
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Research Study on Java vs. Python Coverage of

Introductory Programming Concepts

Dharunikha J P Deepthayanis

Abstract: In this research, we compare two languages, Java and Python, by performing a content analysis of words in textbooks that

describe important programming concepts. Our goal is to determine which language has better textbook support for teaching

introductory programming courses. We used the Text STAT program to count how often our list of concept words appears in a sample

of Java and Python textbooks. We summarize and compare the results, leading to several conclusions that relate to the choice of

language for a CS0 or CS1 course.

Keywords: programming concepts, Java, Python, textbooks

1. Introduction

In the early years of computing, the choice of a first

language for programmers was often decided by the work

environment, typically Information Technology divisions

with specialized needs. Assembly language for a specific

hardware system was the usual situation. Programming in a

higher-level language such as Fortran or Cobol became

common over time as more versatile computing platforms

and elaborate computing problems emerged.

When Computer Science programs at universities began to

develop, the choice of an introductory programming

language was determined primarily by the curriculum

designers, with an emphasis on the pedagogical value of the

language rather than its popularity or practicality in

developing real- world applications. As might be expected

in the academic world, there was and still is a diversity of

opinion on what the first language should be (Siegfried,

Chays, & Herbert, 2008).

The most recent Computer Science Curriculum Guidelines

(2013) published by ACM/IEEE state that "...advances in

the field have led to an even more diverse set of approaches

in introductory courses [and these] approaches employed in

introductory courses are in a greater state of flux."

Moreover, the report observes "...that rather than a particular

paradigm or language coming to be favored over time, the

past decade has only broadened the list of programming

languages now successfully used in introductory courses".

In the 1970s and 1980s, Pascal became the language taught

most often in introductory programming courses.

Eventually, many schools moved to C for practical reasons,

since graduates rarely used Pascal in their employment. As

the benefits of object-oriented programming became

evident, the first language evolved to C++ and later to Java,

which provides a more managed development environment

(de Raadt, Watson, & Tolman,2002).

The tradeoffs of an object-first approach versus an

imperative-first approach in introductory courses have been

extensively and hotly debated (Lister, 2006). This decision

about which programming paradigm to teach beginning

students strongly influences the choice of introductory

language. Alternatively, some early courses in CS

emphasized broader computing concepts rather than the

subtleties of programming syntax (Sooriamurthis, 2010).

The paramount question regarding the delivery of an

effective introductory CS course remains "What to teach?",

followed immediately by "Which language best supports the

concepts to be taught?".

In recent years, the increased demand for programming

courses for liberal arts students has led to the development

of what are termed CS0 courses (with CS1 courses aimed

for CS majors). The preferred programming language for a

CS0 course is often different from the language taught in

CS1. CS0 languages trend toward predominantly visual

environments such as Alice, or more dynamic popular

choices such as Python.

1.1 Purpose of this Research

Much research has been performed over the last few decades

on which language is best for an introductory programming

course (Brilliant & Wiseman,1996). In an effort to

contribute to this discussion, our research focuses on two

languages--Java and Python. These languages are increasing

in popularity for introductory courses, especially Python

(Guo, 2014). Rather than evaluate the usability or suitability

of the languages within an introductory context, we

performed a content analysis (Krippendorff, 2012) of Java

and Python text books to determine how well they cover

important CS0/CS1 programming concepts such as class

and algorithm.

We developed a list of basic programming concepts that

might be taught in an introductory course. Initial sources

used for developing this concepts list were drawn from

various instructional assessments, curriculum resources, and

introductory course content that we designed ourselves or

researched. We then counted how often each textbook

mentioned each concept. We did not study the order in

which the concepts were presented, nor did we judge how

well the concepts were explained. We simply summarized

frequencies for the words that represented each concept.

An instructor in a programming course usually chooses a

textbook to guide how she/he will organize and present the

material. Our main research assumption is that the

framework of the author is reflected by the words used most

often in the text book. The framework we are evaluating is

one that is appropriate for introductory programming. From

Paper ID: SR21508171325 DOI: 10.21275/SR21508171325 499

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the author's choice of words, we can judge how suitable the

text book will before teaching the main concepts of the

programming course.

2. Methodology

This section of the paper describes the methodology used to

collect word frequency data from selected Java and Python

textbooks. The words we examine represent important

concepts for an introductory programming course.

