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Abstract: Fingerspelled sign learning is the initial stage of sign learning and moreover, are used when no corresponding sign exists 

or signer is not aware of it. Most of the existing tools for sign language learning use external sensors which are costly and unreliable. . 

The ASL, short for American Sign Language is the most widely used sign language across the globe with certain variations according 

to the country.Sign language recognition can improve the problem that the number of people who need to use sign language is large 

but the popularity of sign language is poor, and provide a more convenient way of study, work and life for people with hearing and 

language impairment. Hand locating and sign language recognition methods can generally be divided into traditional methods and 

deep learning methods. In recent years, with the brilliant achievements of deep learning in the field of computer vision, it has been 

proved that the method based on deep learning has many advantages, such as rich feature extraction, strong modeling ability and 

intuitive training. Therefore, this paper studies hand locating and sign language recognition of common sign language based on neural 

network.we proposed an efficient deep convolutional neural networks approach for hand gesture recognition. The proposed approach 

employed transfer learning to beat the scarcity of a large labeled hand gesture dataset 
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1. Introduction  
 

The hand gesture is a nonverbal form of communication. It 

consists of linguistic content that carries a large amount of 

information in sign language. It also plays a pivotal role in 

human-computer interaction (HCI) systems. Therefore, 

automatic hand gesture recognition is in high demand. Since 

the end of the last century, this field has attracted the 

attention of many researchers. The importance of automatic 

hand gesture recognition has increased for the following 

reasons (1) the growth of the deaf and hard-of-hearing 

populations, and (2) the extended use of vision-based and 

touchless applications and devices such as video games, 

smart TV control, and virtual reality applications. Robust 

hand gesture recognition is required as a part of sign 

language interpretation to help hearing-impaired people. 

There is a significant communication gap between people 

who can hear and hearing-impaired people. A translation 

system between gestural language and verbal language will 

bridge this communication gap. This translation system will 

facilitate the lives of hearing-impaired people and help them 

to integrate with society. Unlike sign language translation, 

hand gesture recognition techniques involve HCI to a great 

degree. 

 

Today, HCI has a wide range of applications from video 

games to telesurgery. As with all time-varying signals, hand 

gestures cannot be directly compared in Euclidean space 

because of their temporal dependency. This dependency 

indicates important discriminative features. Temporal 

misalignment, in addition to massive irrelevant regions in 

every frame, makes it very hard to extract representative 

hand-engineered features for hand gestures. For 

conventional classifiers to perform well, the extracted 

features should implicate vigorous descriptors. These 

descriptors code enough information for the inter-frames 

temporal dependency, as well as the hand position, shape 

and orientation in each frame. The computed features 

should be able to minimize the effect of different 

circumstances like background clutter and occlusions. 

Therefore, we employed deep learning in this paper as a 

promising solution. 

 

In recent years, many researchers have efficiently exploited 

convolutional neural networks (CNNs) deep architectures 

for feature engineering. CNNs have shown excellent 

performance in fields such as object and speech recognition, 

image classification, and edge distribution and human 

activity recognition. The existence of large datasets that 

comprise millions of annotated samples is the main reason 

behind such excellent performance. Unfortunately, the 

requirement for a large labeled dataset is not met in the case 

of hand gestures. To beat the scarcity of labeled dataset for 

fitting deep architectures, the transfer learning is 

investigated in this study. We propose a well-adapted deep 

architecture for automatic hand gesture recognition. The 

main contributions of this study are as follows: 

1) A method to normalize the spatial dimensions of 

gesture videos based on the facial position, facial 

length, and human body part ratios. The signer does not 

need to be in the center of the frame or be a fixed 

distance from the camera. 

2) A 3DCNN model to learn region-based spatiotemporal 

features for hand gestures. The input of this model is a 

sequence of RGB frames captured by a basic camera. It 

does not require other input channels, colored gloves, 

or a complex setup. 

3) Developing different fusion techniques to globalize the 

local features learned by the 3DCNN model and 

comparing their performance. 

