
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The Deadlock Problem - A Review

Naveen Dubey

Scholar, CSE Department PDM University, Bahadurgarh, Haryana, India

Abstract: Deadlock is a phenomenon in which a system or a part of it remains indefinitely blocked and cannot terminate its

task. Such phenomenon often implies disaster in man-made system and, therefore must be carefully handled by system designers,

analysts and engineers. Computer systems are prone to deadlock. Deadlock is a result to some uncontrolled sequence of release

and request of resource among processes in a system. This survey paper presents some system models and deadlock handling

techniques to deal with the problem. Selected algorithms are also presented to see how deadlocks can be deleted. In this paper, we

are going to presents several algorithms that handle deadlock in a system. A deadlock can be resolved by aborting one or more

processes in the deadlocked-set and is released, and withdraw all the resource requests it has made.

Keywords: Deadlock, Condition for deadlock, Deadlock prevention, Deadlock avoidance, Deadlock detection, Deadlock handling,

Deadlock recovery, Banker’s Algorithm

1. Introduction

A set of process is in a deadlock state if each process in

the set is waiting for an event that can be caused by only

another process in the set. In other words, each member

of set of deadlock processes is waiting for a resource that

can be released only by a deadlock process. None of the

processes can run, none of them can release any

resources, and none of them can be awakened. It is

important to note that the number of processes and the

number and kind of processed and requested are

unimportant.

The resources may be either physical or logical.

Examples of physical resources and printers. Tape

Drivers, Memory Space and CPU Cycles. Examples of

logic resources and files, Semaphores, and Monitors.

A process May utilize a resource in the sequence

Request, Use and release. These operations are

accomplished by wait and signal. A set of process is in

deadlock state when every process in the set of waiting

for an event that can be caused only by another process in

the set. Deadlock detected by the wait -for-graph.

Deadlock is removed by different mechanisms like

deadlock prevention, deadlock handling and deadlock

recovery.

2. Explanation

Deadlock Conditions

Process do not run constantly from the time they are

created until their termination; they can be identified in

three different state; ready, running and blocked. At the

ready state, a process is stopped, allowing some other

process to run, at the running state, a process is utilizing

some resource, and at the blocked state, the process id

stopped and will not start running again something trigger

it to restart.

1) Mutual Exclusion Condition

There should be a resource that can be held by one

process at a time. In a diagram below, there is a signal

instance of Resource 1 and it is held by Process 1 only.

2) Hold and Wait

A process can hold multiple resources and still request

more resources from other processes which are holding

them. In the Process 2 holds resource 2 and Resource 3

and is requesting the resource 1 which is held by process

1.

3) No Preemption

Resources cannot be preempted from a process by force. A

process can only released a resource voluntarily. In the

diagram below, Process 2 cannot preempt Resource 1 from

Process 1.It will only be released when process 1

relinquishes it voluntarily after its execution is complete.

Paper ID: MR21430195044 DOI: 10.21275/MR21430195044 271

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4) Circular Wait

A process is waiting for the resource held by the second

process, which is waiting for the resource held by the

third process and so on, till the last process is waiting for

a resource held by the first process. This forms a circular

chain. For example: Process 1 is allocated Resource 2 and

it is requesting Resource 1. Similarly, Process 2 is

allocated Resource 1 and it is requesting Resource 2. This

forms a circular wait loop.

How to deal with Deadlock?

In general, there are four strategies of dealing with

deadlock problem.

1) The Ostrich Approach

2) Just ignore the deadlock problem altogether.

3) Deadlock Prevention

4) Prevent deadlock by resource scheduling so us to

negate at least one of the four conditions.

5) Deadlock Avoidance

6) Avoid deadlock by resource scheduling.

7) Deadlock Detection and Recovery

8) Detect deadlock and when it occurs, take steps to

recover.

The Ostrich Approach

In this approach, the deadlock is ignored and user

continues its working.

Deadlock Prevention

By ensuring that at least one of these conditions cannot

hold, we can prevent the occurrence of a deadlock.

Elimination of “Mutual Exclusion” Condition

The mutual exclusion must hold only for non-shareable

resource. That is, several processes cannot

simultaneously share a single resource. This condition is

difficult to eliminate because some resource such as the

tap drive and printer, are inherently non-shareable Note

that shareable resources like read-only-file do not require

mutually exclusive access and thus cannot be involved in

deadlock.

Elimination of “Hold and wait” Condition

There are two possibilities for elimination of the second

condition. The first alternative is that a process request be

granted all of the resources it needs at once, prior to

execution. The second alternative is to disallow a process

from requesting resources whenever it has previously

allocated resource. This strategy requires that all of the

resource a process will need must be requested at once.

The system must grant resource on “all or none” basis. If

the complete set of resource needed by a process is not

currently available, then the process waits until the

complete set is available. While the process waits,

however, it may not hold any resource. Thus the “wait

for” conditions are denied and deadlocks simply cannot

occurs. This strategy can lead serious waste of resource.

