates us to perform some very 

complex data aggregations, some of which can’t be 

supported by Lucene. Elasticsearch is a resource hungry 

search engine and requires a large heap space, Lucene
[3]

 on 

the other hand requires a small heap of about 1GB, however 

the problem can be solved by either freezing the shards or 

distributing the load over multiple nodes. The relationship 

between elasticsearch and Lucene is like that of a vehicle 

and its engine, hence we can say the former is powered by 

the later. Elasticsearch is more than just a search engine, it 

can be used for a variety of other applications like analytics, 

document store, auto suggesting. Lucene is an aberrant tool 

in itself and does not overwhelm us with the choice of APIs 

as elasticsearch does.  

 

There are databases like MySQL
[4]

 that store data and help 

us query over it. Unlike MySQL, Elasticsearch is a JSON 

document store that uses a method of indexing, where it 

creates inverted indices for the input text, which makes 

Elasticsearch very fast and nearly in-real time search engine 

that produces results of a search within a few milliseconds. 

Also, Elasticsearch is a part of ELK stack or Elastic Stack
[5]

, 

which helps us visualize data using Kibana and helps us in 

shipping data using Logstack.  

2. Key Concepts 
 

One of the main upgrades in Elasticsearch over Lucene is 

that it is distributed in nature and can be scaled over clusters 

of nodes. This feature of elasticsearch is because of its 

architecture whose understanding is crucial in knowing how 

elasticsearch operates.  

1) Document: Data within Elasticsearch is stored in the 

form of JSON objects which are considered to be the 

smallest unit of data storage. Documents correspond to 

rows of a table in a relational database
[6]

. Each of the 

documents comprise of fields which correspond to 

columns of a table. An index consists of one or more 

documents and documents in turn have one or more 

fields. Data stored in the documents is queried by the 

values of the fields in it. As soon as a document is put 

into an Elasticsearch index, an inverted index is created 

for it and it becomes fully searchable in real time. 

2) Type: Documents that are stored in Elasticsearch have a 

specific type
[7]

. The type of the documents is defined by 

the _type field of that document. Elasticsearch allows us 

to store documents of different mapping and different 

type within the same index. 

3) Index: Index in Elasticsearch is similar to a database in 

SQL. An index may consist of one or more documents 

in JSON format, each of which may be of different type 

and may have different mapping but are in some way 

related to each other
[8]

. Elasticsearch stores index in one 

or more primary shards, for which corresponding 

replica shards are created. 

4) Mapping: Mapping in Elasticsearch is a way of 

defining the structure of the documents i.e. the fields in 

the documents, the datatype of values stored in each of 

the fields and the metadata associated with the type of 

Paper ID: SR21529233126 DOI: 10.21275/SR21529233126 716 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 6, June 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

document. It is analogous to the table schema of a 

relational database. In Elasticsearch, there are two basic 

approaches to mapping, dynamic and explicit. Using 

explicit mapping the users can define fields and their 

data types on their own. But to make Elasticsearch 

easier to use, dynamic mapping was introduced which 

creates a field mapping automatically when a new field 

is encountered whose mapping was not specified 

explicitly by the user, for example if a field with string 

value was created, Elasticsearch would map that field to 

having a text datatype. Hence explicit and dynamic 

mapping can be combined, hence making mapping 

flexible in Elasticsearch. 

5) Node: A node is an instance of Elasticsearch that is 

responsible for storing data and indexing it. A collection 

of nodes makes up a cluster. All nodes in a cluster have 

information about every other node, and they forward 

the requests from client to the appropriate node. Nodes 

can take up a number of different roles, which can be 

specified by the user or they are set by default. The 

responsibilities or the roles taken up by nodes are as: 

master, data, client, tribe, ingestion and machine 

learning nodes. The master nodes are responsible for 

overseeing the management of the cluster and 

configuring them, by creating and removing nodes. 

Data nodes store data and carry out operations on that 

data. The client nodes act as mediators that balance the 

request load by forwarding the cluster-related request to 

the master node and the data-related requests to the data 

nodes. The tribe nodes perform read and write 

operations on all the nodes in the cluster and it connects 

one or more clusters making them seem like one big 

cluster. Ingestion nodes are used for preprocessing the 

documents before indexing them and the machine 

learning nodes help in carrying out machine learning 

tasks. 

6) Cluster: A cluster in Elasticsearch is a group of one or 

more nodes that work together. Elasticsearch is 

distributed in nature, which is a property that is induced 

by having the capability of adding nodes to it and 

grouping them into clusters, thereby reducing the load 

on a single node and dispersing it amongst multiple 

nodes. 