 

 

Paper ID: SR21410153004 DOI: 10.21275/SR21410153004 1349 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2019): 7.583 

Volume 10 Issue 4, April 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

1.1 3D Convolutional Neural Network 

 

In 2D CNNs, 2D convolution is performed at the 

convolutional layers to extract features from local 

neighborhood on feature maps in the previous layer. Then 

an additive bias is applied and the result is passed through a 

sigmoid function. Formally, the value of unit at position (x, 

y) in the j
th

feature map in the i
th

 layer, denoted as 𝑣𝑦𝑗
𝑥𝑖 , is 

given by 

 
where tanh(·) is the hyperbolic tangent function  𝑏𝑖𝑗 , is the 

bias for this feature map, m indexes over the set of feature 

maps in the (i − 1)
th

 layer connected to the current feature 

map, 𝑤𝑖𝑗𝑘
𝑝𝑞

 is the value at the position (p, q) of the kernel 

connected to the kth feature map, and 𝑃𝑖  and 𝑄𝑖  are the 

height and width of the kernel, respectively. In the 

subsampling layers, the resolution of the feature maps is 

reduced by pooling over local neighbourhood on the feature 

maps in the previous layer, thereby increasing invariance to 

distortions on the inputs. A CNN architecture can be 

constructed by stacking multiple layers of convolution and 

subsampling in an alternating fashion. The parameters of 

CNN, such as the bias 𝑏𝑖𝑗 and the kernel weight  𝑤𝑖𝑗𝑘
𝑝𝑞

are 

usually trained using either supervised or unsupervised 

approaches. 

 
Figure 2.1: Basic steps in 3D CNN 

 

1.2 3D Convolution 

 

In 2D CNNs, convolutions are applied on the 2D feature 

maps to compute features from the spatial dimensions only. 

When applied to video analysis problems, it is desirable to 

capture the motion information encoded in multiple 

contiguous frames. To this end, we propose to perform 3D 

convolutions in the convolution stages of CNNs to compute 

features from both spatial and temporal dimensions. The 3D 

convolution is achieved by convolving a 3D kernel to the 

cube formed by stacking multiple contiguous frames 

together. By this construction, the feature maps in the 

convolution layer is connected to multiple contiguous 

frames in the previous layer, thereby capturing motion 

information. Formally, the value at position (x, y, z) on the 

j
th

 feature map in the i
th

layer is given by 

 
Figure 4.1: A 3D CNN architecture for human action 

recognition. This architecture consists of 1 hardwired layer, 

3 convolution layers, 2 subsampling layers, and 1 full 

connection layer 

 

where Ri is the size of the 3D kernel along the temporal 

dimension, 𝑤𝑖𝑗𝑘
𝑝𝑞

 is the (p, q, r)
th

 value of the kernel 

connected to the mth feature map in the previous layer. A 

comparison of 2D and 3D convolutions is given in Figure 1. 

Note that a 3D convolutional kernel can only extract one 

type of features from the frame cube, since the kernel 

weights are replicated across the entire cube. A general 

design principle of CNNs is that the number of feature maps 

should be increased in late layers by generating multiple 

types of features from the same set of lower-level feature 

maps. Similar to the case of 2D convolution, this can be 

achieved by applying multiple 3D convolutions with distinct 

kernels to the same location in the previous layer 

 
 

1.3 A 3D CNN Architecture 

 

Based on the 3D convolution described above, a variety of 

CNN architectures can be devised. In the following, we 

describe a 3D CNN architecture that we have developed for 

human action recognition on the TRECVID data set. In this 

architecture shown in Figure 3, we consider 7 frames of size 

60×40 centered on the current frame as inputs to the 3D 

CNN model. We first apply a set of hardwired kernels to 

generate multiple channels of information from the input 

frames. This results in 33 feature maps in the second layer 

in 5 different channels known as gray, gradient-x, gradient-

y, optflow-x, and optflow-y. The gray channel contains the 

gray pixel values of the 7 input frames. The feature maps in 

the gradient-x and gradient-y channels are obtained by 

computing gradients along the horizontal and vertical 
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directions, respectively, on each of the 7 input frames, and 

the optflow-x and outflow-y channels contain the optical 

flow fields, along the horizontal and vertical directions, 

respectively, computed from adjacent input frames. This 

hardwired layer is used to encode our prior knowledge on 

features, and this scheme usually leads to better 

performance as compared to random initialization 

 
 

2. Proposed System 
 

In this study, we utilized a 3DCNN architecture for 

spatiotemporal feature learning using two approaches. In the 

first approach, 3DCNN was used to extract the features 

from the entire video sample, while a SoftMax layer was 

used for classification. In the second approach, we aimed to 

enhance the temporal dependency of the video frames. To 

achieve this, the same 3DCNN architecture was trained to 

extract the features from different regions in the video 

sample. We then investigated different techniques for 

feature fusion.  