Programming Concepts

We created a list of important programming concepts from

several sources. We started with an initial list of

programming terms taken from quizzes and exams we have

given to CS1obtained a reasonably diverse sample of books

(see References), but some were older editions (e.g

Zelle,2002).

We later observed that the Java books tended to be larger

(i.e. contained more words). The average size of the Java

books was 222,953 words, whereas the average size for the

Python books was 144,039 words. As a quick check to

confirm that the sizes of our Java and Python books were

representative, we compared 10Java books and 9 Python

books (not including very short books) listed on Amazon.

For the Amazon books, the total number of words was not

available, but the number of pages was given. The Amazon

sample averages were 690 pages for the Java books and 514

pages for the Python books. So on Amazon, the Java books

tend to be larger, which is consistent with our downloaded

sample.

Convert PDF files to Text Files

Textbooks in PDF file format are not convenient for

performing repeated word searching and counting.

Fortunately, Adobe Reader has a "File/save As" menu

choice to convert the contents of a PDF file to a text file. We

used Adobe Reader to create a text file for each of the 20

textbooks in our study.

We noticed that the text file versions of the books included

many character strings that contained digits, punctuation,

and other non-alphabetic symbols. To simplify our counting

of concept words, we wrote a short program (in Python) that

removed all non-letter symbols and replaced them with

blank characters. This program also converted all letters to

lower-case. We used this program to obtain a filtered set of

20 text files which consisted of only letters and blanks. Note

that none of the targeted word groups contains a numeric or

special character.

Perform Word Counts

We used a popular program called TextSTAT (Huning,

2007) to obtain word counts for all words on our

programming concept list. With TextSTAT, you first define

a "Corpus", which holds a list of text files. We defined a

corpus for each textbook and linked the corpus to the

transformed textfile containing the textbook.

To perform a word search, a separate TextSTAT screen

allows the user to specify search options. Most of the time,

we used the option to include all words, with the words and

frequencies presented in alphabetical order. We would then

go through the concept list (also in alphabetical order) and

record/total the frequencies for each word group. This was

the most labor-intensive part of our methodology.

Occasionally, we would enter a short string (e.g. iterat) to

search for all words that contain the string (e.g. iterate,

iteration, iterator).

3. Analysis of Data

The number of programming concepts on our evolving list

reached 100 by the end of our data analysis. Alphabetically,

the concepts ranged from abstraction to variable. As

mentioned in the methodology section, each concept was

represented by a group of one or more words. For example,

the word group for the OOP concept object contained two

words--object (singular) and objects (plural).

For every concept, we counted the number of occurrences of

each word group member in the Java and Python text books.

As an example, in the Java book by Schildt (2007), the word

object appears 1674 times, and the word objects appears 380

times. The total word count for the concept is 2054.

Convert Word Counts to Word Rates

Because each textbook contains a different number of

words, the actual word counts for concepts are not

comparable across books. Larger books tend to have larger

word counts. To standardize the counts, we converted each

word count for a concept to a word rate. The rate we chose

was "per 100,000 words". That is, we divided the concept

word count by the total number of words in the book and

multiplied by 100,000.

For example, Schildt's book mentioned above contains total

of 325,991 words. The word count for the object concept is

2054. This count is rescaled to a word rate as shown below:

Word rate = (2054/325,991)*100,000 =630.1

This means that the object concept is mentioned 630.1 times

per 100,000 words in Schildt's book. Word rates were

calculated for each concept in each book.

Calculate Trimmed Means

After concept word rates were obtained in all Java and

Python textbooks, averages were calculated separately for

the Java and Python values. Because the word rates for

concepts (Java or Python) often varied widely from book to

book, we calculated trimmed means (instead of the usual

untrimmed versions) to diminish the effect of outliers. To

provide a conservative treatment for these outliers, our

trimmed means include only the middle 6 out of 10 word

rates. The top two and bottom two word rates are dropped.

For example, word rates for the object concept in all 10 Java

text books are:

522.4 561.7 630.1 334.5 843.3

684.9 703.5 767.2 863.5 488.4

Removing the two highest rates (863.5 and 843.3) and two

lowest rates (334.5 and 488.4), the trimmed mean for object

in the Java books is 645.0. Two trimmed means were

calculated for each concept, one for Java and the other for

Paper ID: SR21508171325 DOI: 10.21275/SR21508171325 500

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Python.

