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Abstract: In this study, a Pell-Lucas series method is introduced to solve Fredholm integral equations of the second kind. The 

numerical examples show that the proposed method provides highly accurate solutions. Besides, the accuracy of the solutions is 

checked via the residual error analysis. Finally, the numerical results obtained by using the Pell-Lucas series method are compared in 

the tables and figures.  
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1. Introduction 
 

The differential (DEs), integral (IEs) and integro-differential 

equations (IDEs) occur frequently in science and 

engineering [1]. In general an equation, in which the 

unknown function is under a sign of integration, is called an 

integral equation [2]. Integral equations are either Fredholm 

or Volterra type. In this paper, the main focus is on 

Fredholm integral equations of the second kind. Integral 

equations belong to a class of functional integro-differential 

equations. 

 

Most problems arising in, engineering, natural and social 

sciences are modelled by either linear or nonlinear integral 

equations. Integral equations arise naturally in physics, 

chemistry, biology and engineering modelled by initial value 

problems for a finite interval [a,b] [3]. Scientists, engineers 

and mathematicians have taken a keen interest in 

researching about integral equations, because they have a 

wide range of applications. Some integral equations are 

complex to solve using analytical methods, that is why 

researchers have developed numerical methods to solve 

integral equations that cannot be solved analytically. In 

literature, there are many methods for solving Fredholm 

integral equations. In particular Bulent and Yasin [4] 

presented numerical methods for solving Fredholm integral 

equations of the second type. They compared the results of 

four different techniques, which are Bernstein Piecewise 

Polynomials Method (BPPM), Integral Mean Value Method 

(IMVM), Taylor Series Method (TSM) and the Least Square 

Method (LSM). These methods appeared to be very useful 

and effective for finding approximate solutions of Fredholm 

integral equations of the second type. Firouzdor et al [5] 

proposed a numerical method for solving integral equations, 

this method is used for both Fredholm and Volterra integral 

equations. Huaiqing et al [6] presented a method for solving 

linear integral equations using radial basis function 

interpolation. Other methods include, numerical 

approximation of Fredholm integral equation (FIE) of the 

second kind using Galerkin and collocation method, 

numerical solution for Fredholm-Volterra integral equation 

of the second kind using collocation and Galerkin methods, 

iterated Petrov-Galerkin with regular pairs for solving 

Fredholm integral equations of the second kind, and 

collocation technique for numerical solution of integral 

equations with certain basis function in interval [0,1] [7-11]. 

Sezer et al [12- 16] worked on a number of highly effective 

methods for solving functional IDEs and their subclasses, 

such as linear and nonlinear forms. 

 

The aim of this paper is to present a numerical method for 

solving the Fredholm integral equation of the second kind, 

using Pell-Lucas series method. The Fredholm integral 

equation is transformed into the fundamental matrix 

equation, which is then solved and the required values of the 

Pell-Lucas series coefficient matrix are found. This method 

has an advantage over other methods, because it turns the 

problem into a linear system of equations. Larger matrices 

are easily solved using computer soft wares such as 

MATLAB, MAPLE SOFT, and MATEMATICA. 

We consider the Fredholm type integral equations are given 

by 

       ,

b

a

y x f x K x t y t dt                (1) 

where    and ,f x K x t are continuous functions on the 

interval ,a x t b   and   is a known constant. The 

solution of the Fredholm integral equation given by (1) is 

found numerically by 

     
N

N n n

n

y x y x a Q x                (2) 

where  nQ x  is the Pell-Lucas polynomial and na  is the 

coefficient of the Pell-Lucas polynomial in the series 

defined by (2).Pell-Lucas polynomials are given by the 

recurrence formula      1 22n n nQ x xQ x Q x   or by  

 
2

2 2

0

2

n

n k n k

n

k

n kn
Q x x

kn k

 
 
 

 



 
  

  
 their derivatives 

are written as 
        1 22

k
k

n n nk

d
Q x xQ x Q x

dx
   . 