 

2.1 Single 3DCNN Structure  

 

 
 

The system proposed in the first approach is illustrated in 

Fig. 2. It consists of three main phases: video preprocessing, 

feature learning, and classification.  

 

1) Video Preprocessing  

The first step in the preprocessing phase was converting the 

input video into RGB frames sequence. Because the video 

sequences had different durations, linear sampling was 

applied to normalize all the sequences to a fixed length of 

16 frames, as the original model was fit on video sequences 

of 16 frames each. The corresponding indices of 16 frames 

are calculated asin (1). 

 
where, len(input) is the length of the input sequence. Other 

techniques such as the Bag of Visual Words have been used 

in the literature to normalize the temporal dimension of the 

input videos. Linear sampling was preferred in this work to 

preserve the order of the selected frames. The order of the 

selected frames indicates essential discriminative features in 

gesture recognition. 

 

However, spatial dimension. 

 

 
Figure 5.1: Cropping the signing space 

 

normalization was also required to overcome variations in 

the heights and distances of the signers from the camera. 

We achieved this normalization in two steps: - First, we 

employed the face detection algorithm proposed by Viola 

and Jones  to detect the face of the signer in the first frame 

of the sequence. - Then, based on the position and height of 

the detected face, we used the human body part ratios  to 

estimate the height and width of the gesture space to be 

cropped in all frames, as illustrated in Fig. 3. The final step 

in the preprocessing phase was to resize the cropped square 

frames in all input videos to a fixed size of 112 × 112 pixels 

while maintaining the same aspect ratio. The RGB channels 

of each gesture sample were also normalized separately 

such that each channel had a zero mean and unit variance. 

This resizing and normalization reduced the computation 

cost and training convergence of the model in the next 

phase. The final inputs to the feature learning phase were 

112 × 112 × 16 × 3 volumes. 

 

2) Feature Learning  

A deep 3DCNN is proposed for feature learning, to extract 

the local spatiotemporal features of gesture sequences. 

Transfer learning was employed here to beat the scarcity of 

a large labeled dataset of gestures. We started with a pre-

trained version of the 3DCNN structure. This had already 

been trained using millions of samples of human action 

recognition. After excluding the output layer, the structure 

consisted of six consecutive blocks. The first two blocks 

have a single 3DCNN layer each. The first layer comprises 

64 kernels and the second comprises 128 kernels. The third 

block contains two 3DCNN layers, each of 256 kernels. The 

fourth block contains two 3DCNN layers, each of 512 

kernels. The fifth block contains two 3DCNN layers, each 

of 512 kernels and a zero-padding layer. The sixth block 

consists of two dense layers with 4096 neurons each. These 

two layers globalize the feature modeling. The output of 

each of the first four blocks transits to the successive block 

through a max-pooling layer. All 3DCNN kernels are (3 × 3 

× 3) in size with a stride of (1 × 1 × 1). All max-pooling 

kernels are of size (2 × 2 × 2) with stride (2 × 2 × 2), except 

for the max-pooling kernel that follows the first block, 

which is of size (1 × 2 × 2) with stride (1 × 2 × 2) to 

preserve the temporal information in the early stage. A 

simple nonlinear function rectified linear unit (ReLU) was 

used for activation, as shown in (2). This function was 

preferred as it has a simple derivative to speed up large-

network training [32]. ReLU (x) = ( x, x ≥ 0 0, x < 0 (2) 

