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Abstract: This study has come up with a numerical momentum-impulse scheme that modelsfluid impact on sea shores, off-shore
structures using the Modified Navier-Stokes Equation. Finite volume method discretized Modified Navier-Stokes Equation. Non-slip
boundaryconditions at Reynolds number of about 500 000 were formulated. Modified Navier-Stokes Equation in the x-z axis was
coupled with continuity equation to obtain the pressure field. Corrected velocities were computed using SIMPLER algorithm approach.
Using the corrected velocities fluid impulses were determined in each control volume interfaces at constant temperature of 298K, 1
atmosphere.
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1. Introduction

Owing to climate change, moving icebergs can be big
enough to cause damage to offshore structures or a breaking
sea wave can cause large and sudden fluid forces to be
exerted on structures or sea going vessels. This study came
up with with momentum-impulse theory that models fluid
impact on offshore structures or sea going vessels. It
formulated a numerical solution for a Modified Navier-
Stokes Equation in the x and z directions of the Cartesian
plane using Finite Volume Method (FVM). Studies and
experiments conducted by researchers likeLamb (1932),
Bagnold (1939),Chan (1994),Hattori  (1994), Chan and
Melville(1988), Wood and Peregrine (1998)Zenit and
Hunt(1998), Cox and Cooker(2000), it was found that there
was no analyticaljustification of pressure-impulse theory
during short time impacts. Secondly pressure-impulse theory
neglected non-linear terms in Navier-Stokes governing
differential equation, therefore pressure-impulse theory did
not adequately model impacts for incompressible fluids.
Pressure —impulse theory neglected even convective term in
Eulerdifferential Equation. However pressure-impulse
theory models potential flow which satisfy Laplace equation
at low Reynolds number. It’s therefore necessary to come up
with Modified Navier-Stokes Equation which can model
incompressible fluid impacts at high Reynolds number
characterized by turbulence. Modified Navier-Stokes
Equation can describe fluid impacts at the boundary
layerwhere most of the terms in Navier —Stokes Equation
were neglected by pressure-impulse theory.

2. Governing Equations

Modified Navier-Stokes Equation in and z directions
coupled with Continuity Equation in a Cartesian plane are
given as follows:
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u - is velocity component of the fluid in the x-direction, w- is
velocity component of the fluid in the z-direction, p - density
of the fluid flowing, r, - wall shear stress,r- wall shear
stress diffusion coefficient.

2.1 Discretized governing differential equations using
Finite Volume Method (FVM)

Discretized Modified Navier-Stokes Equation in the x-
direction:
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u, gives the velocity in the x-direction at (n+1) control
volume face value.

Discretized ModifiedNavier-Stokes Equation in the z-
direction:

w, =W +d((P -PJ"
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W, is the velocity in the z-direction at (n+1) control volume

where

face value.
Discretized continuity equation:

(g —u Az =—(w; g —w;)Ax (6)
On a staggered grid the horizontal and vertical velocities can
be shown on the diagram below
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Figure 1: 3x 3 staggered mesh

In staggered grid discretization the scalars are stored at the
centre of the control volume and velocity are centred at the
faces of control volumes.

From discretized Continuity Equation  Yi+1Yigre
L L Wi, Wj .
velocitiesin the x-direction , are velocities in the z-
direction of the control volume and at the centre is
Pressure(P) which actas a driving force for fluid velocities.

b* = —Azx D, (z,),

nb

— Azb" + U,Az + WAX — Axz Dy (7))

3. Pressure Equation

Susbstituting the horizontal velocity Eqn (4) and vertical
velocity Eqn (5) into Continuity Equation gives the pressure
equation in the form:

_ p
apPp_aePE+anPN+b @

whered, =d Ax,a, =d,Az,a, =d,Az +d Ax
and
n — Axb™

Consider a fluid flow domain ) below which has been
divided into 16 rectangular control volumes
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Fluid flow field in x-axis (u m/s)
Figure 2: Discretized domain mesh in x-z directions

Reynolds number of 500 000, the speed of fluid flux in the
x-axis and z-axis is given as:

Re= LY
14
500000 = L”?
9.368x10™

which gives u~1m/s as the speed of the fluid in the
boundary of x-direction.

500000 = L‘N?
9.368x10™

which gives W~1Im/S as the speed of the fluid in the
boundary of z-direction.

a = pAxAz =1023.6x0.124x0.1=12.795
where p =1023.6kg /m?is the density of sea water
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a, =d,Ax = 0.00977 x 0.125 = 0.00122
a, =d.Az =0.007816x0.1= 0.0007816
a, =d.Az +d,Ax = 0.0020016
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where " =15.4m? / s which is the diffusion coefficient of sea
water at 25°C and1 atmosphere Richardson et al(1965)).

