
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 6, June 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Transitive Closure of a Graph using Graph 

Powering & Further Optimization by Euler's Fast 

Powering Algorithm 
 

Abhijit Tripathy 
 

Undergraduate Student, Department of Computer Science & Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, India 

Email: abhijittripathy99[at]gmail.com 

 

 

Abstract: A graph is a collection of nodes and edges. Transitive closure matrix is a matrix formed by the reach-ability factor, which 

means if one node A of the graph is reachable from another node B, then there exists a positive reach-ability between A and B, negative 

reach-ability otherwise. This can be easily denoted by using binary denotation of 0 and 1. Graph powering is a technique in discrete 

mathematics and graph theory where our concern is to get the path between the nodes of a graph by using the powering principle. In 

simple words, if we take the 𝒓𝒕𝒉 power of any given graph 𝑮 then that will give us another graph 𝑮(𝒓) which has exactly the same 

vertices, but the number of edges will change. In the powered graph 𝑮(𝒓) there will be a connection between any two nodes if there 

exits a path which has a length less than 𝒓 between them. This small intuition can help us in finding the transitive closure of a graph in 

𝑶(𝑽𝟒) time complexity and 𝑶(𝑽𝟐) space complexity. We can improve the time complexity of the above mentioned algorithm by using 

Euler's Fast Powering Algorithm to 𝑶(𝑽𝟑𝒍𝒐𝒈𝑽). 
 

Keywords: graph algorithms, transitive closure, graph powering, discrete mathematics, Euler's fast powering 

 

In this article, we will begin our discussion by briefly 

explaining about transitive closure and graph powering. 

We will also see the application of graph powering in 

determining the transitive closure of a given graph. Further 

we will improve the time complexity of the algorithm by 

using Euler's Fast Powering Algorithm. 

 

What is Transitive Closure of a graph ? 

In any Directed Graph, let's consider a node 𝑖 as a starting 

point and another node 𝑗 as ending point. For all (𝑖, 𝑗) pairs 

in a graph, transitive closure matrix is formed by the reach 

ability factor, i.e. if 𝑗 is reachable from 𝑖 (means there is a 

path from 𝑖 to 𝑗) then we can put the matrix element as 1 or 

else if there is no path, then we can put it as 0. 

 

Suppose we are given the following Directed Graph, 

 
Figure 1: Graph 

 

Then, the reachability matrix of the graph can be given by, 

 
Figure 2: Transitive-Closure 

This matrix is known as the transitive closure matrix, where 

'1' depicts the availability of a path from 𝑖 to 𝑗, for each (𝑖, 𝑗) 
in the matrix. 

 

What is Graph Powering? 

Graph powering is a technique in discrete mathematics and 

graph theory where our concern is to get the path between 

the nodes of a graph by using the powering principle. 

 

In simple words, if we take the 𝑟𝑡ℎ power of any given 

graph 𝐺 then that will give us another graph 𝐺(𝑟) which has 

exactly the same vertices, but the number of edges will 

change. In the powered graph 𝐺(𝑟) there will be a 

connection between any two nodes if there exits a path 

which has a length less than 𝑟 between them. 

 

Suppose we have a directed graph as following, 

Paper ID: MR21613054013 DOI: 10.21275/MR21613054013 869 

mailto:abhijittripathy99@gmail.com
https://iq.opengenus.org/tag/graph-algorithm/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 6, June 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
Figure 3: Graph G 

 

Now let's generate a new graph from the above graph by 

powering it to 𝑟 = 2, i.e. 𝐺(2), Graph powered 2, 

 
Figure 4: Graph-raised-to-power-2 

 

As you can see, the existing graph 𝐺 has been updated with 

new edges between those nodes, who has a path difference 

of less than 2 (as r=2) here. 

 

But the question arises on how to implement this in 

programming? We cannot use direct images for the 

calculations, but there is a solution to every problem for a 

programmer, and the solution here is the Adjacent Matrix. 

 

Adjacent matrix is a matrix that denotes 1 for the position of 

(𝑖, 𝑗) if there is a direct edge between 𝑖𝑡ℎ node and the 𝑗𝑡ℎ 

node and denotes 0 otherwise. 

 

Let's perform an experiment for an important conclusion. 

 
Figure 5: Adjacent Graph 

 

So we have a directed graph and it's adjacent matrix. Let's 

take the 𝑟𝑡ℎ power of the Adjacent Matrix, we will get 

something like below. 
 