Elimination of “No-Preemption” Condition

The non-preemption condition can be alleviated by

forcing waiting for a resource that cannot immediately be

allocated to relinquish all of its currently held resource so

that processes may use them to finish. Suppose a system

does allow process to hold resource while requesting

additional resource.

Consider what happens when a request cannot be

satisfied. A process holds resources a second process may

need in order to proceed while second process may hold

the resource needed by the first resource. This is a

deadlock. This strategy requires that when a process that

is holding some resource is denied a request for

additional resources. The process must release its held

resources and, if necessary, a request then again together

resource, Implementation of this strategy denies the “no-

preemption” condition effectively.

High cost when a process release resource the process

may lose all its work to that point. One serious

consequence of this strategy is that possibility of

indefinite postponement (starvation).A process might be

held off indefinitely as it repeatedly requests and release

the same.

Elimination of “Circular wait” Condition

The last condition, the circular wait, can be denied by

imposing a total ordering on all of the resource types and

than forcing, all processes to request the resource in

order(increasing or decreasing).This strategy impose a

total ordering of all resource types, and to require that

each process requests resources in a numerical order of

enumeration. With this rule, resource allocation graph

can never have a cycle.

Deadlock Avoidance

In deadlock avoidance, the request for any resource will

be granted if the resulting state of the resource doesn’t

cause deadlock in the system. The state of the system will

continuously be checked for the unsafe states.

In order to avoid of avoid deadlock, the process must tell

OS, the maximum number of resource a process can

request to complete its execution.

The simplest and most useful approach states that the

process should declare the maximum number of resource

of each type it may ever need. The deadlock avoidance

algorithm examines the resource allocations so that there

can never be a circular wait condition.

Safe State: A state is safe if the system can allocate

Paper ID: MR21430195044 DOI: 10.21275/MR21430195044 272

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

resource to each process in some order and still avoid a

deadlock. A system is in safe state only if there exists a

safe sequence. A safe sequence of process is a safe

sequence if it can allocate the resource to the processes.

Unsafe State: A deadlock state is unsafe state. An unsafe

state may lead to a deadlock. In an unsafe state, the

operating system cannot prevent processes from

requesting resources.

Banker’s Algorithm

This is a deadlock avoidance algorithm. The was chosen

because this algorithm could be used in a banking system

to ensure that the bank never allocates. Its available cash

such that it can longer satisfy the needs of all customers.

When a new process enters the system, it must declare

the maximum of instances of each resource type that it

may need. This number may not exceed the total number

of resources will leave the system in a safe state. If it will

the resource are allocated; otherwise, the process must

wait until some other release enough resources.

In this analogy Customers=process Units=resource, say,

tape, drive Banker=Operating System

Customers Used Max

A 0 6

B 0 5

C 0 4

D 0 7

Available Units=10

Figure 1

We see four customers each of whom has been granted a

number of credit units. The banker reserved only 10 units

than 22 units to service them. At certain moment, the

situation becomes.

Customers Used Max

A 1 6

B 1 5

C 2 4

D 4 7

Available Units=2

Figure 2

Safe State: The key to a same being is that there is at least

one way for all users to finish. In other analogy, the state

of figure 2 is safe because with 2 units left, the banker

can delay any request exception C’s, thus letting C finish

and release all four resource. With four units in hand , the

banker can let either D or B have the necessary units and

so on. Unsafe State: Consider what would happen if a

request from B for one more unit were granted in above

figure 2. We would have following situation.

Customer User Max

A 1 6

B 2 5

C 2 4

D 4 7

Available Units=1

Figure 3

This is an unsafe state. If all the customers namely A, B, C

and D asked for their loans, then banker could not satisfy

any of them we would have a deadlock.

Deadlock Detection

Deadlock detection is an important task done by

operating system. Deadlock detection came into action

because operating system does not take any precautionary

measures to avoid the deadlock instead of it detects the

deadlock and recover it.

Deadlock detection consists of two cases:

1) Resource has single instance.

2) Resource has multiple instances.

In case of single instance, we make wait- for graph, in

which each vertex represents a process and an edge exists

between two processes if a resource is owned by latter

which is needed by former. Wait-for graph detects the

deadlock if a cycle exists.

In case of multiple instance, deadlock detection

algorithm is used:

1) Let work be vector of length m. Finnish be vector of

length n. Initialize work=Available. For I=0, 1, 2,

…..n-1. If Allocation (i)!=0, finish[I]=false, else

Finish[I]=true.

2) Find an index such that: finish[I]=true and

request[I]<=work. If I does not exists go to step 4.

3) Work=Work+Allocation, finish[I]=true, Go to step 2.

4) If finish[I]=false, for some I, 0<=I<=n

5) The process P(i) is deadlocked, and hence system is

deadlocked.

Deadlock Recovery

If deadlock is detected, operating system recovers it by

following cases:

1) Kill the process:

In case of processes, either kill the one process which

causes the deadlock or kill all the processes involved.

