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Abstract: In the field of epidemiology, the Susceptible, Exposed, Infected (SEI) model was developed with the aim of understanding 

the type of diseases that have a character of the individual infected, remains and remains contagious until the end of his/her life. But 

the phenomenon generated by global warming has changed the behavior of our biodiversity and ecology of the transmission of 

infectious agents. This causes the adaptation of the current existing model facing new behavior of infectious diseases. In this paper, we 

propose a new model adapted to the situation we are currently experiencing. 
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1. Introduction 
 

Mathematical modelling of a problem is a very necessary 

tool for simulating experiments that are not feasible (for cost 

reasons) and for predicting scenarios. In the field of 

epidemiology, researchers such as (L.Q.Gao(1995)), (Zohra 

(2016)), (Bentout (2019)) are very satisfied with 

compartmental models, because these models are easier to 

handle and solve. These models require the division of the 

population into a number of categories according to disease 

status (susceptible to infection, non-contagious infected, 

contagious infected, immune, deceased, etc.) (Antoine 

(2008)). The change in the number of individuals in each of 

these boxes is governed by a set of differential equations 

(J.M.M.ONDO (2012)). To take more to the study of 

infectious diseases that have behavior of the infected 

individual, remains and remains contagious until the end of 

his life. (L.Q.Gao (1995)) proposed the famous SEI model. 

The analysis ofthe stability of this model is then proposed by 

(A.Korobeinikov (2004)) using the Lyapunov functions. 

Moreover, today’s global warming is generating phenomena 

to modify the behaviour of our biodiversity and ecology, 

such as : the capacity to multiply or to pass the bad season of 

microorganisms (B.Marçais and al. (2000)), the epidemic 

development of many parasites (B.Marçais and al. (2000)), 

the mutation and combination of viruses (NDAFA (2017)), 

the resistance of micro-organisms or pathogenic agents 

(Muylaert A. (2012)), (Boerlin and D.G. (2006)). All these 

phenomena have a major impact on the large-scale spread of 

the disease and the inadequacy of existing epidemic 

propagation models in the face of the new behaviour of 

emerging infectious diseases, for example the SEI model. 

 

At this stage, we are reaching the limits of our knowledge on 

the links between biodiversity and the ecology of 

transmission of infectious agents. The whole world and the 

international organisation are asking. This has led 

(S.Morand and Lajaunie (2015))(column 3, paragraph 1, 

page 1) in its work to announce that "if the transmission of 

an infectious agent depends on local conditions of 

biodiversity, it is necessary to build models integrating the 

modifications of biodiversity with climatic variables" and 

also the organisation (CCE (2009)) (paragraph 7, page 22) to 

leave a perspective in its document of "Strengthening the 

capacities for modelling the effects of extreme 

meteorological phenomena on health". We are interested in 

this issue. This paper investigates the prediction of new 

behaviour of mutated infectious agents by global warming 

and proposes the model to adapt to emerging infectious 

disease caused by mutated infectious agents. In the 

following, our work is divided into five sections. Section 2 

elaborates the new dynamic process of infection. Section 3 

proposes the new definition of our hypothesis. Section 4 

elaborates the new model for the spread of the epidemic and 

the different complementary studies. Section 5 provides a 

conclusion. 

 

1.1 New dynamic process of infection of emerging and 

re-emerging infectious diseases 

 

We accept that an individual is affected by an infectious 

disease when he or she comes into contact with a pathogen, 

which can be of various kinds (an infected individual, a 

mosquito, a well, etc.). But we note that the modification 

and genetic change of micro-organisms or pathogens caused 

by global warming will lead to the advancement or 

acceleration of the period of contagiousness (we call this 

early or premature contagion or precontagion) (See 

figure (1)). That is, pathogens have the ability to adapt and 

spread very rapidly from one individual to another. This 

means that the infectious disease spreads not only through 

the symptomatically ill individual but also through the 

asymptomatic individual. This will cause the epidemic to 

spread very rapidly. It is considered here that the change in 

the mode of transfer of infection brought about by new 
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pathogen behaviour does not change the total duration of 

disease contraction in the individual. But, it does increase 

the time of contagiousness and decrease the latency period. 