Each 3D kernel in the first layer is convolved to a volume of 

the 16 input stacking frames to produce a spatiotemporal 
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feature map. The 3D kernels in the successive layers are 

similarly convolved to a volume of stacking feature maps 

produced by the predecessor layers. In general, the value at 

any position (x, y, z) on the Kth feature map in the Lth layer 

is calculated as 

 
where PL, QL, and RL are the dimensions of the 3D kernel 

and W pqr LKm is the (p, q, r) 
th

 value of the kernel 

connected to the m
th

 feature map in the preceding layer. The 

two fully connected layers globalize the feature modeling 

where the last layer outputs a feature vector length of 4096 

to represent each sample 

 
Figure 5.2: Fusion of parallel 3DCNN structure 

 

3) Classification  

The features extracted in the previous phase are fed into a 

SoftMax layer for classification, as illustrated in Fig. 2. The 

SoftMax activation function as defined in (4) outputs the 

probability of each class. The predicted output is the class 

with the maximum probability. 

 
 

2.2 Fusion of Parallel 3DCNN Structure 
 

In the second approach, the proposed system enhanced the 

temporal contribution of the extracted features. To achieve 

this, in the preprocessing phase, linear sampling is applied 

to select 32 frames instead of 16 frames. Thereafter, three 

instances of the deep 3DCNN structure described in the 

previous approach are utilized to learn the spatiotemporal 

features in the beginning, middle, and end of the video 

sequence. The selected frames are divided into three short 

clips of 16 frames each with a 50% overlap. Each deep 

3DCNN instance is trained to extract the features from one 

of the three clips. Various techniques are then utilized to 

fuse the features extracted from different parts of the video 

 
Figure 6.1: In depth cropping 

 

Finally, the fused features are forwarded to the SoftMax 

layer for classification. Fig. 5.2 illustrates a general diagram 

of the second approach. Feature fusion Three techniques for 

feature fusion, multilayer perceptron (MLP) neural network, 

long short-term memory (LSTM) network, and stacked 

autoencoder were investigated.  

 

MLP Fusion  

MLP processes the input features through a series of 

computational nodes called neurons. These neurons are 

grouped into consecutive layers and interconnected with one 

another via weighted connections. These neurons transform 

the features by performing nonlinear operations. The 

features are then projected into a space where the input 

becomes linearly separable. MLP architectures with 

different numbers of layers were investigated in this 

research. 

 

LSTM Fusion 

An LSTM is a recurrent neural network (RNN) adopted to 

learn long-term contextual dependencies from learned local 

feature sequences. Fig. 6.3 illustrates the basic building 

block of LSTM networks. The behavior of this LSTM unit 

is controlled by three gates: the input gate, the forget gate, 

and the output gate. The input is fed into these gates to 

control which operations are to be performed by the unit. 

The memory state and output of an LSTM unit are updated 

at each time step. The LSTM transition equations at time 

step t can be formulated as 

 
where xt, ht, and ct are the input vector, output vector, and 

memory state, respectively, at time t. Terms i, f, o, and 𝒄 ̃ 

represent the input gate, forget gate, output gate, and cell 

activation, respectively, all of which are the same size as the 

input vector. Term σ represents nonlinear sigmoid functions. 
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Figure 6.3: LSTM building block 

 

We utilized recurrent LSTM architectures of different 

numbers of layers to enhance the automatic feature 

representation and model the temporal dependencies. 

 

3. Auto Encoder Fusion 
 

The simplest form of an autoencoder is a single hidden fully 

connected layer with input and output layers, as shown in 

Fig. 6.2. The number of nodes in the output layer must be 

the same as in the input layer. The autoencoder creates a 

new representation for the input data through a pair of maps 

𝒚𝑓 → 𝒛𝑔 → 𝒚 ′ . The first one is the encoder map 𝒛 = (𝒚), 

and the second one is the decoder map 𝒚 ′ = 𝑔(𝒛). The input 

data dimension is reduced by the encoder. The encoder 

transforms the input data of dimension d to a smaller 

dimension m [35]. The decoder reconstructs the input data 

from the reduced dimension m back to the original 

dimension d. During training, the autoencoder is usually 

forced to prioritize which aspects of the input should be kept 

[36]. The autoencoder maps an input point y to a code z via 

a sigmoid activation function as 

 
where W is a weight matrix, and b is a bias vector. The z 

code is also termed the latent representation of point y. The 

sigmoid function transforms the input values to the 

activation values, which are mostly either close to zero or 1. 

