
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.86

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Automated Policy Enforcement in DevSecOps:

OPA, Kyverno, and Tekton Chains for Supply

Chain Integrity

Sandhya Guduru

Masters in Information Systems Security, Software Engineer - Technical Lead

Abstract: As software development increasingly relies on fast, iterative delivery through CI/CD pipelines, ensuring robust security across

the pipeline has become a critical challenge. The rise of DevSecOps promotes embedding security earlier in the development lifecycle.

Still, traditional approaches often fall short in handling the complexity of cloud-native environments and securing the software supply

chain. This paper explores the intersection of DevSecOps practices and Policy-as-Code tooling within Kubernetes-native pipelines to

address key issues such as insecure configurations, weak policy enforcement, and limited build transparency. It highlights the role of tools

like Open Policy Agent (OPA), Gatekeeper, Kyverno, Tekton Pipelines, and in-toto in automating compliance, enforcing policies, and

validating build integrity. By identifying core problem areas—including misconfigurations, dependency risks, and lack of verifiable

artifact metadata—the paper proposes a framework for improving CI/CD security posture. The proposed approach aims to strengthen

trust, ensure artifact provenance, and enable scalable, secure software delivery in cloud-native environments.

Keywords: Open Policy Agent (OPA), DevSecOps, Kyverno, Tekton Pipelines, in-toto, software supply chain security, artifact verification,

admission control, Gatekeeper

1. Introduction

As organizations embrace continuous integration and

continuous deployment (CI/CD) to accelerate software

delivery, the need for robust security measures integrated into

every development lifecycle phase has become more critical

than ever. This shift has given rise to DevSecOps, a practice

that embeds security into development and operations

workflows. By automating security policies, testing, and

compliance checks, DevSecOps ensures security is prioritized

without slowing down delivery, making it essential for

modern software teams.

In Kubernetes-native environments, automated policy

enforcement is crucial in maintaining security and integrity.

While Kubernetes offers significant flexibility through

features like custom resource definitions (CRDs), admission

controllers, and dynamic workloads, this flexibility can also

create security risks. Without proper policy enforcement,

teams may inadvertently deploy insecure configurations or

allow vulnerable workloads into production. Automated

policy enforcement tools address these risks by applying

predefined rules that validate resource definitions and prevent

unsafe deployments from reaching production clusters.

Recent software supply chain attacks, such as the SolarWinds

breach, have highlighted severe vulnerabilities in the software

development process. These incidents have shown that even

small gaps in CI/CD workflows can be exploited by malicious

actors to compromise artifacts, inject backdoors, or steal

credentials. Securing the software supply chain now requires

comprehensive visibility, rigorous integrity validation, and

the ability to verify the authenticity of software artifacts

throughout the development and deployment process.

This paper evaluates several critical tools designed to

automate policy enforcement and enhance supply chain

security. Open Policy Agent (OPA) and its Kubernetes-native

extension, Gatekeeper, offer a flexible framework for

defining and enforcing security policies using the Rego

language. Kyverno, a Kubernetes-native policy engine,

simplifies the adoption of policy-as-code practices by

allowing policies to be written in YAML. Tekton Chains, an

extension of Tekton Pipelines, secures artifact signing and

integrates with the in-toto framework to capture Build

Metadata and ensure artifact integrity. These tools provide the

foundation for achieving supply chain integrity, transparency,

and compliance in modern CI/CD environments.

2. Literature Review

The convergence of DevSecOps principles, Policy-as-Code

frameworks, and software supply chain security tooling

represents a growing focus in both academic and industry

literature. This section reviews foundational concepts and

tooling that support automated policy enforcement and

integrity verification across modern Kubernetes-native

CI/CD pipelines.

DevSecOps emerged as an evolution of the DevOps

movement, aiming to embed security into every development

lifecycle phase rather than treating it as a final checkpoint.