 

The character precontagious of an individual is acquired 

only after a period of time of latency after infection. And 

the infected individual also remains infectious for some 

time or until death. 

 

1.2 Mechanism of transmission of an infectious disease 

 

The mechanism of transmission of an emerging infectious 

disease involves the following steps: 

 Global warming has increased the temperature of the 

earth’s surface. 

 The increase in temperature has impacted the 

environment of living beings, including microorganisms. 

 In the micro-organisms, those which are not killed by the 

rise in temperature, have managed to adapt, to mutate 

and they have sought the new favourable environment to 

live in (in the human organism). 

 Once in human organisms, the mutant micro-organism is 

able to adapt and multiply very quickly. 

 After the latent phase, without having yet to cause the 

prodrome in the host organism, they can already 

contaminate other organisms from saliva, sexual 

intercourse, sneezing, blood, some ordinary coughs, 

...That is, the individual who seems to be in good health 

(who does not feel that he is infected with the disease) 

can infect the population if he is already infected. 

 The infected individual remains contagious until the 

onset of symptoms of the disease and has continued to be 

contagious for some time or until death. 

 

In order to provide our solution to the study of the modelling 

of this phenomenon, we had to establish the following 

definitions of assumptions that complement the definition of 

the susceptible, exposed, infected and latent compartments 

in the literature. 

 

Definition of assumptions 

 

Definition 1: An individual who has been infected with the 

disease pathogen and can also transmit the disease, but has 

no symptoms, is referred to as a precontagious or 

precontaminated individual. 

 

Definition .2.Precontagedrepresents a compartment where 

the disease requires a period of pre-contagion. Pre-

contagious individuals are capable of transmitting the 

disease into the population, but they do not yet show 

symptoms of the disease. They are therefore assigned to this 

compartment with the rate k called precontagiousness rate. 

In the following, the letter P will be used to refer to 

individuals who are infected and contagious, but do not yet 

represent symptoms of the disease. 

 

Definition 3: The period of precontagiousness is a period of 

time when an infected individual does not yet show 

symptomatic signs of the disease, but can transmit the 

disease to another individual. 

 

Definition 4: The infected compartment represents those 

who are not only already infected and have shown symptoms 

of the disease, but are also capable of transmitting the 

disease back into the population. 

 

Definition 5: The period of contagiousness is a distinct 

phase of time when the sick individual (person with 

symptoms of the disease and whose health is impaired) 

transmits a disease to the other individual. 

 

In the figure (1), we illustrate the context in which this event 

takes place : This schematic presentation shows the different 

phases (disease states). 

 

 
Figure 1: Representation of the contagion process 
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2. Proposed models of epidemic spread 
 

In this section, we focus on modelling the new phenomenon 

of the spread of infectious diseases caused by global 

warming in the population. We highlight the new dynamic 

process of infection of emerging infectious diseases on the 

one hand, and the different hypotheses of infectious disease 

behaviours on the other hand. Our work consists in 

proposing propagation models capable of understanding the 

different behaviours of the infectious disease and the new 

mechanism of the rapid diffusion of the infection. The 

model assumes that the population is constant. It is also 

homogeneous (no age structure, no spatial and social 

structure). 

 

2.1 Objectives of propagation models 

 

The main objective of our work is to develop new 

compartmental models by integrating the above new 

dynamic infection processes into the SEI compartmental 

model in the literature. 

 

This integration effectively contributes to the modelling and 

simulation of any form of emerging diseases caused by 

global warming. We model the phenomenon of the spread of 

the emerging infectious disease. Other more specific 

objectives are envisaged by setting up the SEPI models and 

studying: the simulation of the model, the equilibrium 

points, the basic reproduction number R0and the stability of 

the equilibrium point. 

 

In this work, epidemic modelling only considers cases where 

the infection spreads directly: first, between precontagious 

(Precontaminated) and susceptible individuals second, 

between infectious (infected) and susceptible individuals (no 

epidemic vectors). 