7) Shard: An index in Elasticsearch
[9]

 is divided into a 

number of shards which are then distributed across a 

number of nodes, hence we can say that an index is a 

logical integration of one or more shards. The 

documents in an index are distributed across multiple 

shards and these shards are in turn distributed across 

multiple nodes. When the load on a particular cluster 

grows, Elasticsearch migrates some shards from that 

cluster to other clusters, thereby balancing the data load. 

There are two kinds of shards: primary and replica. 

Whenever an index is being created, the user can 

specify the number of shards it is supposed to have, i.e. 

the number of primary and the number of replica shards 

for each of the primary shards. The data of the index is 

divided amongst a number of primary shards, hence the 

primary shards have the original copy of the data, while 

the replica shards for each of the primary shards hold 

the copy of data of that primary shard, thereby 

increasing the redundancy of data and preventing loss of 

data due to failure of a node. Every index in 

Elasticsearch is composed of at least one primary shard 

as it consists of the original copy of data. Fig-1 shows 

an index in elasticsearch which is divided into three 

shards. The shards are then dispersed across three nodes 

with one replica shard each. Even if  one of the nodes in 

the Elasticsearch cluster goes down, there would remain 

at least one copy of each of the shards, thereby making 

it a highly available technology. 

 

 
Figure 1: Primary and Replica Shards in Elasticsearch 

 

3. Text Search in Elasticsearch 
 

Analysis or text analysis is a process that is applicable to the 

text fields or values
[10]

. In elastic search text has to be 

processed before being stored, this processing happens in the 

analysis phase. Text values are analysed when indexing 

documents by an analyzer and the result is stored in data 

structures that would make the process of searching more 

efficient. 

 

An analyser consists of three building blocks : character 

filters, tokenizers and token filters. A character filter 

receives the original text and transforms it by adding, 

removing and changing characters. An analyser may have 

one or more character filters that are applied in a particular 

order as specified by the user . But an analyser can contain 

only one tokenizer that tokenizes a string by splitting it into 

tokens. Some characters such as punctuations and white 

spaces may be stripped as a result of tokenization for 

example splitting a sentence into words. The tokenizer also 

records the character offsets for each token
[11]

. Token filters 

receive the output of the tokenizers as input and they add, 

remove or modify tokens. Similar to Character filters an 

analyser may contain one or more Token filters and are 

applied in the order in which they are specified for example 

the lower case filter that converts all the characters in each 

of the tokens to lowercase. Elasticsearch comes with a 

number of built-in analyzers, character filters, tokenizers and 

token filters. A number of different combinations of 

character filters, tokenizers and token filters can be used by 

the user to build a custom analyzer. The analyzer used by 

Elasticsearch by default is the standard analyzer which does 

not consist of a character filter but uses a Standard 

Tokenizer which tokenises by removing white spaces and 

punctuation and a lowercase Token filter. 

 

Paper ID: SR21529233126 DOI: 10.21275/SR21529233126 717 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 6, June 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
Figure 2: Text Searching in Elasticsearch 

 

The tokens from the analyzer are stored in data structures, a 

different data structure being used for different fields 

depending on the field’s data types. Using several data 

structures for storing the field values instead of one ensures 

efficient data access. These data structures for text fields 

make up inverted indices which help in fastening full-text 

searches. Inverted indices are mapping between terms i.e. 

the tokens from the analyzer and documents containing 

them. Terms in inverted indices are sorted alphabetically. 

Inverted indices also contain information about relevance 

scoring, which while performing full text search helps return 

documents based on how well they match to the search text. 

Inverted index is created for each text field in the documents 

and the fields of data types other than text use a different 

data structure like BKD trees for numerical and date data 

types. 

 

After indexing the documents are mapped. Mapping is used 

to define the structure of documents in Elasticsearch and 

configure how they’re indexed. Mapping is done by 

specifying the properties of the fields of the documents and 

their data types, i.e. equivalent to the schema of a table in 

relational database. Mapping here can either be done 

explicitly by the user or implicitly by Elasticsearch. 

 

4. Features 
 

Elasticsearch exhibits a number of features as follows - 

1) Highly Scalable - Elasticsearch can scale horizontally 

upto few petabytes of structured as well as unstructured 

data. We can increase the capacity of storage by adding 

more nodes to the cluster. Though there is no upper limit 

on the size, the preferred limit per shard is 50 GB.  