Several studies and industry reports emphasize the

importance of shifting security left, automating compliance

checks, and codifying security controls into CI/CD pipelines

[1]. Security-as-code and compliance-as-code have become

essential practices to support this integration. These practices

rely heavily on declarative policies that can be enforced at

build time, deployment, or runtime—ensuring consistency,

auditability, and repeatability across cloud-native

environments.

As Kubernetes gained popularity for orchestrating

containerized workloads, new approaches emerged to enforce

policies at the cluster level. The Open Policy Agent (OPA)

introduced a general-purpose, domain-agnostic policy engine

Paper ID: SR210513123637 DOI: https://dx.doi.org/10.21275/SR210513123637 1378

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.86

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

designed to support Policy-as-Code across microservices and

infrastructure [2]. OPA uses Rego, a declarative query

language, to define and evaluate policies. Its Kubernetes-

native extension, Gatekeeper, enables admission control by

integrating directly with the Kubernetes API server.

OPA and Gatekeeper have become popular for validating

custom resource definitions (CRDs), enforcing label

standards, restricting insecure configurations, and ensuring

compliance with organizational policies [3]. However, the

complexity of writing Rego and debugging policy logic posed

adoption challenges, especially for teams unfamiliar with

domain-specific languages [4].

To address the need for Kubernetes-native, YAML-centric

policy enforcement, Kyverno emerged as a CNCF sandbox

project. Unlike OPA, Kyverno was designed specifically for

Kubernetes, allowing policies to be defined using familiar

YAML syntax and native Kubernetes patterns [5]. This

approach lowered the barrier to entry for platform teams and

developers, enabling broader adoption of Policy-as-Code

practices. Kyverno supports admission control, mutation, and

validation policies and integrates seamlessly into GitOps

workflows and CI/CD pipelines. Its focus on native resource

handling, schema validation, and conditional logic based on

resource fields made it particularly suitable for enforcing

secure defaults in cloud-native environments.

Parallel to the evolution of policy enforcement, attention

began shifting toward securing the integrity of the software

supply chain. The SolarWinds breach and rising concerns

around dependency confusion attacks highlighted systemic

weaknesses in artifact provenance, dependency trust, and

build process verification. To counter these threats, the in-toto

framework introduced a model for supply chain integrity

based on cryptographic attestations [6]. in-toto captures

metadata at each step of the software lifecycle, allowing

consumers to verify that authorized parties built, tested, and

signed a package or image.

The Tekton project advanced this idea under the CD

Foundation, which introduced Tekton Pipelines for defining

cloud-native CI/CD workflows. Building on this, Tekton

Chains provided a secure method for generating in-toto

attestations and signing build artifacts automatically during

pipeline execution [7]. Tekton Chains leverages in-toto to

record metadata and links it to build steps while using

signature frameworks like cosign and Rekor to ensure

transparency and auditability.

Figure 1 illustrates the flow of a typical Tekton CI/CD

pipeline integrating Chains and in-toto for attestation capture.

pipeline

Figure 1: End-to-end flow of a Tekton-based CI/CD

As a concept, supply chain security evolved to include secure

artifact delivery and verification and continuous monitoring

and tracking of dependencies throughout the software

development lifecycle. Researchers and security

professionals pointed out that traditional approaches to

software security often overlooked the interconnectedness of

build pipelines and third-party dependencies, which created

significant vulnerabilities [8]. The introduction of attestation-

based frameworks, such as in-toto and Tekton Chains, sought

to address this by capturing metadata from every phase of the

build and deployment process and linking it to cryptographic

signatures to ensure that software artifacts came from trusted

sources.

In line with these developments, the importance of adopting

zero-trust principles for software supply chain security was

underscored in several works. Zero-trust architecture, which

assumes that no actor—inside or outside the network—should

be trusted by default, is particularly effective in mitigating

threats from compromised supply chains [9]. The widespread

adoption of zero-trust models has prompted the development

of security automation tools that enforce policies for

authentication, authorization, and verification in CI/CD

environments. These tools focus on minimizing trust at every

stage of the software delivery process, which is crucial in

preventing attacks like dependency confusion, software

tampering, and privilege escalation.