 

2.2 Le modèle dynamique simple de SEPI 

 

In our work, the Susceptible, Exposed, Precontaged, 

Infected (SEPI) is the first model we develop. Indeed, we 

assume that the epidemic spreads in a very fast way and the 

infected individual remains contagious until the end of his 

life. This type of modelling is suitable for such short interval 

periods that natural mortality and emigration are balanced 

by birth and immigration. 

2.2.1 Definition of the assumptions of the dynamic model 

of SEPI 
In order to develop our SEPI model, we make some 

assumptions: 

 A1: The size of the population is equal to N, assumed 

fixed ; 

 A2: The time variable t is of discrete type, such that t ∈T 

or T is the total duration of the epidemic ; 

 A3: The time period ∆t = dt represents hours or days or 

weeks ; 

 A4: At each instant t, the population N is subdivided into 

four compartments : S(t) : set of Susceptible individuals, 

E(t) : set of Exposed individuals, P(t) : set of Precontaged 

individuals, I(t) : set of Infected individuals with N = S(t) 

+ E(t) + P(t) + I(t) and S(0) = S0 >0,  

P(0) = P0>0 and/orI(0) = I0 >0 ; 

 A5: We assume that each susceptible individual in a 

period of time ∆t is exposed, precontaged and then 

infected ; 

 A6: The transmission of the infection is done through a 

direct contact between: firstly, susceptible S and one or 

more precontaged P with a factor βp of proportionality 

(also called rate of precontagion or rate of transmission or 

rate of transmission of the susceptible to the exposed) ; 

secondly, susceptible S and one or more infected I with a 

factor βi of proportionality (also called rate of infection). 

We admit that a βfactor is the total transmission rate or of 

exposure such that β= βp+ βi; 

 A7: An infected individual remains contagious for the rest 

of his or her life at the rate of λ. 

In the field of epidemiology, we can schematise the SEPI 

model by boxes or compartments. This is the subject of the 

following paragraph. 

 

2.2.2 Schematic of the SEPI model 

Each compartment represents the different statuses in which 

individuals in a population may find themselves during the 

disease. We note: β>0: the rate of exposure (or of 

transmission from the susceptible to the exposed), k >0:the 

rate of precontagiousness (or of transmission from the 

exposed to the precontaged), ν>0: the rate of contagiousness 

(or of transmission from the precontaged to the infected). 

The diagram of the SEPI model is illustrated in Figure (2): 

 

 
Figure 2: Scheme of the SEPI model 

 

To these four different states, we can associate four 

evolutionary equations (see (1) below). 

 

2.2.3 Representation in the form of the differential 

equations of the SEPI model 

According to hypothesis (A7) in section (4.2.1) above, we 

consider that during the time interval dt, the 

Susceptuble compartment has lost the number S (βpP+βiI) of 

individuals exposed by the disease. According to the 

hypothesis (A6), we consider the new cases reached by the 

infection during the time interval dt which will be equal to 

βiS(t)I(t). And the new cases reached by the precontagion 

during the time interval dt which will be equal to βpS(t)P(t). 

We obtain the new cases exposed to the disease during the 

time interval dt which will be equal to βpS(t)P(t) + βiS(t)I(t) 

= S(t)(βpP(t) + βiI(t)). According to the hypothesis (A5), we 

consider that during the time interval dt the compartment 

precontaged by the disease has increased in number kE 
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individuals and at the same time, it loses the number P of 

sick or infected individuals. According to the hypothesis 

(H5) and (A7), we consider that during the time interval dt 

the compartment Infected has increased in number kE of 

precontaged individuals. And we can present the SEPI 

model as a system of differential equations (1). 

 

 
 

There is a unique solution for the model (1), under the initial 

conditions: S(0) = S0; E(0) = E0; P(0) =P0; I(0) = I0in 

particular, in the region, Ω =  𝑆 , 𝐸 , 𝑃 , 𝐼  , 𝑆  > 0;  𝑃  >
0; � >0which is positively invariant for the system. For by 

definition: 

 

Definition 6: A set G is said to be positively invariant if 

∀x0∈G, the trajectory passing through x0is contained in G 

after x0: if x is the solution of the system X’= F(X) (with F 

of class 𝐶 ∞) verifying x(0) = x0, then ∀t ≥ 0; x(t) ∈G. 