2) Preemption:

In case of resources, preemption allocation of resources is

done.

3) Rollback:

With the help of database recorded by operating system,

resource is rolled back to n- safe states.

3. Conclusion

Deadlocks are undesirable but unavoidable conditions

occurred in the systems due to multiple variables used.

The fact of indefinite loop may loosen the confidence of

user. The techniques proposed in the paper may give

confidence to the user to detect deadlock and recover the

system.

References

[1] DIJKSTRA, E. W. "Co-operating sequential

processes." In Programming languages: NATO

Paper ID: MR21430195044 DOI: 10.21275/MR21430195044 273

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

advanced study institute. F. GENUYS (ED.),

Academic Press, London. 1968.

[2] IBM System~360 operating system, supervisor a~*d

data m (management services. Form C28-6646- 2,

IBM, White Plains, N. Y., 1968.

[3] DENNIS, J. B.; AND VAN HOnN, E. C.

"Programming semantics for multiprogrammed

computations." Comm. ACM 9, 3 (March 1966), 143-

155.

[4] HAVENDEa. J. W. "Avoiding deadlock in nnllti-

tasking systems." IBM Systems Journal 2 (1968), 74-

84.

[5] BRAUOE, E. J. "An algorithm for the detection of

system deadlocks." IBM Technical Report: TROO.

791, IBM Data Systems Division, Poughkeepsie, N.

Y., 1961.

[6] DIJKSTaA, E.W. "The structure of the THE

multiprogramming system." Comm. ACM 11, 5 (May

1968), 341-346.

[7] HOLT, RICHARD C. "On deadlock in computer

systems." (PhD Dissertation) Department of Computer

Science. Cornell University, Ithaca, N.Y., Jan. 1971.

[8] P. Brinch Hansen, Operating System Principles,

Prentice-Hall, Englewood Cliffs, N. J., 1973, pp. 42–

49, 124–125.

[9] N. Habermann, “Prevention of System Deadlocks, ”

Comm. ACM, Vol. 12, No. 7, July 1969, pp. 373–377,

385.

[10] R. C. Holt, “Some Deadlock Properties of Computer

Systems, ” Computing Surveys, Vol. 4, No. 3, Sept.

1972, pp. 179–196.

[11] W. W. Chu and G. Ohlmacher, “Avoiding Deadlock in

Distributed Data Bases, ” Proc. ACM Nat’l Conf., Nov.

1974, pp. 156–160.

[12] N. Chandra, W. G. Howe, and D. P. Karp,

“Communication Protocol for Deadlock Detection in

Computer Networks, ” IBM Technical Disclosure

Bulletin, Vol. 16, No. 10, Mar. 1974, pp. 3471–3481.

[13] S. A. Mahmoud and J. S. Riordon, “Software

Controlled Access to Distributed Data Bases, ”

INFOR, Vol. 15, No. 1, Feb. 1977, pp. 22–36.

[14] F.J. Maryanski, "A survey of developments in

distributed data base management systems, " IEEE

Computer, vol. 11, February 1978, 28-38.

[15] R.C. Holt, "Some deadlock properties of computer

systems, " Computing Surveys, vol. 4, September 1972,

179-196

[16] Shoshani and A.J. Bernstein, "Synchronization ina

parallel accessed data base, " CACM, vol. 12,

November 1969, 604-607.

[17] P.F. King and A.J. CoUmeyer, "Database sharing: an

efficient mechanism for supporting concurrent

processes, " Proc. AFIPS National Computer

Conference, 42, June 1973, pp. 271-275.

[18] D.D. Chamberlin, R.F. Boyce, and I.L. Traiger, "A

deadlock-free scheme for resource locking in a data-

base environment, " Information processing 74, Proc.

IFIP Congress. Amsterdam: North-Holland Publishing

Co., August 1974, pp. 340- 343.

[19] S.A. Mahmoud and J.S. Riordon, "Software controlled

access to distributed data bases, " INFOR, vol. 15,

February 1977, 22-36.

[20] B. Goldman, "Deadlock detection in computer

networks, " Technical Report MIT/LCS/TR-185.

Laboratory for Computer Science, M.I.T., Cambridge,

Mass., September 1977. (180 pages)

[21] E.G. Coffman, Jr., M.J. Elphick, and A. Shoshani,

"System deadlocks, " Computing Surveys, vol. 3, June

1971, 67-78.

[22] G. Le Lann, "Pseudo-dynamic resource allocation in

distributed databases, " Proc. Fourth International

Conf. on Computer Communications, ICCC-78, Kyoto,

Japan, September 1978, pp. 245-251.

Author Profile

Naveen Dubey is a B.tech 3rd year student in

department of Computer Science and Engineering

College, Bahadurgarh, Haryana, India. His area of

interest is Web Development, Machine learning and

Deep learning.

Paper ID: MR21430195044 DOI: 10.21275/MR21430195044 274

http://b.tech/