Approximation of pressure field in the 16 control volumes
gives the following 16 algebraic equations:
P, = 0.6095P, + 0.3905P, + 620.5

P, =0.6095P, +0.3905P, + 609.7
P, = 0.6095P, +0.3905P, + 613

P, =0.6095P, + 607.4

P, = 0.6095P,, +611.4

P, = 0.6095P,, +0.3905P, +611.7

P, = 0.6095P,, +0.3905P, +612.5

P, = 0.6095P, +0.3905P, +610.2

P, = 0.6095P, +0.3905P,, +608.6

P,, = 0.6095P, +0.3905P,, +611.39
P, =0.6095P,, +0.3905P,, +611.485
P, =0.6095P,, +614.86
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P, =613.1245

P,, = 0.6095P, +611.211

P, =0.6095P, +611.17

P, =0.6095P. + 608.76 (2)

System of algebraic equations Eqgn (8) was solved using
Gauss Seidel iteration

oR, 0P,
method. Partial derivative of the equations ( op, P, <1
a£<]_ aple . . .
P TP <1), this shows that unique solutions for the
15

system of equations exists. Eqn (8) also satisfy the
Scarborough criterion for convergence.

4. Results

Iteration of equation (8) by Gauss Seidel method gave the
following solutions:

Table 1: Iterated solutions Pressure Equation

P
0

600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600
1 1221 1210 1213 973.1 977.1 1212 1213 1210 1209 1211 1211 981 613 845.5 8455 843
2 2568 1822 1732 1203 1209 1732 1824 1820 1595 1600 1510 989 613 850.6 941.3 939
3 2442 2398 2138 1345 1214 2004 2027 2297 1806 1775 1516 989 613 850.6 943.3 976
4 2957 2680 2360 1347 1214 2010 2477 2502 1897 1778 1516 989 613 850.6 943.3 977
5 3192 3040 2357 1347 1214 2010 2481 2733 1899 1778 1516 989 613 850.6 943.3 977
6 3474 3042 2357 1347 1214 2010 2481 2736 1899 1778 1516 989 613 850.6 943.3 977
7 3476 3042 2357 1347 1214 2010 2481 2736 1899 1778 1516 989 613 850.6 943.3 977
8 3476 3042 2357 1347 1214 2010 2481 2736 1899 1778 1516 989 613 850.6 943.3 977
The approximated pressure field in each control volume is shown in the fig 28 below:
e
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Figure 3: The Pressure field and calculated interface velocities

Using the pressure field in figure 3 we can find velocities
between interfaces of the control volumes using the
SIMPLER algorithm formulae from Pantanker S.V (1980)
given by:

=0,+d, (P, -P.)
n(PP _PN)(Q)

where Ye is the velocity horizontally across the control

volumes in x- direction, Ye is pseudo- velocities in the x-

W,

direction, " is the velocity vertically across the control

volume in the z-direction, Wr is pseudo- velocities in the z-

direction. Pseudo-velocities are given by the formulae:

> Doy (z,,)pp +b"
G= nb
a
=D i, [, +b
I kel (10)
) a

Using formulae in Egn (9) and pressure field in figure 3
corrected velocities across the control volumes are computed
as below:
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(P = P) = —0.2808 + 1.0946 + 0.007816..(3476 — 3042.) = 4.206.m/ s

(P—P) = —0.2808 — 8.7246 + 0.00977..(3476 — 2736..) = 1.7756.m / s

(P, = P) = -0.048806 + 1.098525 + 0.007816.(3042 — 2357.) = 6.4037.m /s
w.| = W+ d(P,—P.) = —02808- 87747+ 0.00977.(3042— 2481) = 3.5745m / s

u| =T +d,(P, - P)=-0046714 + 1.0985 + 0.007816..(2357 — 1347.) = 8.9460.m/ s

w,| = W+d (P,~P) = -0.0062528. — 8.7736 + 0.00977..1347 — 1214.) = 7.4804.m /s
w,| = W+d(P~P)=-001172 — 88152 + 0.00977..(2357 - 2010.) = 5.4367.m/ s
ul=0+d(P -P)=-00408 + 10315 + 0.007816..(2736 — 2481.) = 2.9834.m/ s
(P,~P) = -0.05112 — 8.712 + 0.00977..(2736 — 1899.) = 0.5857.m /s

(P - P) = -0.04693 + 1.0315 + 0.007816..(2481 — 2010.) = 4.6631.m /s
w,| = W+d (P—P,) = -0.0368 — 8.7592 + 0.00977..(2481 — 1778.) = 1.9277.m /s
u|=0+d(P - P)=-0047098 + 1.03517 + 0.007816..(2010 — 1214.) = 7.2096.m / s
w,| = W+ d (P,—P,) = —0.016272 — 8.7696 + 0.00977..(2010 — 1516.) = 3.9595m/ s
w,| = W+ d (P,-P,) = -0.001584 — 8.7736 + 0.00977..(1214 — 989.) = 6.5769.m/ s
u,| =0+d (P, - P,) = -0.0174 + 1.0189 + 0.007816..(1899 — 1778.) = 1.9472.m/ s
w,| = W +d, (P,—P,) = —0.051096 — 8.696 + 0.00977..(1899 — 977.) = 0.2608.m/ s
u=10+d(P, -P,)=-00211+1.0189 + 0.007816..(1778 — 1516.) = 3.0456.m/ s
w,| = W+d(P,~P,) = —0.03312 — 8.7552 + 0.00977..(1778 — 943) = 0.6304.m/ s
u,=0+d(P, -P,)=-00211+ 1.033 + 0.007816..(1516 — 898.) = 5.8422.m /s
w,| = W+d (P,~P,) = —0.00952 — 8.792 + 0.00977..(898 — 613.) = 6.0171.m/ s
u,| =0 +d (P, —P,)=-0.0084 +1.0135 + 0.007816..(977 — 943.) = 1.2708.m/ s
u,|=0+d(P, - P,)=-00110 + 1.0276 + 0.007816..(943 — 851.) = 1.7357.m/ s
u|=0+d(P, - P,)=-00110 + 1.014 + 0.007816..(851 — 613.) = 2.8632.m/s
w,| = W +d (P, - P,) = -0.01632 — 8.7848 + 0.00977..(1516 — 851.) = 2.304L.m/s )