 

We admit that 
𝑑𝑆(𝑡)

𝑑𝑡  
+ 

𝑑𝐸(𝑡)

𝑑𝑡  
+

𝑑𝑃(𝑡)

𝑑𝑡  
+

𝑑𝑆(𝑡)

𝑑𝑡  
= 0, we deduce 

from this that ∀t ≥ 0, S(t) + E(t) + P(t) + I(t) = S(0) + E(0) + 

P(0) + I(0) = Nwith N >0. We note X = (S; E; P; I), we can 

rewrite this differential system (1) in the form X’= F(X) with 

F of class 𝐶∞ . 

 

2.2.4 Simulation of the SEPI model 

The different curves obtained with Scilab already give us an 

idea of the evolution of the epidemic. For the simulation, we 

consider here to have a precontaminated individual at time t 

= 0with N=10000, βp= 0; 2, βi= 0; 1, k=0, 4, ν= 0; 2 et 

g=0.3. We consider a period t depending on the unit of 

transmission rates, and itis equivalent to a day or week or 

month. By running the simulation, we obtained the 

following curves : 

 

 
Figure 3: Curve of S(t) coloured in red and E(t) in blue 

 

Interpretation: 

From figure (3), we have shown that even with low 

precontagion and infection rates, the epidemic is spreading 

with a phenomonal and very rapid speed. The entire 

susceptible population is already exposed after only 0.3 of 

our period. 
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Figure 4: Curve of E(t) during a phase of the epidemic 

 

Interpretation: 

According to figure (4), after the phenomonal evolution of the epidemic, the curve of the Exposed stablilises and fades after 

the 15
e
period of our epidemic. 

 
Figure 5: Curves of I(t) coloured in red and P(t) in blue 

 

Interpretation: 
From Figure (5), it appears that after the sharp increase, the 

curves for the Precontaged and the Infected stabilize and 

become endemic after the 20
e
period. 

 

2.2.5 Study of the equilibrium point of the SEPI model 

Lyapunov in (J.M.M.ONDO (2012)), defines the 

equilibrium point as follows: 

 

Definition 7: Consider U, a non-empty open of 

𝑅 𝑛 containing 0, and I a non-empty interval of R, not 

bounded on the right. Let be systems of the form: 

𝑥 =  𝑓(𝑥) (2) 

𝑥 =  𝑓(t, 𝑥) (3) 

where the functions f : U →Rn
for the system (2) and f : I × 

U→ Rn for the system (3) are assumed to be continuous. 

 

A point a is a point of equilibrium or state of equilibrium or 

singular point of the system (2) (resp. (3)), if f(a) = 0 (resp. 

if, for any t ∈I; f(t; a) = 0). 

 

We then obtain the following proposition: 

 

Proposition 1: Let N>0. Then the system (1)with the 

condition S(0) = S0, E(0) = E0, P (0) = P0, I(0) = I0et 

S(t)+E(t)+P(t)+I(t)=S(0)+E(0)+P(0)+I(0)=N admits a 

unique solution (S, E, P, I) defined on[0; +1[. 
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Proof: 

Equilibrium points are calculated in the absence of infection 

and/or precontagion. The equilibrium point of the model (1) 

satisfies the system below: 

 

 
 

In the absence of infection (I=0) and precontagion (P=0), we 

obtain the following proposition: 

 

Proposition 2: Let N>0, in the absence of infection (I=0) 

and precontagion (P=0), then the system (1) admits the 

equilibrium point : E0= (N, 0, 0, 0)
T
. 

 

Proof: 

By replacing I=0 and P=0 in the first, second and third 

equations in the system (4), with S + E + P + I= N, we 

obtain the first equilibrium point E0= (S ,E , P, I ): 
 

E0 = (𝑁, 0, 0, 0) T  (5) 

 

In the presence of the precontagion (P ≠ 0) and in the 

absence of the infection (I = 0), if ν≠ 0, we obtain the 

following proposition : 

 

Proposition 3. Let N>0, in the presence of the precontagion 

(P≠0) and in the absence of the infection (I = 0), if ν≠0, 

then: 

1) The system (1) admits the equilibrium point: 

E p
∗ =  

ν

βp
,   

ν(βp N − ν)

βp (k + ν)
,   

k(βp N − ν)

βp (k + ν)
, 0 

T

; 

2) Moreover, for all t>0, we have βpN >ν. 