The decoder then maps this activation to the reconstructed 

y′ to the same dimensional space of y such that 

 
where the weight matrix of the decoder is often the 

transpose of the weight matrix of the encoder, 𝑾′ = 𝑾𝑻 . 

Training the autoencoder means finding the optimal values 

for 𝑾, 𝒃, and 𝒃 ̅ that minimize the cost function [35]. A 

deeper stacked autoencoder, as used in our experiments, can 

be built by adding more paired layers to the encoder and 

decoder sides. 

 

3.1 Hand Locating Based On Faster R-CNN 

 

Sign language is mainly the movement of the hand, and has 

nothing to do with the complex background and movement 

of the human body. The interference of external factors will 

affect the result of sign language recognition. Therefore, the 

hand locating of sign language words is not only a crucial 

pretreatment step in sign language recognition, but also an 

essential step to extract gesture features and further gesture 

simulation. In the image sequence of sign language, the 

gesture is accompanied by the interference of a large 

number of skinlike region, which has the characteristics of 

complex and variable hand shape, much special hand shape 

and fuzzy hand movement. Therefore, the traditional 

methods of skin color detection and template classification 

cannot locate and classify gestures well. As one of the most 

advanced target detection networks, Faster R-CNN 

integrates the RPN module and the Faster R-CNN 

measurement module into an end-to-end network, so as to 

obtain better performance in terms of speed and accuracy. 

Compared with the single-stage target detection algorithm 

such as YOLO, Faster R-CNN can better meet the 

requirements of accurate detection and location of gestures. 

 

Compared with Fast R-CNN, Faster R-CNN designs the 

RPN module. RPN is a convolutional neural network, which 

uses the shared CNN feature to generate candidate regions, 

and replaces the traditional selective search candidate region 

extraction algorithm, significantly improving the accuracy 

of candidate regions. At the same time, because the RPN 

module shares convolutional network with Fast R-CNN 

detection module, the detection speed of the Faster R-CNN 

module is also improved significantly. We train the Faster 

R-CNN hand locating network by using a data set consisting 

of 40 common words and 10,000 sign language images, 

among which the optimizer uses Stochastic Batch Gradient 

Descent (SGD). It can be found from the figure that the loss 

value of network decreases gradually with the increase of 

training times, and at 55000 iterations, the network tends to 

converge without overfitting. It compares the accuracy of 

hand locating of Faster R-CNN and the other two methods 

 

3.2 Temporal Structure Modeling 

 

Many research works have been devoted to modeling the 

temporal structure of video for action recognition [19], [20], 

[21], [22], [59], [60]. Gaidon et al. [20] annotated each 

atomic action for each video and proposed Actom Sequence 

Model (ASM) for action detection. Niebles et al. [19] 

proposed to use latent variables to model the temporal 

decomposition of complex actions, and resorted to the 

Latent SVM [61] to learn the model parameters in an 

iterative approach. Wang et al. [21] and Pirsiavash et al. 

[59] extended the temporal decomposition of complex 

action into a hierarchical manner using Latent Hierarchical 

Model (LHM) and Segmental Grammar Model (SGM), 

respectively. Wang et al. [60] designed a sequential skeleton 

model (SSM) to capture the relations among dynamic-

poselets, and performed spatio-temporal action detection. 

Fernando et al. [22] modeled the temporal evolution of 

BoVW representations for action recognition. Several recent 

works focused on modeling long-range temporal structure 

with ConvNets [4], [24], [25], [58]. In general, these 

methods directly operated on a continuous video frame 

sequence with recurrent neural networks [4], [25], [55] or 

3D ConvNets [24], [58]. Although these methods0162-8828 

(c) 2018 IEEE. Personal use is permitted, but 

republication/redistribution requires IEEE permission. See 

http://www.ieee.org/publications_standards/publications/rig

hts/index.html for more information. This article has been 

accepted for publication in a future issue of this journal, but 

has not been fully edited. Content may change prior to final 

publication. Citation information: DOI 10.1109/ 

TPAMI.2018.2868668, IEEE Transactions on Pattern 

Analysis and Machine Intelligence 4 aim to deal with longer 
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video duration, they usually process sequences of fixed 