 
Figure 6: Adj Matrix Squaring 

 

For simplicity we have taken 𝑟 = 2, adjacent matrix raised 

to the power 2, gives us another matrix as shown above. 

What does the matrix(i.e. generated by the square of 

Adjacent matrix) signify ? 

Lets bring out the 𝐺(𝑟 = 2) graph into picture and observe 

closely on what the matrix signify, 
 

 
Figure 7: Graph raised to Power of 2 

Paper ID: MR21613054013 DOI: 10.21275/MR21613054013 870 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 6, June 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

By a little deep observation, we can say that (𝑖, 𝑗) position of 

the 𝑟𝑡ℎ powered Adjacent Matrix speaks about the number 

of paths from 𝑖 to 𝑗 in 𝐺(𝑟) that has a path length less than 

equal to 𝑟. 

 

For example the value of the (0,1) position is 3. In the 

𝐺(𝑟 = 2) graph, we can see there are two paths whose path 

length are less than equal to 2 from 0 to 1, they are - 

[0 − −− 1,0 − − − 2 − − − 1 and 0 − − − 3 − − − 1]. 
Similarly we can determine for other positions of (𝑖, 𝑗). 
 

How to Find Transitive Closure by Graph Powering? 

What will happen if we find 𝐺(𝑟 = 𝑛) for any given graph 

𝐺, where n is the total number of nodes in 𝐺? 

 

We will get a graph which has edges between all the 𝑖𝑡ℎ 

node and the 𝑗𝑡ℎ node whose path length is equal to 𝑛 at 

maximum. For any graph without loops, the length of the 

longest path will be the number of nodes in it. So by raising 

the Adjacent matrix of a given graph 𝐺 to the power of 𝑛, 

we can get a matrix having some entries (𝑖, 𝑗) as 0, which 

means there are not at all any path between 𝑖𝑡ℎ node and the 

𝑗𝑡ℎ node which has a maximum path difference of 𝑛, where 

𝑛 is the total number of nodes in the graph. 

 

This gives us the main idea of finding transitive closure of a 

graph, which can be summarized in the three steps below, 

1) Get the Adjacent Matrix for the graph 

2) Raise the adjacent matrix to the power n, where n is the 

total number of nodes. 

3) Replace all the non-zero values of the matrix by 1 and 

printing out the Transitive Closure of matrix. 

 

Step 1 - Get the Adjacent Matrix 

We will need a two dimensional array for getting the 

Adjacent Matrix of the given graph. Here are the steps; 

 Get the total number of nodes and total number of edges 

in two variables namely num_nodes and num_edges. 

 Create a multidimensional array edges_list having the 

dimension equal to num_nodes * num_nodes 

 Run a loop num_nodes time and take two inputs namely 

first_node and second_node every time as two nodes 

having an edge between them and place the 

edges_list[first_node][second_node] position equal to 1. 

 Finally after the loop executes we have an adjacent matrix 

available i.e edges_list. 
 

int num_nodes,num_edges; 

            cin >> num_nodes >> num_edges; 

int** edges_list = newint*[num_nodes]; 

for(int i=0;i<num_nodes;i++) 

            { 

                edges_list[i] = newint[num_nodes]; 

for(int j=0;j<num_nodes;j++) 

                { 

                    edges_list[i][j] = 0; 

                } 

            } 

for(int i=0;i<num_edges;i++) 

            { 

int first_node,second_node; 

                cin >> first_node >> second_node; 

                edges_list[first_node][second_node] = 1; 

if(i<num_nodes) 

                    edges_list[i][i]=1; 

            } 

 

Time Complexity - 𝑂(𝑉2), space complexity - 𝑂(𝑉2), 
where 𝑉 is the number of nodes 

 

Step 2 - Raising the Adjacent Matrix To The Power Of 

Total Number Of Nodes 

This algorithm uses the simplest approach of matrix 

powering, just like in algebra we multiply two matrices in 

row-column method. 

 

We will be following some steps to achieve the end result, 

 First of all lets create a function named 

matrix_powering that returns void and takes two 

parameters namely edges_list i.e. the adjacent matrix and 

num_nodes i.e. the number of nodes. 

 Create two multidimensional array which has the same 

dimension as that of edges list. One of them will be a 

blank matrix namely result which will act as an auxiliary 

matrix for holding values during main calculation. 