 

Proof 

Replacing P≠0and I = 0, if ν≠0, the system (4) becomes : 

 
𝛽p𝑆𝑃 −  𝑘𝐸 =  0 

𝑘𝐸 −  𝜈𝑃 =  0 (6)
𝜈𝑃 ≠ 0.

  

The second equation of (6) implies : 𝐸∗= 
𝜈𝑃

𝑘
and the first 

gives : 𝑆∗= 
𝜈

𝛽p
. 

Since I=0, we admit that: 

N = S + E + P (7) 

Replacing S∗and E∗in (7), we obtain: 

 𝐏∗ =
𝐤(𝛃𝒑𝐍 − 𝛎)

𝛃𝒑(𝐤 + 𝛎)
. 

 

Replacing P∗ we then have the equilibrium point 𝐸𝑝
∗= 

(S∗, 𝐸∗, P∗, 0) as follows: 

𝐸𝑝
∗ =   

𝛎

𝛽𝑝

,
𝛎(𝛽𝑝𝐍 − 𝛎)

𝛽𝑝(𝐤 + 𝛎)
,
𝐤(𝛽𝑝𝐍 − 𝛎)

𝛽𝑝(𝐤 + 𝛎)
, 0  

𝑇

(8) 

We note that S > S∗with S is the susceptible of (5), implies: 

𝐍 >
𝛎

𝛽𝑝

 (9) 

From (9), we deduce that : 

P∗ =  
𝒌(𝛽𝑝𝑵 −  𝝂)

𝛽𝑝(𝐤 +  𝛎) 
> 0 (10) 

And  

E∗ =  
𝝂(𝛽𝑝𝑵 −  𝝂)

𝛽𝑝(𝐤 +  𝛎) 
> 0 (11) 

According to (9), (10) and (11) we have 𝛽𝑝N >ν. But 

according to (8), if ν= 0, we obtain the equilibrium point  

 

2.2.6 The basic reproduction number 𝑹𝟎 of the SEPI 

model 

From the concept of the basic reproduction number 

according to (G.Sallet (2010)), we have the impression that 

if R0>1, then we will observe an increase in cases, thus an 

epidemic, and that if R0<1 then the case will disappear. 

Using the condition of the study of the base number 𝑅 0in 

(L.Chahrazed (2002)) : 

 If R0 < 1, the equilibrium point E0 is locally 

asymptotically stable ; 

 If R0 < 1, the equilibrium point  E0 is unstable. 

First of all, we recall the definition of the spectral radius. 

 

Definition 8: The spectral radius of a matrix A is the 

maximum value of the modulus of the eigen values of A. We 

note: ρ(A) =max𝜆∈𝑆𝑝 (𝐴) 𝜆 , with 𝑆𝑝 (A) : the set of eigen 

values of the matrix A. 

 

Definition 9: A matrix is said to be Metzler (resp. strict 

Metzler) if and only if its non-diagonal terms are positive 

(resp. strictly positive). 

 

According to the work of (G.Sallet (2010)), we define the 

𝑅0as follows: 

 

Definition 10: (Basic reproduction rate) If the transmission 

matrix is stable, then we define 𝑅0by 𝑅0= ρ(-F𝑉−1). Since V 

is a Metzler matrix, it is stable and implies that -𝑉−1≥ 0. 

This proves that-F𝑉−1is a positive matrix. 