2) Highly Secure - All the data stored in Elasticsearch can 

be password-protected to prevent any unauthorized users 

from accessing the data. Elasticsearch also provides 

various other security mechanisms such as role-based 

access control, access control based on attributes, audit 

logging, IP filtering and communication encryption. 

3) Highly available - Elasticsearch is based on the concept 

of using clusters, where clusters are an assemblage of 

one or more nodes or servers which together hold all of 

the data and provides amalgamated indexing and search 

functionality across all nodes. Clusters in Elasticsearch 

feature primary and replica shards to impart failover, if in 

case a node goes down. When a node containing primary 

shard shuts down and goes offline due to some problem, 

a replica shard is promoted as the primary shard thereby 

making the whole cluster highly available. 

4) Full text Search Engine - Traditional SQL database 

management systems are not designed for full-text 

searches against vast quantities of data. Whereas, 

Elasticsearch offers one of the most powerful full-text 

search capabilities and can perform and combine various 

types of searches, from structured, unstructured, geo, to 

metric data. 

5) Analytics - Other than being used to build a complex 

search engine using its text querying capabilities, 

Elasticsearch can also be used to query structured data 

such as numbers and aggregate data and is hence used as 

an analytics platform. The data can be queried and 

analyzed pictorially with the help of line charts, pie 

charts. 

6) Index Management - Elasticsearch provides a suite of 

features to monitor and manage indices. Index State 

Management provides an automated system for defining 

custom policies and for optimizing, monitoring and 

managing indices. It eliminates the need to rely on 

external systems to periodically execute the tasks. Index 

State Management plugin from Kibana provides users 

facility to monitor the indices and apply custom policies 

such as criteria based on index age, size and number of 

documents 

 

5. The Elastic Stack 
 

The Elastic stack consists of technologies developed and 

maintained by Elastic NV, the company behind 

Elasticsearch. Elasticsearch is the heart of the Elastic stack, 

i.e. most of the technologies that are part of the Elastic stack 

interact with Elasticsearch and have a strong synergy 

between them , hence they are  frequently used together. The 

products that are a part of Elastic stack are: 

1) Kibana - It is an analytics and visualization platform 

that easily lets us visualize data from Elasticsearch and 

analyze it, which helps us understand it better
[12]

. It is 

comparable to a dashboard or an interface where 

visualizations of data can be created, for example maps 

Paper ID: SR21529233126 DOI: 10.21275/SR21529233126 718 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 6, June 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

(coordinate map , region map) and charts (pie, line, area 

and bar chart)
[13]

. 

2) Logstash - It is a free, open source and lightweight 

server side data processing pipeline that consumes data 

from various sources and sends them to 

Elasticsearch
[14]

. The data that Logstash receives can be 

handled as events like log file entries , e-commerce 

orders, customer details, chat messages etc. These 

events are then processed by Logstash and shipped off 

to one or more destinations like Elasticsearch, Kafka 

queue , a HTTP endpoint etc. A Logstash pipeline 

consists of three stages : i) Inputs ii) Filters iii) Outputs .  

Each stage makes use of a plugin. While the input 

plugins are how Logstash  receives the events, the 

output plugins are all about how Logstash processes 

them. An output plugin is where the processed events 

are sent, which are formally called stashes. Multiple 

pipelines can be run under the same Logstash instance, 

and it is horizontally scalable. 

3) X-Pack - It is an extension to Elasticsearch and Kibana 

that adds extra features to them like security, 

monitoring, machine learning, alerting and reporting. 

While providing security it facilitates the users with 

authentication by integrating with authentication 

providers and helps control permissions with fine-

grained authorization. It helps monitor the performance 

of Elastic stack like CPU and memory usage, disk space 

etc. by providing an insight into how it is running. 

Alerting is specific to the monitoring of Elastic stack 

that gives an alert to the user if something erroneous 

happens, for example if the web server’s CPU usage 

exceeds a certain limit or if the application errors reach 

a threshold.  Reporting helps export Kibana 

visualizations and data to another file format like PDF 

or CSV. X-Pack is also what enables Kibana to use 

machine learning to perform abnormality detection, 

forecasting future values on data which is a 

functionality provided by X-Pack whereas the interface 

is provided by Kibana. One of the most significant 

features is the Graph, that helps analyze relationships in 

data and uses the relevance feature of Elasticsearch to 

determine which parts of the data are related and also 

provides a plugin for Kibana to visualize data as an 

interactive graph. Graph exposes an API that helps 

integrate this ability into applications.  