Distributions of Trimmed Means

Each set of books (Java and Python) provided a sample of

100 trimmed means, representing word rates for the 100

concepts. A statistical description of the Java and Python

distributions is summarized in Table1.

Many of the statistics are larger for the Java distribution than

the Python distribution. The central tendency measures

(mean and median) are higher, and the dispersion measure

(IQR) is larger. This is primarily due to the greater number

of concept words in the Java books.

Table 1: Distributions of Trimmed Means

Statistic Java Python

Sample N 100 100

Minimum 0.34 0.00

Centile 25 18.92 10.50

Median 58.00 38.05

Centile 75 134.27 116.68

Maximum 987.40 601.93

IQR 115.35 106.18

Mean 109.95 90.59

For the Java distribution, the maximum word rate is for the

concept class, and the minimum word rate is for

decomposition. For Python, the maximum word rate is for

function, while the minimum word rate is (again) for

decomposition. The Java median word rate is the midpoint

between the word rates of the two middle concepts stream

and block. For Python, the two middle concepts are block

and event.

The mean of the Java word rates is almost twice the size of

the median. This indicates that the distribution is positively

skewed, mainly due to the presence of several high word

rates (including the maximum value). The mean of the

Python word rates is more than twice the size of the median,

indicating another positively skewed distribution.

The variability of scores in a distribution is usually

described by the standard deviation. However, this statistic

is inflated when outliers are present. A more stable measure

of variation is the interquartile range IQR (Upton & Cook,

1996), which is the difference between the 75
th

 centile value

and the 25th centile value. For Java, the 75
th
 centile concept

is definition, and the 25
th

 centile concept is link. The

corresponding concepts for Python are set (75
th

 centile) and

literal (25
th

 centile).

The word rates for programming concepts tend to be higher

in the Java books. Overall, 62 of the 100 concepts have a

higher word rate in the Java books than in the Python books.

The remaining 38 concepts appear more often in the Python

books. Additional details and comparisons of these two

word rate distributions are presented in the following

sections.

Most Frequent Concepts

The fifteen programming concepts with the highest word

rates for Java and Python are listed in Table 2.

Table 2: Most Frequent Concepts
Java Concept Rate Python Concept Rate

class 987.4 function 601.9

method 949.8 list 487.0

object 645.0 program 462.1

value 477.5 value 451.1

program 460.6 string 410.4

string 399.8 file 372.0

type 369.5 object 336.7

variable 288.6 number 319.7

array 272.2 code 300.6

system 253.7 method 298.9

number 251.4 class 297.0

file 216.9 line 263.7

code 213.2 module 235.8

statement 212.1 type 204.0

thread 188.2 statement 203.1

(Differences in bold)

Eleven of the concepts appear on both lists, but in different

ranked positions. This demonstrates substantial agreement

by authors on which concepts are most important in both

languages. Four concepts are on the Java list only, and four

others are confined to the Python list. The concepts that are

not on both lists are shown in bold.

Among the Java concepts, the top three--class, method, and

object--describe features of object- oriented programming

(OOP). These concepts are also on the Pythonlist, but with

lower word rates. Six of the Java concepts--value, string,

type, variable, array, and number--describe data types and

data structures. The Python list contains four of these

concepts, but replaces array with list and excludes variable.

The I/O concept file is on both lists, but has a higher word

rate in the Python books. The Java concept thread is rarely

mentioned in the Python texts. Function and module are

older terms used to describe modular programming. Python

retains these terms, whereas the Java books prefer the OOP

concepts method and class.

Least Frequent Concepts

The fifteen programming concepts with the lowest word

rates for Java and Python are listed in Table 3 Again, eleven

of the concepts appear on both lists, but in different ranked

positions. This shows agreement by Java and Python authors

on concepts they perceive to be unimportant in both

languages. Concepts that appear on only one list are shown

in bold.