 

To determine the R0, one can be satisfied to consider the 

system on the space (S, E, P) since if one knows(S, E, P), 

one knows I, it comes 

 
 
 

 
 

dS(t)

dt
=  −βp S t P t − βiS t I t 

dE(t)

dt
=  βp S(t)P(t)  +  βiS(t)I(t)  −  kE(t)

dP(t)

dt
=  kE t −  νP t 

 (13) 

The biological domain is   S, E, P   | 0 ≤  S ≤  N, 0 ≤ E ≤
N, 0≤P≤N. The set Ω=S, E, P  | 0 ≤S,  0 ≤ E,  0 ≤ P,  
S+E+P ≤1. We have a variety of equilibrium points S,0; 0 | 
0≤S≤ Non the S axis. Let us take an equilibrium S0, 0, 
0,TorS0= N, then we have at this point Disease Free 

Equilibrium (D.F.E). According to the definition (:10), it is 

enough to consider the carriers of pathogens and (E; P) for 

the calculation of the jacobians, and with the notations, it 

comes: 

𝑭(𝑬, 𝑷 )  =  
𝜷𝑝𝑺𝑷

0
  and 𝝂 𝑬, 𝑷 =  

−𝒌𝑬
𝒌𝑬 − 𝝂𝑷

 . 
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So𝐹 𝐷𝐹𝐸 =   
0 𝜷𝑝𝑺

0 0
  and 𝜈 𝐷𝐹𝐸 =   

−𝑘 0
𝑘 −ν

 . 

We obtain −𝐹𝑉 −1 =  0
𝜷𝑝𝑺

ν

0 0
 . 

So,  

𝑅0 =
𝜷𝑝𝑺

ν
. (𝟏𝟒) 

But in equilibrium or at t=0, we get 

𝑅0 =
𝜷𝑝𝑺𝟎

ν
=

𝑵𝜷𝑝

ν
 (𝟏𝟓) 

 

2.2.7 Study of the stability of the disease-free equilibrium 

point or D.F.E. 

According to Lyapunov’s Theorem in (J.M.M.ONDO 

(2012)): 

Consider U, a non-empty open of 𝑅𝑛  containing 0, and I a 

non-empty interval of R, not right bounded. 

 

Definition 11: Let t0∈ I and 𝑉: 𝐼 × 𝑈 → 𝑅be continuously 

differentiable such that for all t ∈ I. Suppose that 𝑥∗ = 0 is 

an equilibrium point of the system (2). If there exists a 

neighbourhood 𝑈𝑡0 
of 0 and a function𝑉: 𝑈𝑡0 

 → R,+ 

continuous and with continuous partial derivatives, such 

that: 

1) V being positive definite; 

2) The total derivative of V, i.e. 𝑉, for the system (2), is 

negative, then 0 is stable for the system (2), is negative, 

then 0 is stable for the system; 

3) If, in addition, the total derivative 𝑉 for the system (2) is 

negative, then 0 is asymptotically stable. V is, in this 

case, a strict Lyapunov function. 

 

Indeed, the system (13) has a disease-free equilibrium, 

which is given by (S0, 0, 0) = (N, 0, 0). By studying the 

stability of the system, we obtain the following theorem: 

 

Theorem 1: If𝑅 0 ≤ 1then the DFE is globally 

asymptotically stable on Ω. 

 

Proof: 

Consider the Lyapunov function V(S, E, P ) = E + P. We 

obtain: 

𝑽 = 𝑬 + 𝑷  
= βpSP – νP 

= P(R0-1)ν 

≤ 0 

Moreover 𝐕  =0, if E+P=0or S=S0and R0=1. So the largest 

invariant set contained in this set is Ψ=  𝑆, 𝐸, 𝑃  ∈

Ω | 𝐕 (𝑆, 𝐸, 𝑃 )=0 which is reduced to the DFE. Since we 

are in a positively invariant compact, according to the 

LaSalle invariance principle in (N.P.Bhatia and G.P.Szego 

(1970)), the DFEis globally asymptotically stable in Ω. 

 

2.2.8 Global stability of the endemic balance 
An equilibrium for the system (13), different from the DFE, 

is given by (S∗, E∗, P∗) in the proposition (3),  

Where 

𝐒∗ =  
𝛎

𝛃𝒑
=

𝐍

R0
, 𝐄∗ =  

𝛎(𝛃𝒑𝐍 − 𝛎)

𝛃𝒑(𝐤 + 𝛎) 
=

𝐍𝛎

𝐤 + 𝛎
 1 −

1

R0
 and𝐏 ∗ =

 
𝐤(𝛃𝒑𝐍 − 𝛎)

𝛃𝒑(𝐤 + 𝛎) 
=

𝐍𝐤

𝐤 + 𝛎
 1 −

1

R0
 . 