When  1, 1n nx Q Q  , where nQ  is the -thn  Pell-
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Lucas number. The first two Pell-Lucas polynomials are 

 0 2Q x   and
 

 1 2Q x x . 

 

2. Important Matrix Relations 
 

From the approximate solution  y x of (1) which is given 

by a truncated Pell-Lucas series (2) for 0,1,2, ,n N  , 

we convert the finite series (2) to the matrix form as  

           0 1 2N Ny x y x Q x Q x Q x Q x     A = Q A   

(3) 

Where,  0 1 2 .
T

Na a a a A Using the 

definition of the Pell-Lucas polynomials, one obtains the 

matrix  xQ  as  

   x xQ X L                            (4) 

The matrix relation (4) is then substituted into the matrix 

relation (3) to get 

     Ny x y x x  X LA                     (5) 

 

The L in (5) is obtained from 
T

L which is defined as 

2

1

0

1 3

1 1

2 0 0 0 0

11
0 2 0 0 0

01

1 22 2
2 0 2 0 0

1 01 2

2 33 3
0 2 0 2 0

1 02 3

1 3

2 21 30 2 0 2 2
1 3 02 2

2 2

T

N

N NN N
NNN N

N N N

 
 

  
   

 
    
     

    
         
    
 
 
     
                    
    

    









     



L

 

 

if N is odd, and 

2

1

0

1 3

0 2

2 0 0 0 0

11
0 2 0 0 0

01

1 22 2
2 0 2 0 0

1 01 2

2 33 3
0 2 0 2 0

1 02 3

2

2 222 0 2 0 2
2 02 2

2 2

T

N

N NN N
NNN N

N N N

 
 

  
   

 
    
     

    
         
    
 
 
    
                  
    

    









     



L
 

if N is even. We introduce matrix relation of a kernel 

function as 

     , TK x t x t X KX                   (6) 

where,  

 0,01
; ; , 0,1,2, ,

! !

p q

pq pq p q

K
k k p q N

p q x t


      

K  

Using (5) the matrix relation for  y t is obtained as 

   y t t X LA
                                  

(7) 

Substituting the matrix relations (5), (6) and (7) into Eq. (1) 

yields 

         
b

T

a

x x x t t dt X LA = f X KX X LA  

         
b

T

a

M

x x x t t dt 


X LA = f X K X X LA

 

     x x xX LA = f X KMLA
      

(8) 

 

 

The matrix M  is obtained from the calculationof the integral below, 

   

1

1 ; , 0,1, ,

b b b

T N i j

Na a a

t t dt t t dt t dt i j N

t



 
           
  

    M = X X

1 1 1

1 1
; , 0,1, ,

b
i j i j i j

i j i j

a

t b a
i j N

     

   

   
    

   
M =

 

We now define  f x  using the Maclaurin series as, 

   
   0

0
, ; 0,1, ,

!

n

n n

N

f
f

f x x ; f f n N
n

f

 
 

   
 
  

 X F

 
      (9) 

Substituting (9) into (8) gives, 

     x x xX LA = X F X KMLA
   

(10) 

 
Relation (10) is purely an algebraic equation which can be 

easily solved. The matrix relation (10) is simplified into the 

fundamental matrix as, 
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          

        1 1

n

n

x x x x x

x x x x

 

 



 

X LA - X KMLA = X F X I - KM LA = X F

X X I - KM LA = X X F  

 n  


W

I - KM L A F                                                                   (11) 

 

The fundamental matrix (11) can be written in compact form 

as, 

WA F                                   (12) 

or as an augmented matrix shown below, 

 

00 01 0 0

10 11 1 1

0 1

;

;

;

;

N

N

N N NN N

w w w f

w w w f

w w w f

 
 
 
 
 
 





    



W;F  

 

The matrix relation (12) has a unique solution if and only if 

its determinant is not equal to zero, thus, 

 
1  W 0 A W F

                       
(13) 

A is the desired coefficient matrix of Pell-Lucas 

polynomial, therefore the approximate solution (2) now 

obtained. 