Table 3: Least Frequent Concepts

Java Concept Rate Python Concept Rate

encapsulation 9.3 constant 6.6

debug 8.1 maintainable 5.8

signature 7.9 stream 5.1

record 7.9 encapsulation 4.0

maintainable 7.1 reserved 3.9

abstraction 5.9 branch 3.1

polymorphism 5.5 pointer 2.8

relation 5.4 polymorphism 2.5

reserved 5.1 procedure 1.6

procedure 4.7 signature 1.5

pointer 4.2 quality 1.5

branch 3.3 queue 0.6

module 1.3 thread 0.6

Paper ID: SR21508171325 DOI: 10.21275/SR21508171325 501

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

quality 0.6 abstraction 0.6

decomposition 0.3 decomposition 0.0

(Differences in bold)

The concepts that appear on both least-frequent lists include

a few surprises. Some of these concepts are often considered

important by programming instructors. Certainly abstraction

is a key programming topic. Of the three pillars of OOP

(encapsulation, inheritance, and polymorphism), two are on

both least-frequent lists. Thankfully, these textbooks spare

inheritance from such neglect. The signature concept,

relevant to polymorphism, is rarely mentioned.

Function and procedure were once distinct concepts in

modular programming. Perhaps due to compromises made

in the design of the C language (and perpetuated in C++ and

Java), the procedure word has been replaced with "void"

functions.

From the Software Engineering (SE) vocabulary, quality and

maintainable are held in low regard by both Java and Python

textbooks. The concept of pointer has low word rates,

although the substitute term reference does appear more

often in both sets of books. Keyword is more popular than

reserved word. Finally, almost none of the books contain

decomposition, which is the least frequent word on both

lists. This concept embodies a core strategy in modular

programming.

Middle Frequency Concepts

We have presented word rates for the top 15and bottom 15

programming concepts, and now turn our attention to the 70

concepts with middle-level usage rates. This list of concepts

is too long to include in a single table in the paper. Instead,

in Table 4 we present 10 Software Engineering concepts that

have middle-level word rates in the programming textbooks.

Table 4: Middle Frequency Concepts
 Java Python

Concept Rate Rate

problem 63.9 57.9

solution 32.1 48.1

requirement 29.9 42.8

specification 55.5 39.5

model 25.1 13.6

algorithm 34.9 22.5

design 49.2 12.3

test 85.5 138.2

style 21.1 17.7

document 40.5 44.0

Software Engineering Words

For Javabooks, the SE word rates range from 21.1 (for style)

to 85.5 (for test). The word rates in Python books range

from 12.3 (for design) to 138.2 (again for test).

Concepts on the list include problem (Java/Python rates

63.9/57.9) and solution (Java/Python rates 32.1/48.1),

reflecting the problem-solving focus in SE. The words

requirement, specification, model, algorithm, design, and

document are life cycle development activities. Style is a

consideration to ensure source code is readable and

maintainable. The relatively low word rates for style

(Java/Python rates 21.1/17.7) and for model (Java/Python

rates 25.1/13.6) are unfortunate.

As Table 4 indicates, all of these concepts appear with

moderate word rates in both the Java and Python textbooks.

Six of the concepts appear more often in Javabooks, while

the other four are more frequent in Python books. There is

no obvious single criterion for determining which language

favors which SE concepts.

Word Rate Correlation

In this section, instead of examining the Java and Python

word rate distributions separately, we consider the joint

distribution of the two rates. If the focus on key introductory

concepts is consistent across all examined textbooks, we

would expect to find a positive relationship between the

Java and Python word rates. For most programming

concepts, a higher word rate in the Java books should

suggest a higher word rate in the Python books, and vice

versa.

To measure the degree of linearity in the relationship, we

calculated the Pearson correlation coefficient. The

correlation value we obtained for our 100 pairs of scores

was 0.601, which is positive but far from 1.0.

We do not claim that the relationship should be linear, but it

should be monotonic. A better statistic for monotonic

relationships is the Spearman rank-order correlation (Maritz,

1995). Our result for the Spearman statistic was 0.726,

which describes a fairly strong increasing relationship

between Java and Python word ranks.

A scatter diagram of the word rate pairs, converted to ranks

from 1 (highest rank) to 100 (lowest rank), is displayed as

Figure 1.

Figure 1: Java vs. Python Concept

Ranks

In this figure, we can see that most of the pairs of ranks fall

approximately along a line that runs from pair (1,1) to pair

(100,100). Below the implied line, two obvious outliers are

the pairs (98,13) for module and (68,1) for function. In these

pairs, the Python rank is much higher (closer to 1) than the

Java rank. Above the line, the two most noticeable outliers

are (15,98) for thread and (9,80) for array. These concepts

have a much higher Java rank (closer to1).

A more complete list of outliers is presented in Table 5.