4) Beats - Beats is a collection of data shippers. They are 

lightweight agents that can be installed on servers which 

send data to Logstash or Elasticsearch. There are a 

number of data shippers like filebeat which collects 

various log files like access logs and error logs and 

sends these log entries to Logstash or Elasticsearch , 

metricbeat that collects system and service metrics like 

memory and CPU usage, packbeat that collects network 

data (HTTP requests or database transactions), auditbeat 

that collects audit data from Linux, Winlogbeat that 

collects windows event logs etc. 

 

Comparison of Elasticsearch and Other Open Source 

Search Engines 

 

1) Comparison between Elasticsearch and Solr -  

Both Elasticsearch and Solr
[15]

 are open source search 

engines that are built on top of Lucene, but they vary in 

terms of scalability, performance, optimized query 

execution, cluster management and shard placement
[16]

. 

Shard placement in Solr is static in nature and usually 

requires manual work for migrating shards whereas in 

Elasticsearch, shard placement is dynamic where migration 

of shards is automated based on cluster state. SolrCloud 

supports splitting of existing shards but not shrinking of 

shards like Elasticsearch. Cluster coordination in 

Elasticsearch uses built-in Zen discovery modules whereas 

SolrCloud requires Apache Zookeeper, an additional 

service. In case of a shard or node failure, Elasticsearch does 

shard rebalancing itself and rarely requires manual 

intervention
[17]

. In SolrCloud, rebalancing is complex and 

hard to manage. Routing is supported by Solr but not by 

Elasticsearch. 

 

2) Comparison between Elasticsearch and Sphinx -  

Both Elasticsearch and Sphinx are well known open source 

search engines but they differ in some features such as 

memory and scalability. Elasticsearch consumes more 

memory hence it is scaled over multiple nodes whereas 

Sphinx consumes less memory as compared to other search 

engines. Sphinx works more tightly with structured data 

associated with relational databases, like MySQL whereas 

Elasticsearch can handle various types of data from 

structured, unstructured to graphical type of data. Sphinx 

can't index document types such as pdf, ppt, doc directly. To 

handle text documents in various formats, the textual 

contents are imported into a database, or into an XML 

format that Sphinx can understand and later, processing is 

performed. Sphinx is written in C++ whereas Elasticsearch 

is written in Java. Elasticsearch engine allows executing 

aggregation queries in search indices. Elasticsearch engine, 

along with optimized querying also speeds up the generation 

time of layered navigation block and lists of products 

filtered by some attributes. However, Sphinx search engine 

does not allow to perform aggregation queries.  

 

3) Comparison between Elasticsearch and Azure Search 

Azure search
[18]

 is a cloud based service that provides 

searching as a service for mobile and web application 

development. Azure search is powered by Artificial 

Intelligence (AI) for easy identification, analysis, and 

exploration of data. It helps in reducing the vast complexity 

of data ingestion as well as index creation, using its unique 

storage solutions and offers index functionality. Azure 

search supports a number of languages as compared to 

Elasticsearch which supports a large number of data types. 

Elasticsearch has in-memory capabilities using Memcached 

and Redis Integration, whereas Azure search doesn’t support 

in-memory capabilities. Elasticsearch supports eventual 

consistency whereas Azure search supports immediate 

consistency.  

 

6. Conclusion 
 

Searching is one of the key features of elastic search. It can 

be used to search documents based on diverse constraints 

and gives near real time search facility. It uses inverted 

indices for searching which makes the process very fast. 

Elasticsearch provides users with the facility of setting 

scoring schemes for text searching so the documents are 

returned in order of their relevance scores. It’s architecture 

Paper ID: SR21529233126 DOI: 10.21275/SR21529233126 719 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 6, June 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

is distributed in nature hence elastic search has a failure 

recovery mechanism that ensures that data is not lost even if 

some node in the cluster fails, which is what makes it highly 

available. 

