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Abstract: This paper illuminates the profound impact of Machine Learning (ML) and Artificial Intelligence (AI) in modern industries, 

charting their journey from academic concepts to vital business tools. The surge in implementation, however, introduces a critical 

challenge: technical debt. Expanding on three key dimensions, code dependencies, data dependencies, and system dependencies—the 

paper explores the entanglement challenge in code, untangling complexity in data dependencies, and addressing high-debt design patterns 

in systems. It advocates for a holistic approach to measuring and mitigating technical debt, emphasizing guiding questions and good 

practices. The article concludes by stressing the imperative of fostering a culture that recognizes and prioritizes the reduction of technical 

debt for sustained success in the dynamic landscape of ML and AI.  
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1. Introduction 
 

Machine Learning (ML) and Artificial Intelligence (AI) have 

become pivotal players in the technological landscape, 

witnessing an unprecedented surge in adoption across diverse 

industries. The last few years have seen these technologies 

evolve from theoretical constructs tested on academic 

datasets to indispensable tools underpinning critical business 

operations. This paradigm shift, however, is not without its 

challenges, and one of the most formidable adversaries is the 

accrual of technical debt.  

 

The meteoric rise of ML and AI has led to a frenetic pace of 

implementation in production environments. Organizations, 

eager to capitalize on the potential business impact, often 

prioritize speed over meticulous engineering. Consequently, 

technical debt, a concept introduced by Ward Cunningham, 

has become a significant concern in the realm of ML and AI 

projects. Much like financial debt, technical debt is incurred 

for the sake of expediency and building new systems, but its 

unbridled accumulation can have detrimental effects on the 

overall health of these projects.  

 

In this dynamic landscape, where research in ML and its 

sibling field, Deep Learning, is expanding exponentially, 

managing technical debt is a critical imperative. As 

organizations transition from proof - of - concept stages to 

integrating ML and AI into actual business processes, the 

challenges associated with technical debt manifest in three 

primary aspects [1]: code dependencies, data dependencies, 

and system dependencies.  

 

Code Dependencies: The Entanglement Challenge 

In traditional software engineering, best practices often 

advocate for the establishment of robust abstraction 

boundaries through encapsulation and modular design [2]. 

These principles contribute to creating maintainable code, 

facilitating isolated changes, and enabling incremental 

improvements. However, the application of these practices 

becomes inherently challenging in ML systems, where 

adherence to specific intended behavior is elusive.  

 

The entanglement challenge arises as ML models, designed 

as tools for amalgamating data sources, create intricate 

dependencies. This phenomenon, encapsulated in the CACE 

(pronounced as "cake") Principle—Changing Anything 

Changes Everything—underlines the difficulty in isolating 

improvements. The entanglement resulting from ML 

packages can make the isolation of changes practically 

impossible, leading to a rapid accrual of technical debt.  

 

Addressing this challenge involves a dual - pronged approach. 

Firstly, isolating models and service ensembles is crucial, 

striking a balance between managing separate models and 

enforcing modularity to mitigate entanglement. Secondly, 

gaining deep insights into the behavior of model predictions 

becomes paramount. This can be achieved through the 

development of visualization tools and metrics spanning 

multiple dimensions, providing a nuanced understanding of 

the system's intricacies.  

 

Another facet of code dependencies is the presence of hidden 

feedback loops [3]. Systems that learn from real - world 

behavior, such as predicting click - through rates of news 

headlines, often rely on user clicks as training labels. This 

creates a feedback loop where predictions from the model 

influence user behavior, leading to challenges in analyzing 

system performance. Detecting and eliminating hidden 

feedback loops are essential steps in mitigating technical debt 

in this aspect.  

 

Data Dependencies: Untangling Complexity 

Data dependencies in ML models introduce a layer of 

complexity that is distinct from code dependencies [3]. These 

dependencies can stem from various sources, including input 

features from other ML models, and can be harder to identify 

and untangle. Legacy features, bundled features, and epsilon 
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(ǫ) - features contribute to the entanglement of data 

dependencies.  

 

Legacy features, once integral to a model, may become 

redundant over time as new features are added. Detecting this 

redundancy and removing such features is crucial to reducing 

data dependencies. Similarly, bundled features, added under 

time constraints, can mask the value of individual features, 

leading to unnecessary complexity. Regularly evaluating and 

testing features can help identify those that contribute little or 

no value.  

 

ML researchers, driven by the pursuit of improved accuracy, 

may introduce epsilon (ǫ) - features to a model even when the 

gain in accuracy is marginal. This practice, while seemingly 

beneficial, adds complexity overhead. Mitigating this 

involves periodically evaluating the impact of individual 

features on model accuracy and removing those that do not 

significantly contribute.  

 

System Dependencies: Tackling Design Patterns 

System dependencies in ML projects often result in high - 

debt design patterns. Glue code and pipeline jungles are two 

prominent anti - design patterns that pose challenges and 

should be avoided or refactored.  

 

Glue code, often employed by ML researchers to develop 

general - purpose solutions, becomes unwieldy as it 

accumulates outside the core packages. While these generic 

systems are useful, managing the supporting code can become 

onerous and costly for long - term maintenance. Reducing 

glue code involves re - implementing specific algorithms 

within the broader system architecture, thereby minimizing 

the need for extensive supporting code.  

 

Pipeline jungles, a subtype of glue code, commonly emerge 

in data preparation. These complex webs of scrapes, joins, 

and sampling steps can evolve organically, making them 

challenging to manage and prone to errors. Redesigning data 

collection and feature extraction processes holistically can 

help avoid the pitfalls of pipeline jungles, even though it 

requires a significant investment of engineering effort.  

 

Measuring and Paying Off Technical Debt: A Holistic 

Approach 

While the metaphor of technical debt resonates strongly in the 

software engineering realm, it lacks strict metrics for tracking 

over time. Balancing the need for teams to move quickly with 

the imperative of establishing low - debt good practices is an 

ongoing challenge [5]. Several questions can guide teams in 

assessing and addressing technical debt:  

Does improving one model or signal degrade others? 

How quickly can new team members be onboard with the 

existing codebase and architecture? 

How easily can a new algorithm be tested at full scale? 

 

In addition to these considerations, adopting good practices is 

essential. This includes code refactoring, enhancing unit tests, 

erasing dead code and comments, reducing dependencies, and 

regularly reviewing documentation. These practices 

contribute to the overall health of ML and AI projects by 

ensuring that technical debt is managed and mitigated 

effectively.  

Paying ML - related technical debt requires dedicated 

commitment and a shift in mindset and team culture. 

Recognizing, prioritizing, and rewarding efforts aimed at 

reducing technical debt should be integral pillars in fostering 

the long - term health and success of data science teams. This 

commitment ensures that as ML and AI technologies continue 

to evolve, the foundations supporting their implementation 

remain robust and resilient.  

 

2. Conclusion 
  

Effectively managing technical debt in ML and AI projects 

requires addressing three critical dimensions: code 

dependencies, data dependencies, and system dependencies. 

Strategies involve isolating models and gaining insights into 

their behavior, untangling complexity in data dependencies, 

and reducing high - debt design patterns in systems.  

 

A holistic approach to measuring and mitigating technical 

debt involves posing crucial questions and adopting good 

practices such as code refactoring and regular documentation 

reviews. Success in paying down ML - related technical debt 

hinges on a committed team culture that recognizes, and 

rewards efforts aimed at reducing technical debt. By 

systematically addressing these challenges, data science 

teams ensure the enduring health and success of ML and AI 

implementations amidst ongoing technological 

advancements.  
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