Another one is named matrix, in which the entries of 

edges_list should be copied. 

 Main algorithm will consist of four loops. The outer most 

loop is to multiply the matrix up to num_nodes times. 

The second and third loop will act as transition vertices 

for the multiplication and the inner most loop is for the 

intermediate vertices. We will take the row by column 

multiplication and place the sum in a variable name sum. 

After the innermost loop terminated the iteration we will 

place the sum value in out result array. 

 Finally we will copy the entries of result to the entries of 

matrix 
 

void matrix_powering(int** edges_list,int num_nodes) 

        { 

int result[num_nodes][num_nodes]; 

int** matrix = newint*[num_nodes]; 

for(int i=0;i<num_nodes;i++) 

            { 

                matrix[i] = newint[num_nodes]; 

for(int j=0;j<num_nodes;j++) 

                { 

                    matrix[i][j] = edges_list[i][j]; 

                } 

            } 

int sum = 0; 

for (int i = 0; i < num_nodes; i++) 

            { 

for ( int c = 0 ; c < num_nodes ; c++ ) 

                { 

for (int d = 0 ; d < num_nodes ; d++ ) 

                    { 

for (int k = 0 ; k < num_nodes ; k++ ) 

                        { 

                            sum += matrix[c][k]*matrix[k][d]; 

                        } 

                        result[c][d] = sum; 

                        sum = 0; 

                    } 

                 } 

 

for ( int c = 0 ; c < num_nodes ; c++ ) { 

for ( int d = 0 ; d < num_nodes ; d++ ) { 

                        matrix[c][d] = result[c][d]; 

Paper ID: MR21613054013 DOI: 10.21275/MR21613054013 871 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 6, June 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

                        result[c][d] = 0; 

                    } 

                } 

            } 

            transitive_closure(matrix,num_nodes); 

        } 

Time Complexity - 𝑂(𝑉4), space complexity - 𝑂(𝑉2), 
where 𝑉 is the number of nodes 

 

Step 3 - Replace All The Non-Zero Values and Printing 

the Adjacent Matrix 

This step is easy, we just need to traverse the entire multi-

dimensional array and replace the occurrence of non-zero 

terms with 1. Later we need to print the matrix by calling a 

function print_transitive_closure. 
 

 

/// utility function to print the transitive closure matrix 

void print_transitive_closure(int** output, int num_nodes) 

        { 

            cout << endl; 

for(int i=0;i<num_nodes;i++) 

            { 

for(int j=0;j<num_nodes;j++) 

                { 

                    cout << output[i][j] <<""; 

                } 

                cout << endl; 

            } 

        } 

 

/// utility function to convert powering matrix to transitive closure 

matrix 

void transitive_closure(int** matrix, int num_nodes) 

        { 

for(int i=0;i<num_nodes;i++) 

            { 

for(int j=0;j<num_nodes;j++) 

                { 

if(matrix[i][j]>0) 

                    { 

                        matrix[i][j] = 1; 

                    } 

                } 

            } 

            print_transitive_closure(matrix,num_nodes); 

        } 

 

Time and Space Complexity Estimation 

As we can see, the main algorithm function 

matrix_powering has four loops embedded and each one 

iterates for num_nodes time, hence the time complexity of 

the algorithm is 𝑂(𝑉4). 
 

Similarly the space complexity of the algorithm is 𝑂(𝑉2) as 

we are using two multidimensional arrays having dimension 

num_nodes * num_nodes at maximum. 
 

Improving the Time Complexity 
 

We can improve the time complexity of the above 

mentioned algorithm by using Euler's Fast Powering 

Algorithm, that is based on Binary Exponentiation 

technique for getting a matrix to the nth power. 

 

This algorithm will be operating on 𝑂(𝑉3log𝑉) time 

complexity, where 𝑉 is the number of vertices. 

matrix_powering is the function which has a while loop, 

where the value of n becomes half with each iteration, which 

is of 𝑂(log𝑉) time complexity,later each conditional 

statement is calling matrix_multiplication function, which 

has three loops embedded and of 𝑂(𝑉3). This total 

algorithm thus gives a rise to the complexity of 𝑂(𝑉3log𝑉). 
 