 

3. Residual Error and Absolute Error 

Analysis 
 

In this section, the residual error and the classical absolute 

error methods are given. When we substitute solution 

 Ny x into the Eq. (1), the resulting equation is 

approximately obtained as follows; 

          0

b

N i N i i N i

a

R x y x K x t y t dt f x    ,

  

(14)   

where  , ; 0,1,2,ix a b i    or   10 ik
N iR x


 such 

that ik  is any positive number. Taking the max to be

10 10ik k  , then the truncation limit N is increased until 

the difference  N iR x at each point is smaller than the 

predetermined10 k . If   0N iR x  and N is sufficiently 

large, then the error decreases. The accuracy of the solution 

can be checked and the error can be estimated by the 

residual function  NR x  as expressed in [1]. Using the 

inequality    
b b

N N

a a

R x dx R x dx   and the integral mean 

value theorem, the upper bound of the mean error NR is 

obtained as  

 
b

N

a
N N

R x dx

R c R
b a

 



. Besides, the 

absolute error is given by  

Exact solution Approximate solution ( ) ( )NR y x y x   
 

(15) 

4. Numerical Examples 
 

Example 1: Consider the following Fredholm integral 

equation, 

     
1

2

0

, 0 , 1.y x x xt x y t dt x t         (16) 

The exact solution of Eq. (16) is   296 36
.

73 73
y x x x   

From Eq. (16), one obtains,  f x x  and 

  2,K x t xt x   which are continuous functions in the 

interval 0,1 . To find the numerical solution for this 

problem, the Pell-Lucas series method is used. For 2N  , 

the approximate solution is given by, 

     
2

2

0

.n n

n

y x y x a Q x


   

The fundamental matrix equation for this problem is written 

as, 

 I KM LA = F, if  W = I - KM L then

WA = F  
where, 

 
After performing the necessary operations on the 

fundamental matrix equation, the following augmented 

matrix is obtained; 

 

2 0 2 ; 0

; 1 4 / 3 2 ; 1 .

2 1 22 / 3 ; 0

 
 

  
 
  

W F  

Solving the system of three unknowns in the above matrix 

yields the matrix A as; 

9 48 9

73 73 73

T

 
 

 
A =  

Consequently the numerical solution for Eq. (16) is obtained 

as;
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         2 2

2

9 48 9 96 36
2 2 4 2

73 73 73 73 73
y x x x x x          , 

this is the same as exact solution. 

 

Now, let us compare the results of the same problem 

presented by [4] for the same problem. The approximate 

solutions of the integral equation are obtained using Integral 

Mean Value Method (IMVM), Bernstein Piecewise 

Polynomials Method (BPPM), The Least Square Method 

(LSM), and Taylor Series Method (TSM) respectively. 

 

 

2

2

2

2

2

( ) 1.397922046675241 0.6308106266346826 ,

( ) 1.3150684931506849 0.4931506849315068 ,

( ) 0.6575342465753424 0.4931506849315068 ,

( ) 1.397922046675241 0.6308106266346826 ,

IMVM

BPPM

LSM

TSM

x x x

x x x

x x x

x x x

y x









 

 

 

 

 296 36
, current method.

73 73
x x

 

 

From these solutions, it is evident that the current method 

provides a more accurate solution because the numerical 

solution is the same as exact solution. 

 

Example 2: Consider the Fredholm integral equation, 

   
1

0

, 0 , 1.xy x e x xty t dt x t             (17) 

 

Eq. (17) has the exact solution   xy x e  . Now, from Eq. 