Paper ID: SR21508171325 DOI: 10.21275/SR21508171325 502

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 5: Largest Differences in Ranks
 Java Python

Concept Rank Rank Diff

module 98 13 -85

function 68 1 -67

interface 16 46 30

system 10 41 31

component 35 69 34

event 17 51 34

stream 50 88 38

constant 46 86 40

declaration 41 82 41

constructor 21 76 55

array 9 80 71

thread 15 98 83

("Highest" rank is 1)

The choice of how large the difference in ranks should be to

consider a concept an outlier is subjective. In this table, we

include all pairs in which the difference in ranks is 30 or

larger. A negative difference occurs when Python has a

higher rank. A positive difference favors Java. Note that all

but two of the concepts in Table 5 have a higher Java rank.

We noted earlier that function and module are among the top

fifteen concepts in word frequency in Python books. This

table indicates that these two popular Python concepts

appear much less often in Java books. Three OOP concepts--

constructor, component, and interface--are favored by

Javabooks.

The data concepts array, declaration, and constant appear

less often in Python books for various reasons. Python

prefers lists over arrays. Variables are not overtly declared

in Python. Stream I/O, as a generalization of file I/O, is

implemented in Java as stream classes. Real-time events and

threads are common Java features, but not Python.

4. Summary and Conclusions

The choice of programming language for introductory

Computer Science courses is a strong indicator of the

concepts emphasized during course instruction. Ongoing

discussion about what to teach and which language tool best

supports learning objectives for introductory programming

courses continues unabated among instructors,

administrators, and accreditation organizations. A definitive

“best practices” approach in this area remains unresolved.

Our current work further informs this debate by correlating

core programming concepts with specific textbooks that

promote either Java or Python as the coding language.

The primary purpose of this study was to compare how well

Java and Python textbooks provide coverage of important

introductory programming topics. We developed a list of

100 programming concepts, and we collected a sample of 10

Java books and 10 Python books. We then counted how

often words that represent the concepts appeared in the

books. After standardizing the data, we computed trimmed

means of word rates for all 100 concepts, with separate rates

for Java and Python. From this data, we draw the following

conclusions.

First, words that describe our 100 programming concepts

have a greater density (higher word rates) in the Java books

in our study. The word rate distribution for Java has a mean

of 109.25, with a maximum value of 987.40. For Python, the

mean is 90.59, with a maximum of601.93.

Second, there is remarkable agreement between the

programming concepts mentioned most often in the Java and

Python books. Eleven of the top 15 Java concepts are also

included in the top 15 Python concepts. Highly-used

concepts for both languages include class, object, and

method, each representing OOP.

Third, there is also agreement on which concepts are rarely

mentioned in both sets of books. Eleven of the bottom 15

Java concepts are also in the list of 15 least-used Python

concepts. Common neglected concepts include

encapsulation and polymorphism for OOP, plus SE concepts

quality and maintainable. It is disappointing that abstraction

is on both bottom 15lists.

Fourth, several concepts appear on only one of the top 15 or

bottom 15 word lists for Java and Python. The top 15 Java-

only concepts include array and variable. Among the top 15

Python-only concepts, array is replaced by list, and other

concepts are added. The bottom 15 Java concepts include

module, which is a top 15 concept for Python. The bottom

15 Python list includes thread, which is a top 15 concept for

Java.

Fifth, a fairly strong increasing relationship exists between

concept ranks for Java vs. Python, as indicated by a rank-

order correlation of 0.726. There are a few clear exceptions

to this relationship. Thread, constructor, and declaration

have much higher Java ranks. Module and function have

much higher Python ranks.

Sixth, Java and Python textbooks devote substantial time on

practical concepts that describe how to write code.

Discussion of Software Engineering concepts that deal with

how to think like a programmer and write efficient,

maintainable code receive less attention. This learning goal

may be less important in an introductory programming

course, but it becomes a major focus as students progress

through a Computer Science degree program.

Overall, both Java and Python books provide reasonable

levels of support for most of the programming concepts we

considered. The choice of Java or Python (or other

language) for an introductory class should be based on

considerations beyond textbook support for important

concepts. Whatever language and textbook are chosen,

instructors must be prepared to provide additional material

to achieve their desired course objectives.

References

[1] Brilliant, S. S., and Wiseman, T., “The First

Programming Paradigm and Language Dilemma”,

ACM SIGCSE Bulletin Vol. 28, No. 1 (1996), p. 338-

342.