 

References 
 

[1] R. Vidhya, G. Vadivu, “Research Document Search 

Using Elasticsearch”, Indian Journal of Science and 

Technology, Vol 9(37), DOI: 

10.17485/ijst/2016/v9i37/102108, September 2016 

[2] Mitra, M. J. (2016), “ The Rise of Elastic Stack” 

(November),  

https://doi.org/10.13140/RG.2.2.17596.03203 

[3] Cornelia Gyorodi, Robert Gyorodi, George Pecherle, 

and Andrada Olah, “ A comparative study:  Mongodb 

vs. Mysql”,  13th International Conference on 

Engineering of Modern Electric Systems (EMES), 

Oradea, Romania,11–12 June 2015; pp. 1–6  

[4] Clinton Gormley & Zachary Tong, Elasticsearch, “The 

Definitive Guide : A Distributed real-time search and 

analytics engine”,  O'Reilly, January 2015  

[5] Sematext Blog “Elastic Search:Distributed, Lucene-

based Search Engine. Available from: 

https://sematext.com/ blog/2010/05/03/elastic-search-

distributed-lucene/ 

[6] Pankaj  Sareen,  P.K.,”NoSQL  Database  and  its  

Comparison  with  SQL  Database”,Int.   J.  Comput.   

Sci.Commun. Netw.2015,5, 293–298 

[7] Oleksii Kononenko, Olga Baysal, Reid Holmes, 

Michael W. Godfrey, “Mining modern repositories with 

elasticsearch”, ICSE '14: 36th International Conference 

on Software Engineering, Association for Computing 

MachineryNew YorkNYUnited States 

[8] Li, X.-M., & Wang, Y., “Design and Implementation of 

an Indexing Method Based on Fields for 

Elasticsearch”,2015 Fifth International Conference on 

Instrumentation and Measurement, Computer, 

Communication and Control (IMCCC). 

doi:10.1109/imccc.2015.137  

[9] Kalyani, D., & Mehta, D. (2017). Paper on searching 

and indexing using elasticsearch. Int. J. Eng. Comput. 

Sci, 6(6), 21824-21829. 

[10] Voit  A.,  Stankus  A., Magomedov  Sh., Ivanova  I., 

“Big  data processing  for  full-text  search  and  

visualization  with  elasticsearch”, International  Journal  

of  Advanced  Computer  Science  and  

Applications”,2017Т8 No12. С.76-83. DOI: 

10.14569/IJACSA.2017.081211 

[11] Subhani shaik, Nallamothu Naga Malleswara Rao, 

“Enhancement of Searching and analyzing the 

document using Elastic Search”,International Research 

Journal of Engineering and Technology 

(IRJET),Volume: 04 Issue: 11 | Nov -2017 

[12] Neel Shah, Darryl Willick, Vijay Mago, “A framework 

for social media data analytics using Elasticsearch and 

Kibana”, Wireless Networks. doi:10.1007/s11276-018-

01896-2 , 2018 

[13] Shah, N., Willick, D., Mago, V., “A framework for 

social media data analytics usingElasticsearch and 

Kibana” - Wireless Networks (2018, in press) 

[14] Marcin Bajer, “Building an IoT Data Hub with 

Elasticsearch, Logstash and Kibana”, 5th International 

Conference on Future Internet of Things and Cloud 

Workshops, 2017 

[15] Vikash Kumar and P.N. Barwal, “Implementation of 

Highly Optimized Search Engine Using Solr”, 

International Journal of Innovative Research in Science, 

Engineering and Technology, Vol. 5, Issue 3, March 

2016 

[16] Nikola Luburić, Dragan Ivanović, “Comparing Apache 

Solr and Elasticsearch search servers”, 6th International 

Conference on Information Society and Technology 

ICIST 2016 

[17] M. A. AKCA, T. Aydoğan, and M. İlkuçar, “An 

Analysis on the Comparison of the Performance and 

Configuration Features of Big Data Tools Solr and 

Elasticsearch”, IJISAE, pp. 8-12, Dec. 2016. 

[18] Pratiksha P. Nikam and Ranjeetsingh S. Suryawanshi, 

“Microsoft Windows Azure: Developing Applications 

for Highly Available Storage of Cloud Service” , 

International Journal of Science and Research (IJSR) 

ISSN (Online): 2319-7064 Index Copernicus Value 

(2013): 6.14 | Impact Factor (2014): 5.611 
 

Author Profile 
 

Nikita Kathare, B.E., RV College of Engineering - 

nikita.kathare@gmail.com 

 

O. Vinati Reddy, B.E, RV College of Engineering - 

reddyvinati@gmail.com. 

 

Dr. Vishalakshi Prabhu, PhD, Assistant Professor at RV College 

of Engineering - vishalaprabhu@rvce.edu.in 

Paper ID: SR21529233126 DOI: 10.21275/SR21529233126 720 

https://doi.org/10.13140/RG.2.2.17596.03203
mailto:reddyvinati@gmail.com