This equilibrium is in the simplex, i.e. 0 ≤ S∗, 0 ≤ E∗0 ≤ 

P
*
and S∗+E∗+P

*
≤ Nif and only if R0>1.Clearly 0≤ 𝐸∗, 0≤ 

𝑃∗is equivalent to R0≥1. Now we can write S∗+E∗+P∗=N. 

This equilibrium coincide with the DFE. Then there is a 

unique equilibrium in the interior of the simplex if and only 

R0>1. 

Theorem 2: If R0>1, the DFE is unstable and there is a 

unique endemic equilibrium (S
∗

, E
∗

, P
∗

) which is globally 

asymptotically stable on the Ω domain. 

 

Proof: 

According to the concept of R0in the section (4.2.6), if R0>1 

then the DFE is unstable. 

Let Ω∗ be the set defined by Ω∗=  (S, E, P )| S ≥  
ν

β𝑝
, E ≥

0, P≥0, S+E+P≤N .The set Ω∗ is a positively invariant 

compact. We consider on Ω∗ the Lyapunov function defined 

by 

𝑽  𝑺, 𝑬, 𝑷  =   𝑺 − 𝑺∗ −
𝝂

𝜷p

𝑙𝑜𝑔
𝜷p𝑆

𝜷p𝑆
∗

+  𝑬 − 𝑬∗ 

− 𝑬∗𝑙𝑜𝑔  
E

𝑬∗
 +   𝐏 − 𝐏 ∗ 

− 𝐏 ∗ log  
𝑃

𝐏 ∗
 . 

It is easy to verify that V is definite positive, i.e. V (S, E, P ) 

≥ 0 and V (𝑺∗, 𝑬∗, 𝐏 ∗) = 0 if and only if (S, E, P ) = 

(𝑺∗, 𝑬∗, 𝐏 ∗).  
 

Its derivative along the trajectories of the system (13) is 

given by: 

𝑽  𝑺, 𝑬, 𝑷  =  S −
𝝂

𝜷p

 
𝜷p S 

𝜷p𝑆
 + E − 𝑬∗  

E 

𝐸
 +  P − 𝐏 ∗  

P 

𝑃
  

 = −ν−ν P−
𝑬∗(𝛽p𝑆𝑃− 𝑘𝐸)

𝐸
−

𝐏 ∗(𝑘𝐸− 𝜈𝑃)

𝑃
 

= −𝜈 − 𝜈𝑃 −
𝛎 𝛃𝒑𝐍 −  𝛎 

𝛃𝒑 𝐤 +  𝛎 

 𝛽p𝑆𝑃 −  𝑘𝐸 

𝐸

−
𝐤(𝛃𝒑𝐍 −  𝛎)

𝛃𝒑(𝐤 +  𝛎) 

(𝑘𝐸 −  𝜈𝑃)

𝑃
 

= −𝜈 − 𝜈𝑃 − 𝜈𝐏 ∗  
𝜷pS

kE
+

𝑘𝐸

𝜈𝑃
− 2  

= −𝜈(1 + 𝑃 + 𝐏 ∗)  
𝜷pS

kE
+

𝑘𝐸

𝜈𝑃
− 2  

≤ 0  

≤ 0  
We conclude that V is positive semi definite. The endemic 

equilibrium is globally asymptotically stable. 

 

3. Conclusion 
 

Among other things, this study has identified a new dynamic 

process and mechanism of infection of emerging infectious 

diseases. In order to have hypotheses to elaborate the 
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dynamic model adapted to the new behaviour of the 

infectious disease caused by global warming. And modelling 

the spread of an epidemic brings out a threshold parameter: 

R0and the study of an equilibrium point. In our model, it 

allows us to distinguish the situation and the case where the 

epidemic will spread and the one where it will die out. In 

addition, it also allows us to perform our stability study of 

our model. 
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