(17)    xf x e x   and  ,K x t xt  is obtained. 

 f x and  ,K x t  are continuous functions on the interval 

[0,1].  After solving Eq. (17), the numerical solutions for 

various values of N  are; 

 

 

 

 

2
2

2

2 3

3
3

4
7

5 6 7

11

7; 1 0.9999958664 0.5000000001 0.1666666666 0.04166666666

0.008178323412 0.001388888889 0.0001984126984

11; 0.9999999998 0.999

15 1
2; 1

16 2

79 1 1
3; 1

80

99999

2 6

9

N y x x x x x

x x

N y x x x

x

N y x

N y x x x x

     



   

   

 

  



2 3 4

5 6 7 8

6 9 7 10 8 11

8 0.4999999816 0.1666666651 0.04166666667

0.008333427792 0.001388888889 0.0001984126984 0.00002480158730

2.755731922 10 2.755731922 10 .2.505210839 10

x x x x

x x x x

x x x  

  

   

     
 

The comparisons between the exact and numerical solutions 

are shown in Table 1, and Figure 1. Table 2 shows the 

calculated absolute errors. 
 

Table 1: Comparison of the exact and numerical solutions of Example 2 

ix  

Exact Solution 

  i
i

x
y x e  

 22, iN y x   33, iN y x   77, iN y x   1111, iN y x  

0 1.000000000 1.000000000 1.000000000 1.000000000 0.9999999998 

0.1 1.105170918 1.098750000 1.103916667 1.105170504 1.105170918 

0.2 1.221402758 1.207500000 1.218833333 1.221401882 1.221402758 

0.3 1.349858808 1.326250000 1.345750000 1.349857189 1.349858805 

0.4 1.491824698 1.455000000 1.485666667 1.491821441 1.491824696 

0.5 1.648721271 1.593750000 1.639583333 1.648714257 1.648721268 

0.6 1.822118800 1.742500000 1.808500000 1.822103820 1.822118801 

0.7 2.013752707 1.901250000 1.993416667 2.013722212 2.013752713 

0.8 2.225540928 2.070000000 2.195333333 2.225482265 2.225540948 

0.9 2.459603111 2.248750000 2.415250000 2.459496011 2.459603151 

1.0 2.718281828 2.437500000 2.654166667 2.718094825 2.718281903 

 

Table 2: The comparison of absolute errors corresponding to Example 2 

ix   2
ix

ie y x   3
ix

ie y x   7
ix

ie y x   11
ix

ie y x  

0 0.00000000000000000 0.0000000000000000 0 2e-10 

0.1 0.00642091800000011 0.00125425099999998 4.14e-07 0 

0.2 0.01390275800000000 0.0025694249999999 8.76e-07 0 

0.3 0.02360880800000010 0.00410880800000002 1.619e-06 3e-09 

0.4 0.03682469800000000 0.00615803100000001 3.257e-06 2e-09 

0.5 0.05497127100000010 0.00913793800000007 7.014e-06 3e-09 

0.6 0.07961880000000000 0.0136187999999999 1.498e-05 1e-09 

0.7 0.11250270700000000 0.0203360400000001 3.0495e-05 6e-09 

0.8 0.15554092800000000 0.0302075949999998 5.8663e-05 2e-08 

0.9 0.21085311100000000 0.0443531109999999 1.071e-04 4e-08 

1 0.28078182800000000 0.0641151609999997 1.87e-04 7.5e-08 
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Figure 1: Comparison between exact and numerical 

solutions of Example 2 

 

Example 3: Consider the following Fredholm integral 

equation, 

       
1

0

1 , 0 , 1.y x f x xt y t dt x t    
  

 (18) 

The exact solution of Eq. (18) is    cosy x x  From Eq. 

(18), one obtains, 

         cos cos 1 sin 1 sin 1f x x x x     and 

 , 1K x t xt   which are continuous functions in the 

interval 0,1 .The numerical results shown in Table 3, 

shows the effectiveness of the method as the values of N  

increases the numerical solution becomes closer and closer 

to the exact solution. Figure 2and Figure 3 reveals that the 

approximate solutions are consistent with the exact solution 

even for the low values of .N Figure 4 shows the variation 

of absolute errors for selected values of .N  

 