[2] Computing Curricula 2001 Computer Science Final

Report, Joint Task Force on Computing Curricula,

Paper ID: SR21508171325 DOI: 10.21275/SR21508171325 503

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Association of Computing Machinery, IEEE Computer

Society, 2001.

[3] Computer Science Curricula 2013, Joint Task Force on

Computing Curricula, Association of Computing

Machinery, IEEE Computer Society,2013.

[4] deRaadt,Michael,Watson,Richard,andToleman, Mark,

“Language Trends in Introductory Programming

Courses,” InSITE, June 2002.

proceedings.informingscience.org/IS2002Proceedings/

papers/deRaa136Langu.pdf

[5] Guo, Philip, "Python is Now the Most Popular

Introductory Teaching Language at Top U.S.

Universities." Communications of the ACM, Blogs,

2014.

[6] Hertz, Matthew, "What do 'CS1' and 'CS2' Mean?

Investigating Differences in the Early Courses."

SIGCSE Proceesings, Milwaukee, 2010.

[7] Huning, M, TextSTAT2.7User’sGuide.TextSTAT,

created by Gena Bennett, 2007.

[8] Krippendorff, Klaus H., Content Analysis: An

Introduction to Its Methodology, 3rd Ed. SAGE

Publications, 2012.

[9] Lister, Raymond, E. A. Research perspectives on the

objects-early debate. In ITiCSE proceedings (2006),

pp. 146--165.

[10] Maritz, J. S., Distribution-Free Statistical Methods

(2nd ed). Chapman and Hall,1995.

[11] Siegfried, Robert M., Chays, David, and Herbert,

Katherine G., “Will There Ever be Consensus on

CS1?” In Proceedings of FECS. 2008, 18-23.

home.adelphi.edu/~siegfried/Consensus.pdf

[12] Sooriamurthi, Raja, The Essence Of Object

Orientation For CS0: Concepts Without Code. Journal

of Computing Sciences in Colleges, Vol. 25 (3), p 67-

74, January, 2010.

[13] Tew, Allison Elliott, & Guzdial, M., Developing a

Validated Assessment of Fundamental CS1Concepts,

SIGCSE Proceedings, Milwaukee, 2010.

[14] Upton, Graham, and Cook, Ian, Understanding

Statistics. Oxford University Press, 1996, p.55.

Java Textbooks

[15] Arnold, Ken, James Gosling, and David Holmes, THE

Java Programming Language (4th ed).Addison Wesley

Professional, 2005.

[16] Deitel, Harvey, and Paul Deitel, Java How to Program

(4th ed). Prentice Hall, 2002.

[17] Downey, Allen B., Think Java: How to Think Like a

Computer Scientist. Allen Downey, 2012.

[18] Eck, David J., Introduction to ProgrammingUsing Java

(Version 6.0.3). Hobart and William College, 2014

(PDF version of on-linebook).

[19] Lemay, Laura, and Charles L. Perkins, Teach Yourself

JAVA in 21 Days. Sams.net Publishing, 1996.

[20] Roberts, Eric. S., The Art and Science of Java

(Preliminary Draft). Stanford University, 2006.

[21] Schildt, Herbert, Java: The Complete Reference (7th

ed). McGraw-Hill, 2007.

[22] Sierra, Kathy, and Bert Bates, Head First Java (2nd

ed). O'Reilly.

[23] Stein, Lynn Andrea, Interactive Programming in Java.

Lynn Andrea Stein, 1999.

[24] Wu, C. Thomas, An Introduction to Object- Oriented

Programming with Java (5th ed). McGraw-Hill, 2010.

Python Textbooks

[25] Downey, Allen, Think Python: How to Think Like a

Computer Scientist (Version 2.0.15).Green Tea

Press,2015.

[26] Halterman, Richard L., Learning to Program with

Python. Richard L. Halterman, 2011.

[27] Heinold, Brian, Introduction to Programming Using

Python. Brian Heinold, 2012.

[28] Jackson, Cody, Learning to Program Using Python.

Cody Jackson, 2011.

[29] Kuhlman, Dave, A Python Book: Beginning Python,

Advanced Python, and Python Exercises. Dave

Kuhlman, 2009.

[30] Lutz, Mark, Programming Python (4th ed). O'Reilly,

2011.