Table 2: Fluid impulses in the x-direction of the control volumes
Control AX (metres) - = " '
volume | (Control volurr:li rSeii‘je length) IMPULSE = 1 = {('Ou) (/11) }AZ Ns

1 0-0.125 pAz(u, —u, ) =1023.6 x 0.1(4.206 —1) = 328.1662

2 0.125-0.250 pAz(u, —u,)=1023.6 x 0.1(6.4037 — 4.206) = 224.9566

3 0.250 - 0.375 PAz(u, —u, ) =1023.6 x 0.1(8.9460 — 6.4037) = 260.2298

4 0.375—0.500 -

5 0.375 —0.500 -

6 0.250 - 0.375 PAz(u, —u, ) =1023.6 x 0.1(7.2096 — 4.6631) = 260.6597

7 0.125-0.250 pAz(u, —u, ) =1023.6x0.1(4.6631— 2.9834) =171.9341

8 0-0.125 pAz(u, —u, ) =1023.6x 0.1(2.9834 —1) = 203.0208

9 0-0.125 pAz(u,, —u,, ) =1023.6x0.1(1.9472 —1) = 96.9554

10 0.125 - 0.250 PAz(u,, —u,, ) =1023.6 x 0.1(3.0456 —1.9472) = 112.4322

11 0.250 — 0.375 PAz(u,, — 13) 1023.6 x 0.1(5.8422 — 3.0456) = 286.2599
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12 0.375 - 0.500 -
13 0.375 - 0.500 -
14 0.250 - 0.375 Az(u,, —U,, ) =1023.6 x 0.1(2.8632 —1.7357) = 115.4109
15 0.125-0.250 Az(u,, —U,, ) =1023.6 x 0.1(1.7357 —1.2708) = 47.5872
16 0.125-0.250 PAz(u,, —u,, )=1023.6x0.1(1.2692 —1) = 27.5553
Table 3: Fluid Impulses in the z-direction of the control volumes
ntrol n4l n
Sglun'?e Control%cz)l(unrfgr:isge width IMPULSE =1 = {(p/v) " (/jw) }AX Ns
1 0-0.1 PAX(W,, —W,, ) =1023.6 x 0.125(1.7756 —1) = 99.2380
2 0-0.1 PAX(W,, —w,, ) =1023.6 x 0.125(3.5745 —1) = 329.4073
3 0-01 pAx(w,, —w,, )=1023.6x0.125(5.4367 —1) = 567.6758
4 0-01 PAX(W,, —w,, ) =1023.6 % 0.125(7.4804 —1) = 829.1672
5 01-02 PAX(W,, —w, ) 1023.6 x 0.125(6.5769 — 7.4804) = —115.6028
6 01-02 PAX(W,, — W, ) =1023.6 x 0.125(3.9595 — 5.4367) = —189.7081
7 01-02 PAX(W,, —w,, ) =1023.6 x 0.125(0.5857 —1.7756) = —152.2477
8 01-0.2 PAX(W,5 —W,, ) =1023.6 % 0.125(0.57879—1.5229) = —120.789
9 02-03 PAX(W,, —W,; ) =1023.6x0.125(0.25566 — 0.57879) = —41.345
10 02-03 pr(w29 — W, ) =1023.6x 0.125(0.63066 —1.92622) = —165.767
11 02-03 PAX(W,, —w,, ) =1023.6 x 0.125(2.3041 - 3.9595) = —211.8084
12 02-03 PAX(W,, —w,, ) =1023.6 x 0.125(6.0171— 6.5769) = —71.6264
13 03-04 -
14 03-04 -
15 03-04 -
16 03-04 -

Wave of Fluid Impulses in the x-direction
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Figure 4: Impulses in the x-direction of the control volumes (Graphical output)
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Wave of Fluid Impulses in the z-direction
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Figure 5: Impulses in z-direction of the control volumes (Graphical output)

5. Conclusion

The change in flux velocities in the control volume
interfaces causes impulse. Impulsive effects are higher at
deeper levels of sea water than at shallow levels as shown by
the graphical outputs.
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