Table 3: Comparison of the exact and numerical solutions of Example 3 

 

ix  

Exact Solution 

   cosi iy x x  
 22, iN y x   44, iN y x   66, iN y x   1010, iN y x  

0 1.000000000 1.0352469860 0.9991358739 1.000012198 1.0000000000 

0.1 0.9950041653 1.0318745160 0.9941009042 0.9950169093 0.9950041655 

0.2 0.9800665778 1.0185020470 0.9791242678 0.9800798678 0.9800665786 

0.3 0.9553364891 0.9951295770 0.9543559648 0.9553503235 0.9553364906 

0.4 0.9210609940 0.9617571070 0.9200459951 0.9210753608 0.9210609968 

0.5 0.8775825619 0.9183846380 0.8765443587 0.8775973943 0.8775825661 

0.6 0.8253356149 0.8650121680 0.8243010556 0.8253506750 0.8253356210 

0.7 0.7648421873 0.8016396980 0.7638660859 0.7648567863 0.7648421956 

0.8 0.6967067093 0.7282672280 0.6958894495 0.6967191448 0.6967067201 

0.9 0.6216099683 0.6448947590 0.6211211464 0.6216165005 0.6216099815 

1.0 0.5403023059 0.5515222890 0.5404111767 0.5402954378 0.5403023208 

 

Table 4: The comparison of absolute errors corresponding to Example 3 

ix     2cos i ix y x     4cos i ix y x     6cos i ix y x     10cos i ix y x  

0 0.0352469860000000 0.000864126099999973 1.2198e-05 0 

0.1 0.0368703507000000 0.000903261100000052 1.2744e-05 2.00e-10 

0.2 0.0384354692000000 0.000942310000000002 1.329e-05 8.00e-10 

0.3 0.0397930879000000 0.000980524300000063 1.38344e-05 1.50e-09 

0.4 0.0406961130000001 0.00101499890000001 1.43668e-05 2.80e-09 

0.5 0.0408020761000001 0.00103820319999992 1.48324e-05 4.20e-09 

0.6 0.0396765531000001 0.00103455929999996 1.50601e-05 6.10e-09 

0.7 0.0367975107000000 0.000976101399999929 1.4599e-05 8.30e-09 

0.8 0.0315605187000000 0.000817259800000025 1.24355e-05 1.08e-08 

0.9 0.0232847907000000 0.000488821899999992 6.53e-06 1.32e-08 

1 0.0112199831000001 0.000108870800000105 6.8681e-06 1.49e-08 
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Figure 2: Comparison between exact and numerical 

solutions of Example 3 

 

 
Figure 3: Comparison between exactand  the numerical 

solution of Example 3w hen 10N  . 

 
Figure 4: Comparison of absolute errors corresponding to 

Example 3 

 

Example 4: Let us consider the following Fredholm integral 

equation, 

     
1

2

0

4 sin 1
cos , 0 , 1.

2 2

x x
y x x xt y t dt x t

 



   

 
 (19) 

The exact solution of Eq. (19) is   2 .y x x  From Eq. 

(19), one obtains,  
4 sin

2

x x
f x

 
  and 

   2, cosK x t x xt  which are continuous functions 

in the interval  0,1 .The fundamental matrix equation for 

this problem is written as,  I KM LA = F,  if  

 W = I - KM L thenWA = F  

where, 

 
 

Performing the necessary operations on the fundamental 

matrix equation, the augmented matrix is obtained;

 

 

2 0 2 ; 0

; 1 3 / 2 5 / 2 ; 3 / 2 .

0 0 4 ; 0



 
 

  
 
  

W F  

Solving the system of three unknowns in the above matrix 

yields the matrix A as; 

 0 0
T

A =  

Therefore,

       2

2 0 2 2 0 4 2 2y x x x x        , this is 

the same as exact solution. 

 

The solution of the same problem is presented by [2] as,
 

  
 

The results of this problem are then compared with the ones 

presented by [2] in Table 5 and Figure 5. 