lengths ranging from 5 to 120 frames due to the limit of 

computational cost and GPU memory. It is still non-trivial 

for these methods to learn from the entire video due to their 

limited temporal coverage. Our method differs from these 

end-to-end deep ConvNets by its novel adoption of a sparse 

temporal sampling strategy, which enables efficient learning 

using the entire videos without the limitation of sequence 

length. Therefore, our temporal segment network is a video-

level and end-to-end framework for temporal structure 

modeling on the entire video. 3  

 

3.3 Temporal Segment Networks 

 

In this section, we give a detailed description of our 

temporal segment network framework. Specifically, we first 

discuss the motivation of segment based sampling. Then, we 

introduce the architecture of temporal segment network 

framework. After this, we present several aggregating 

functions of temporal segment network and provide analysis 

on these functions. Finally, we investigate several practical 

issues for the instantiation of temporal segment network 

framework. 3.1 Segment Based Sampling As discussed in 

Sec. 1, long-range temporal modeling is important for action 

understanding in videos. The existing deep architectures 

such as two-stream ConvNets [1] and 3D convolutional 

networks [16] are designed to operate on a single frame or a 

stack of frames (e.g., 16 frames) with limited temporal 

durations. Therefore, these structures lack capacity of 

incorporating long-range temporal information of videos 

into the learning of action models. In order to model long-

range temporal structures, several approaches have been 

proposed to stack more consecutive frames at a fixed 

sampling rate [4], [24], [58]. Although this dense and local 

sampling could help to relieve the problem of the original 

short-term CovNets [1], [16], it still suffers in both 

computational and modeling aspects. From the 

computational perspective, it would greatly increase the cost 

of ConvNet training, as this dense sampling usually requires 

a large number of frames to capture long-range structures. 

For example, it totally samples 100 frames in the work of 

[24] and 120 frames for the method of [4]. From the 

modeling perspective, its temporal coverage is still local and 

limited by its fixed sampling interval, failing to capture the 

visual content over the entire video. For instance, the 

sampled 100 frames [24] only occupy a small portion of a 

10-second video (around 300 frames). We observe that 

although the frames are densely recorded in the videos, the 

content changes relatively slowly. This motivates us to 

explore a new paradigm for temporal structure modeling, 

called segment based sampling. This strategy is essentially a 

kind of sparse and global sampling method. Concerning the 

property of spareness, only a small number of sparsely 

sampled snippets would be used to model the temporal 

structures in a human action. Normally, the number of 

sampled frames for one training iteration is fixed to a 

predefined value independent of the durations of the videos. 

This guarantees that the computational cost will be constant, 

regardless of the temporal range we are dealing with. On the 

global property, our segment based sampling ensures these 

sampled snippets would distribute uniformly along the 

temporal dimension. Therefore, no matter how long the 

action videos will last for, our sampled snippets would 

always roughly cover the visual content of whole video, 

enabling us to model the long-range temporal structure 

throughout the entire video. Based on this paradigm for 

temporal structure modeling, we propose temporal segment 

network, a video-level training framework as shown in 

Figure 1, which would be explained in the next subsection. 

 

4. Conclusion 
 

1) In the preprocessing phase, linear sampling was used to 

normalize the temporal dimension of hand gesture 

samples. For spatial dimension normalization,  

2) The detected face and human body part ratios. 

Thenused 3DCNN for feature learning in two 

approaches 

3) In the first approach, a single 3DCNN instance was 

trained to extract the hand gesture features from the 

entire video.  

4) In the second approach, three instances of the 3DCNN 

structure were trained to extract the hand gesture 

features from the beginning, middle, and end of the 

video sample 

5) Temporal Segment Network (TSN), a video-level 

framework that aims to model long range temporal 

structure 

6) The former provides an effective and efficient way to 

capture long-range temporal structure, while the latter 

makes it possible to train very deep networks on a 

limited training set without severe over-fitting 
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