[31] Maruch, Stef, and Aahz Maruch, Python for Dummies.

Wiley, 2006.

[32] Payne, James, Beginning Python: Using Python 2.6

and Python 3.1. Wiley Publishing, 2010.

[33] Pilgrim, Mark, Dive Into Python. Mark Pilgrim, 2004.

[34] Zelle, John M., Python Programming: An Introduction

to Computer Science (Version 1). Wartburg College,

2002.

Appendix

Table 6: Concept Word Rate Trimmed Means for Java and Python
 Concept Java

Rate

Python

Rate

 Concept Java

Rate

Python

Rate

1 abstraction 5.9 0.6 51 literal 14.0 10.5

2 algorithm 34.9 22.5 52 local 36.2 36.0

3 argument 114.4 142.7 53 loop/looping 112.6 152.5

4 array 272.2 7.8 54 maintain/maintainable 7.1 5.8

5 assignment/assign 53.7 55.8 55 method 949.8 298.9

6 block 56.9 38.4 56 model/modeling 25.1 13.6

7 boolean 82.0 19.8 57 module 1.3 235.8

8 branch/branching 3.3 3.1 58 nest/nested 23.0 22.4

9 case 127.0 81.0 59 number/numeric 251.4 319.7

10 character 120.0 119.6 60 object 645.0 336.7

11 class 987.4 297.0 61 operation/operator 139.1 157.7

12 code 213.2 300.6 62 output 106.8 80.0

13 component 100.4 17.2 63 parameter 92.7 84.0

Paper ID: SR21508171325 DOI: 10.21275/SR21508171325 504

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

14 condition/conditional 49.1 53.1 64 pattern 37.1 32.5

15 constant 63.1 6.6 65 pointer 4.2 2.8

16 constructor 141.1 9.9 66 polymorphism 5.5 2.5

17 control 61.7 22.7 67 problem 63.9 57.9

18 correct/correctness 21.2 18.1 68 procedure 4.7 1.6

19 data 133.5 175.5 69 process/processing 61.7 74.0

20 debug/debugging 8.1 15.0 70 program 460.6 462.1

21 declaration/declare 80.9 7.6 71 quality 0.6 1.5

22 decomposition/decompose 0.3 0.0 72 queue 16.1 0.6

23 definition/define 134.3 95.1 73 record 7.9 6.9

24 design 49.2 12.3 74 recursion/recursive 25.0 28.0

25 development/develop 23.9 27.5 75 reference 84.2 34.4

26 documentation/document 40.5 44.0 76 relation/relational 5.4 6.6

27 dynamic/dynamically 9.3 7.6 77 requirement/require 29.9 42.8

28 efficient/efficiency 12.7 9.9 78 reserved 5.1 3.9

29 encapsulation/encapsulate 9.3 4.0 79 scope 12.5 7.7

30 error 77.9 102.9 80 selection 13.1 10.9

31 event 152.8 37.7 81 sequence 50.3 67.2

32 exception 125.3 89.7 82 set 142.4 116.7

33 expression 98.1 111.0 83 signature 7.9 1.5

34 file 216.9 372.0 84 software 20.2 21.1

35 floating/floating-point 13.5 16.7 85 solution/solve/solving 32.1 48.1

36 function 24.8 601.9 86 specification/specify 55.5 39.5

37 identifier 11.8 9.8 87 stack 56.2 9.7

38 implementation/implement 144.4 45.2 88 statement 212.1 203.1

39 index 60.5 74.2 89 stream 59.1 5.1

40 information 68.4 72.2 90 string 399.8 410.4

41 inheritance/inherit 44.1 21.1 91 structure 33.5 44.7

42 input 74.6 128.9 92 style 21.1 17.7

43 instance 137.3 110.4 93 system 253.7 55.5

44 integer 116.0 94.0 94 test/testing 85.5 138.2

45 interface 161.0 44.4 95 thread 188.2 0.6

46 iteration/iterate 11.7 20.5 96 tree 16.8 19.6

47 keyword 21.4 23.1 97 type 369.5 204.0

48 line 146.4 263.7 98 user 110.9 151.7

49 link/linked 18.9 17.4 99 value 477.5 451.1

50 list 137.1 487.0 100 variable 288.6 164.8

Paper ID: SR21508171325 DOI: 10.21275/SR21508171325 505