 

Table 5: Comparison of the exact and numerical solutions 

of Example 4 

ix
 

Exact solution 

  2i iy x x
 

Picard-type 

iterative scheme 

 0 iy x
 

Current method 

 
0 0.0000000000 0.0000000000 0.0000000000 

0.1 0.6283185308 0.6281396234 0.6283185308 

0.2 1.2566370620 1.2563158090 1.2566370620 

0.3 1.8849555920 1.8845597430 1.8849555920 

0.4 2.5132741240 2.5128863200 2.5132741240 

0.5 3.1415926540 3.1412579380 3.1415926540 

0.6 3.7699111840 3.7694763090 3.7699111840 

0.7 4.3982297160 4.3969184140 4.3982297160 

0.8 5.0265482460 5.0219891030 5.0265482460 

0.9 5.6548667780 5.6411169080 5.6548667780 

1.0 6.2831853080 6.2470760000 6.2831853080 
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Figure 5: Comparison between exact and numerical 

solutions of Example 4 

 

Example 5: Consider the following linear Fredholm integral 

equation of the first kind (Wazwaz 2011), 

   
1

2

0

2 , 0 , 1.x x ty x e e y t dt x t               (20) 

The exact solution of Eq. (20) is   xy x e  From Eq. (20), 

one obtains,    2 and ,x x tf x e K x t e    which are 

continuous functions in the interval  0,1 . The numerical 

results shown in Table 6, shows the effectiveness of the 

method as the values of N  increases the numerical solution 

becomes closer and closer to the exact solution. Figure 6, 

reveals that the approximate solutions are consistent with the 

exact solution even for the low values of .N Table 7 and 

Figure 8 shows the calculated upper limit errors.Figure 7 

shows the comparison between the exact solution and the 

numerical solution presented by [7]. 

Table 6: Comparison of the exact and numerical solutions of Example 5 

ix  Exact Solution   i
i

x
y x e   33, iN y x   55, iN y x   77, iN y x   1010, iN y x  

0 1.000000000 1.012639840 1.000296094 1.000004092 0.9999999986 

0.1 1.105170918 1.119135796 1.105498150 1.105175438 1.105170916 

0.2 1.221402758 1.236770791 1.221764316 1.221407707 1.221402756 

0.3 1.349858808 1.366557464 1.350257434 1.349863952 1.349858803 

0.4 1.491824698 1.509508455 1.492260387 1.491829197 1.491824693 

0.5 1.648721271 1.666636403 1.649186087 1.648723071 1.648721264 

0.6 1.822118800 1.838953949 1.822587497 1.822113756 1.822118793 

0.7 2.013752707 2.027473733 2.014167623 2.013733346 2.013752696 

0.8 2.225540928 2.233208394 2.225789514 2.225494680 2.225540911 

0.9 2.459603111 2.457170572 2.459486273 2.459509796 2.459603079 

1.0 2.718281828 2.700372907 2.717471056 2.718110082 2.718281765 

 

Table 7: The comparison of residual errors (upper limit 

errors) corresponding to Example 5 

N 

NR  

2 0.3506303984 

3 0.06967382730 

5 0.00165299272 

7 0.00021365854 

11 1.0111e-07 

 
Figure 6: Comparison between exact and numerical 

solutions of Example 5 

 
Figure 7: Comparison between exact and numerical 

solutionof Example 5 as presented by [7] 
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Figure 8: Shows the calculated upper limit errors for 

Example 5 

 

5. Conclusion 
 

In this study, the Pell-Lucas matrix-collocation method for 

solving Fredholm integral equations of the second kind is 

introduced. The method of residual error analysis is 

presented to indicate the accuracy of the solutions. The 

proposed method and the error analysis method are applied 

to some numerical examples. The comparison of the 

obtained numerical results with the exact solution shows that 

the approximate solutions become closer to the exact 

solution as the values N  increase. As evident in Example 4, 

this method is provides a more accurate approximation as 

compared to other methods. This method has alot of 

advantages for this type of problems,because larger matrices 

can be easily solved via computer programs such as 

MAPLE,MATLAB and MATHEMATICA. Consequently, 

this method can also be extended and easily applied to 

different types of equations. 
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