At the same time, the need for tamper-evident logging and

audit trails became more pronounced in light of high-profile

attacks such as the SolarWinds breach. These incidents

highlighted the lack of transparent and immutable logs, which

could have provided earlier detection of unauthorized

changes and attacks [10].

3. Problem Statement

Adopting continuous integration and deployment (CI/CD)

pipelines alongside Kubernetes-native environments has

transformed how organizations develop, test, and deploy

software. While these advancements enable faster delivery

and innovation, they also introduce various security

challenges. Despite the rise of DevSecOps, which emphasizes

integrating security into the development pipeline, several

critical issues remain unresolved. This section identifies key

problems that must be addressed to strengthen the security of

Paper ID: SR210513123637 DOI: https://dx.doi.org/10.21275/SR210513123637 1379

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.86

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

modern software supply chains and improve policy

enforcement in cloud-native environments.

3.1 Lack of Comprehensive Supply Chain Visibility

One of the most pressing concerns in modern software

development is the lack of visibility into the software supply

chain. As CI/CD pipelines grow in complexity, integrating

numerous external libraries, dependencies, and components,

organizations often struggle to track the origin and integrity

of every artifact within the pipeline. This lack of visibility

increases the risk of attacks like dependency confusion, where

attackers inject malicious dependencies into the pipeline,

exploiting the complexity of third-party packages.

Without robust tracking, it becomes difficult to verify the

authenticity of each artifact, leaving the system vulnerable to

the introduction of compromised code. To mitigate these

risks, organizations must adopt solutions that ensure full

visibility into the supply chain. They offer mechanisms to

trace the provenance and integrity of every software artifact

from its source to production deployment.

3.2 Inconsistent Policy Enforcement in Kubernetes

With its flexibility and scalability, Kubernetes has become the

de facto platform for orchestrating containerized workloads.

However, its open and customizable nature introduces

significant security risks. While tools such as Open Policy

Agent (OPA) and Kyverno offer mechanisms for policy

enforcement, organizations face challenges in consistently

integrating and applying these tools across all stages of the

development pipeline.

Kubernetes environments can become a target for

misconfigurations, such as insecure resource definitions or

improper access controls, if policies are not consistently

enforced. This lack of automated, comprehensive policy

enforcement makes it more difficult for teams to ensure that

only secure and compliant configurations are deployed to the

production environment. There is a pressing need for a more

streamlined, Kubernetes-native policy enforcement approach

that seamlessly integrates into CI/CD workflows, ensuring

continuous validation and reducing human error.

3.3 Insufficient Integrity Verification of Artifacts

A critical vulnerability in modern CI/CD workflows is the

insufficient verification of software artifacts. Container

images, binaries, and other deployment artifacts are typically

generated and passed through multiple stages within the

pipeline, often without rigorous integrity checks. Without

tools that can provide cryptographic attestations or tamper-

evident mechanisms, it becomes impossible to verify that the

deployed artifacts have not been altered or compromised

during the build process.

Malicious actors can exploit this gap by inserting backdoors

or malicious code into artifacts, leading to potentially

catastrophic security breaches. As software becomes more

complex and the scale of CI/CD pipelines increases,

automated methods for ensuring the integrity of software

artifacts are essential. These tools must be able to authenticate

and verify the authenticity of each artifact to maintain trust in

the pipeline’s outputs and prevent the deployment of

compromised software.

3.4 Challenges in Adopting Zero-Trust Security Models

Zero-trust security has gained significant attention as a way

to protect the software supply chain from internal and external

threats. Zero-trust assumes that no entity, inside or outside the

network, should be trusted by default. This paradigm is

particularly relevant to CI/CD environments, where malicious

actors can compromise any pipeline stage. However,

implementing zero-trust principles across a distributed,

cloud-native environment such as Kubernetes is challenging.