#include <iostream> 

#include <cmath> 

#include <cstdlib> 

usingnamespace std; 

 

/// utility function to print the transitive closure matrix 

void print_transitive_closure(int** output, int num_nodes) 

        { 

            cout << endl; 

for(int i=0;i<num_nodes;i++) 

            { 

for(int j=0;j<num_nodes;j++) 

                { 

                    cout << output[i][j] <<""; 

                } 

                cout << endl; 

            } 

        } 

 

/// utility function to convert powering matrix to transitive closure 

matrix 

void transitive_closure(int** matrix, int num_nodes) 

        { 

for(int i=0;i<num_nodes;i++) 

            { 

for(int j=0;j<num_nodes;j++) 

                { 

if(matrix[i][j]>0) 

                    { 

                        matrix[i][j] = 1; 

                    } 

                } 

            } 

            print_transitive_closure(matrix,num_nodes); 

        } 

 

/// utility function to get the identity matrix 

void identity_matrix(int** a, int SIZE) 

        { 

for (int i = 0; i < SIZE; i++) 

for (int j = 0; j < SIZE; j++) 

                    a[i][j] = (i == j); 

        } 

 

//matrix_multiplication method 

void matrix_multiplication(int** a, int** b,int SIZE) 

        { 

int** res = newint*[SIZE]; 

for(int i=0;i<SIZE;i++) 

            { 

                res[i] = newint[SIZE]; 

for(int j=0;j<SIZE;j++) 

                { 

                    res[i][j] = 0; 

                } 

            } 

 

for (int i = 0; i < SIZE; i++) 

for (int j = 0; j < SIZE; j++) 

for (int k = 0; k < SIZE; k++) 

                    { 

                        res[i][j] += a[i][k] * b[k][j]; 

Paper ID: MR21613054013 DOI: 10.21275/MR21613054013 872 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 6, June 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

                    } 

 

for (int i = 0; i < SIZE; i++) 

for (int j = 0; j < SIZE; j++) 

                    a[i][j] = res[i][j]; 

        } 

 

// matrix powering to nth power 

void matrix_powering(int** a, int n, int** res,int num_nodes) 

        { 

            identity_matrix(res,num_nodes); 

 

while (n >0) { 

if (n % 2 == 0) 

                { 

                    matrix_multiplication(a, a,num_nodes); 

                    n /= 2; 

                } 

else { 

                    matrix_multiplication(res, a,num_nodes); 

                    n--; 

                } 

            } 

            transitive_closure(res,num_nodes); 

        } 

 

int main() 

        { 

int num_nodes,num_edges; 

            cin >> num_nodes >> num_edges; 

int** edges_list = newint*[num_nodes]; 

for(int i=0;i<num_nodes;i++) 

            { 

                edges_list[i] = newint[num_nodes]; 

for(int j=0;j<num_nodes;j++) 

                { 

                    edges_list[i][j] = 0; 

                } 

            } 

for(int i=0;i<num_edges;i++) 

            { 

int first_node,second_node; 

                cin >> first_node >> second_node; 

                edges_list[first_node][second_node] = 1; 

if(i<num_nodes) 

                    edges_list[i][i]=1; 

            } 

 

            cout <<"Input Adjacent Matrix Graph:"<< endl; 

for(int i=0;i<num_nodes;i++) 

            { 

for(int j=0;j<num_nodes;j++) 

                { 

                    cout << edges_list[i][j] <<""; 

                } 

                cout << endl; 

            } 

int** result = newint*[num_nodes]; 

for(int i=0;i<num_nodes;i++) 

            { 

                result[i] = newint[num_nodes]; 

for(int j=0;j<num_nodes;j++) 

                { 

                    result[i][j] = 0; 

                } 

            } 

            matrix_powering(edges_list,num_nodes,result,num_nodes); 

        } 

 

References 
 

[1] Tripathy, Abhijit (2021): Transitive Closure Of A 

Graph using Floyd Warshall Algorithm. figshare. 

Online resource. 

https://doi.org/10.6084/m9.figshare.14721555.v1 

 

Author Profile 

 
Abhijit is the founder of Edualgo Academy and 

currently pursuing Bachelor of Technology in 

Computer Science and Engineering in Guru Ghasidas 

Vishwavidyalaya, Bilaspur. He is interested in 

Mathematical Computing, algorithms and machine learning. 

Paper ID: MR21613054013 DOI: 10.21275/MR21613054013 873 

https://doi.org/10.6084/m9.figshare.14721555.v1