Organizations often struggle to ensure that every actor in the

CI/CD pipeline is continuously authenticated and that the

integrity of each artifact is validated. Moreover, enforcing

zero-trust policies requires sophisticated tools for

authentication, authorization, and auditing, which many

organizations lack. Achieving a true zero-trust model in

modern software delivery pipelines necessitates

comprehensive automation, continuous verification of

identities, and robust policy enforcement mechanisms to

prevent unauthorized access and maintain the security of the

entire pipeline.

4. Proposed Solutions

To address the security challenges identified in the previous

section, organizations must implement a comprehensive set

of solutions that enhance visibility, enforce policies, validate

the integrity of software artifacts, and adopt zero-trust

principles throughout their CI/CD pipelines. The proposed

solutions aim to secure modern software supply chains by

integrating automated security controls, improving artifact

verification processes, and strengthening policy enforcement.

Below are the proposed solutions that directly address the

four key problems identified in the problem statement.

4.1 Improving Supply Chain Visibility with Traceability

A lack of visibility into the software supply chain is one of

the primary risks in modern development pipelines. To

mitigate this issue, organizations must adopt traceability

frameworks that enable them to track the full lifecycle of

every software artifact, from source code to deployment.

Adopting tools such as in-toto can significantly improve

supply chain visibility by enabling cryptographic attestations

at every pipeline stage. This solution ensures that metadata

about the build process—such as the parties involved, testing

stages, and artifact signing—is securely recorded and

associated with the artifacts.

By integrating Tekton Chains with in-toto, organizations can

capture metadata at each build step, providing an immutable

record of artifact provenance. This enables teams to verify

that software artifacts come from trusted sources and have not

been tampered with during the build process. Additionally,

integrating metadata capture into the CI/CD pipeline ensures

that every artifact is traceable throughout its lifecycle. This

solution reduces the risk of dependency confusion attacks and

ensures the deployed software is authentic and secure.

Paper ID: SR210513123637 DOI: https://dx.doi.org/10.21275/SR210513123637 1380

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.86

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

To further enhance visibility, organizations should also

consider implementing tools that track third-party

dependencies and monitor any changes or updates to external

packages. Using tools such as Grype or Trivy, which scan

dependencies for vulnerabilities, can provide additional

insight into the software supply chain, allowing teams to

proactively identify and mitigate risks from external

components.

4.2 Strengthening Policy Enforcement in Kubernetes

Kubernetes’ flexibility and scalability make it a powerful

platform for deploying containerized workloads, but without

robust policy enforcement, its openness also introduces

significant security risks. Automated, consistent policy

enforcement in Kubernetes environments is critical to prevent

misconfigurations, insecure resource definitions, and

unvalidated deployments.

Organizations should adopt policy engines such as Open

Policy Agent (OPA) and Kyverno to address this issue to

enforce security best practices and compliance requirements.

OPA, in particular, enables the creation of custom policies

using the declarative Rego language, allowing security teams

to define rules that govern the security posture of Kubernetes

environments. For example, OPA can be used to ensure that

only authorized containers are allowed to run, prevent the use

of insecure image registries, and enforce compliance with

security configurations such as network policies and access

controls.

Kyverno, as a Kubernetes-native policy engine, offers a more

intuitive solution for organizations that prefer to work with

YAML configuration files. Kyverno integrates seamlessly

with Kubernetes workloads and allows for the creation of

policies that validate, mutate, or block resources based on

predefined rules. Its focus on native resource handling makes

it easier for Kubernetes operators to adopt and manage policy

enforcement, reducing the operational overhead.

Combining OPA or Kyverno with Gatekeeper, an extension

of OPA that integrates directly with the Kubernetes API,

ensures that policies are enforced from the very beginning of

the CI/CD pipeline. By integrating policy enforcement early

in the pipeline, teams can automatically prevent insecure or

non-compliant configurations from reaching production,

minimizing the risk of deployment-related vulnerabilities.

4.3 Ensuring Integrity Verification of Artifacts

The integrity of software artifacts is a fundamental concern in

modern CI/CD pipelines, as compromised or tampered

artifacts can introduce significant security risks. To address

this challenge, organizations must implement robust artifact

verification mechanisms that ensure every software

component is genuine and has not been altered during the

build process.

Tekton Chains, as part of the Tekton Pipelines framework,

plays a key role in ensuring the integrity of artifacts by

automatically generating cryptographic attestations during

the build process. These attestations, which are linked to the

build steps in the pipeline, allow consumers to verify that an

authorized party created the artifact and that the build process

was not compromised. Using cryptographic signatures and

metadata, Tekton Chains integrates seamlessly with the

CI/CD pipeline, enabling automated verification at each step

of the delivery pipeline.

Organizations should also adopt cosign and Rekor, tools

designed to sign and verify artifacts. Cosign provides secure,

keyless signing and verification of container images, ensuring

that artifacts are traceable and cannot be tampered with.

Rekor, a transparent logging service, stores the signatures and

attestations created by cosign, offering an immutable record

of all verified builds and artifacts. Together, these tools

provide end-to-end artifact verification, ensuring that only

trusted artifacts are deployed to production.

Combining these tools with automated build pipelines,

organizations can ensure that every artifact generated,

whether a container image or binary, is verified for integrity

before it is deployed, minimizing the risk of introducing

malicious code into production environments.

4.4 Adopting Zero-Trust Principles in CI/CD Pipelines

Zero-trust security, which operates on the principle of never

trusting any entity by default, is an essential paradigm for

securing modern software supply chains. Implementing zero-

trust principles in CI/CD environments is vital for mitigating

internal and external threats, particularly those arising from

compromised credentials or unauthorized access to the

pipeline.

To implement zero-trust security in a Kubernetes-based

CI/CD pipeline, organizations should leverage automated

identity and access management (IAM) tools to enforce

strong authentication and authorization at every step.

HashiCorp Vault and Kubernetes RBAC (Role-Based Access

Control) provide robust mechanisms for managing and

controlling access to resources within the pipeline. Vault, in

particular, allows organizations to securely manage secrets

and identities, ensuring that only authorized users and

systems can access critical resources.

Furthermore, integrating continuous verification into the

CI/CD pipeline through tools like OPA or Kyverno ensures

that every action, from code, commits to deployments, is

verified and authenticated. Policies should be designed to

enforce least-privilege access, limiting the permissions

granted to users and services to the minimum necessary for

performing their tasks. This minimizes the attack surface and

helps prevent privilege escalation attacks.

To further enhance security, organizations should also

implement audit logging and monitoring systems, providing

real-time visibility into CI/CD pipeline activities. Logs

should be tamper-evident and stored in immutable formats to

ensure that any unauthorized changes can be traced and

detected early.

5. Conclusion

The security of software supply chains has become a critical

concern as organizations increasingly rely on automated

CI/CD pipelines and containerized environments like

Paper ID: SR210513123637 DOI: https://dx.doi.org/10.21275/SR210513123637 1381

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.86

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Kubernetes for rapid software delivery. The risks introduced

by vulnerabilities, misconfigurations, and unauthorized

access to sensitive artifacts are significant and growing, as

evidenced by recent high-profile cyberattacks. As a result,

organizations must implement robust, automated security

controls throughout the development lifecycle to safeguard

the integrity of their software.

This paper has highlighted the major security challenges

modern development environments face, including limited

visibility into the software supply chain, inadequate policy

enforcement in Kubernetes-native environments, the need for

stronger artifact verification, and the adoption of zero-trust

principles. These challenges, if left unaddressed, leave

organizations vulnerable to attacks that can undermine the

trustworthiness and integrity of their software.

The proposed solutions—ranging from improved traceability

through tools like Tekton Chains and in-toto, to stronger

policy enforcement using Open Policy Agent (OPA) and

Kyverno, to the integration of artifact verification

mechanisms like cosign—offer a comprehensive strategy for

securing the software supply chain. Adopting zero-trust

security principles and integrating automated identity and

access management tools ensures that no entity within the

CI/CD pipeline is trusted by default, significantly reducing

the potential attack surface.

By integrating these solutions into their development

pipelines, organizations can enhance the security of their

software delivery processes, reduce the risk of exploitation by

malicious actors, and ensure compliance with security best

practices. This approach mitigates the risks associated with

insecure configurations and tampered artifacts and lays the

foundation for building trust with customers and stakeholders

by demonstrating a commitment to secure software

development.

In conclusion, securing the modern software supply chain

requires a multifaceted approach combining visibility,

automation, policy enforcement, and trust validation at every

CI/CD pipeline stage. Implementing the solutions outlined in

this paper provides a roadmap for organizations to achieve a

secure, efficient, and compliant software development

process, ultimately ensuring the safe delivery of applications

and services.

References

[1] Rangnau, T., Buijtenen, R.V., Fransen, F., & Turkmen,

F. (2020). Continuous Security Testing: A Case Study

on Integrating Dynamic Security Testing Tools in

CI/CD Pipelines. 2020 IEEE 24th International

Enterprise Distributed Object Computing Conference

(EDOC), 145-154.

[2] Guides: Kubernetes admission control. (n.d.). Open

Policy Agent.

https://www.openpolicyagent.org/docs/v0.12.2/guides-

kubernetes-admission-control/

[3] Jonas, K. (2019). Kubernetes Policy Enforcement with

Open Policy Agent

Gatekeeper. InfoQ. https://www.infoq.com/news/2019/

09/opa-gatekeeper-kubernetes/

[4] Preuveneers, D., & Joosen, W. (2019, June). Towards

multi-party policy-based access control in federations of

cloud and edge microservices. In 2019 IEEE European

Symposium on Security and Privacy Workshops

(EuroS&PW) (pp. 29-38). IEEE.

[5] Ahmed, M. (2020). Integrating open policy agent

(OPA) with kubernetes. Medium.

https://medium.com/swlh/integrating-open-policy-

agent-opa-with-kubernetes-a912bac9168d

[6] Torres-Arias, S., Afzali, H., Kuppusamy, T. K.,

Curtmola, R., & Cappos, J. (2019). in-toto: Providing

farm-to-table guarantees for bits and bytes. In 28th

USENIX Security Symposium (USENIX Security 19)

(pp. 1393-1410).

[7] Aravena, R. (2019). Let Your Software Supply Chain

Ride with Kubernetes {CI/CD}.

https://www.usenix.org/conference/lisa19/presentation/

aravena

[8] Martin, R. A. (2020, July). Visibility & control:

addressing supply chain challenges to trustworthy

software-enabled things. In 2020 IEEE Systems

Security Symposium (SSS) (pp. 1-4). IEEE.

[9] Imeri, A., Agoulmine, N., Feltus, C., & Khadraoui, D.

(2019). Blockchain: Analysis of the New Technological

Components as Opportunity to Solve the Trust Issues in

Supply Chain Management. Advances in Intelligent

Systems and Computing.

[10] Alert, C. I. S. A. (2020, December). Advanced

persistent threat compromise of government agencies,

critical infrastructure, and private sector organizations.

Paper ID: SR210513123637 DOI: https://dx.doi.org/10.21275/SR210513123637 1382

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.openpolicyagent.org/docs/v0.12.2/guides-kubernetes-admission-control/
https://www.openpolicyagent.org/docs/v0.12.2/guides-kubernetes-admission-control/
https://www.infoq.com/news/2019/09/opa-gatekeeper-kubernetes/
https://www.infoq.com/news/2019/09/opa-gatekeeper-kubernetes/
https://medium.com/swlh/integrating-open-policy-agent-opa-with-kubernetes-a912bac9168d
https://medium.com/swlh/integrating-open-policy-agent-opa-with-kubernetes-a912bac9168d
https://www.usenix.org/conference/lisa19/presentation/aravena
https://www.usenix.org/conference/lisa19/presentation/aravena

