
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Review on CNN based Sign Language

Recognition Methods

Akash Vijayan
1
, Sajeena .A

2

1Electronics and Communication, TKM College of Engineering, Kollam, Kerala, India

akashvijayan2013[at]gmail.com

2Associate Professor, Electronics and Communication, TKM College of Engineering, Kollam, Kerala, India

sajina.nizam[at]gmail.com

Abstract: Fingerspelled sign learning is the initial stage of sign learning and moreover, are used when no corresponding sign exists

or signer is not aware of it. Most of the existing tools for sign language learning use external sensors which are costly and unreliable. .

The ASL, short for American Sign Language is the most widely used sign language across the globe with certain variations according

to the country.Sign language recognition can improve the problem that the number of people who need to use sign language is large

but the popularity of sign language is poor, and provide a more convenient way of study, work and life for people with hearing and

language impairment. Hand locating and sign language recognition methods can generally be divided into traditional methods and

deep learning methods. In recent years, with the brilliant achievements of deep learning in the field of computer vision, it has been

proved that the method based on deep learning has many advantages, such as rich feature extraction, strong modeling ability and

intuitive training. Therefore, this paper studies hand locating and sign language recognition of common sign language based on neural

network.we proposed an efficient deep convolutional neural networks approach for hand gesture recognition. The proposed approach

employed transfer learning to beat the scarcity of a large labeled hand gesture dataset

Keywords: Fading, Interference, Wideband, Throughput, Received signal

1. Introduction

The hand gesture is a nonverbal form of communication. It

consists of linguistic content that carries a large amount of

information in sign language. It also plays a pivotal role in

human-computer interaction (HCI) systems. Therefore,

automatic hand gesture recognition is in high demand. Since

the end of the last century, this field has attracted the

attention of many researchers. The importance of automatic

hand gesture recognition has increased for the following

reasons (1) the growth of the deaf and hard-of-hearing

populations, and (2) the extended use of vision-based and

touchless applications and devices such as video games,

smart TV control, and virtual reality applications. Robust

hand gesture recognition is required as a part of sign

language interpretation to help hearing-impaired people.

There is a significant communication gap between people

who can hear and hearing-impaired people. A translation

system between gestural language and verbal language will

bridge this communication gap. This translation system will

facilitate the lives of hearing-impaired people and help them

to integrate with society. Unlike sign language translation,

hand gesture recognition techniques involve HCI to a great

degree.

Today, HCI has a wide range of applications from video

games to telesurgery. As with all time-varying signals, hand

gestures cannot be directly compared in Euclidean space

because of their temporal dependency. This dependency

indicates important discriminative features. Temporal

misalignment, in addition to massive irrelevant regions in

every frame, makes it very hard to extract representative

hand-engineered features for hand gestures. For

conventional classifiers to perform well, the extracted

features should implicate vigorous descriptors. These

descriptors code enough information for the inter-frames

temporal dependency, as well as the hand position, shape

and orientation in each frame. The computed features

should be able to minimize the effect of different

circumstances like background clutter and occlusions.

Therefore, we employed deep learning in this paper as a

promising solution.

In recent years, many researchers have efficiently exploited

convolutional neural networks (CNNs) deep architectures

for feature engineering. CNNs have shown excellent

performance in fields such as object and speech recognition,

image classification, and edge distribution and human

activity recognition. The existence of large datasets that

comprise millions of annotated samples is the main reason

behind such excellent performance. Unfortunately, the

requirement for a large labeled dataset is not met in the case

of hand gestures. To beat the scarcity of labeled dataset for

fitting deep architectures, the transfer learning is

investigated in this study. We propose a well-adapted deep

architecture for automatic hand gesture recognition. The

main contributions of this study are as follows:

1) A method to normalize the spatial dimensions of

gesture videos based on the facial position, facial

length, and human body part ratios. The signer does not

need to be in the center of the frame or be a fixed

distance from the camera.

2) A 3DCNN model to learn region-based spatiotemporal

features for hand gestures. The input of this model is a

sequence of RGB frames captured by a basic camera. It

does not require other input channels, colored gloves,

or a complex setup.

3) Developing different fusion techniques to globalize the

local features learned by the 3DCNN model and

comparing their performance.

Paper ID: SR21410153004 DOI: 10.21275/SR21410153004 1349

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1.1 3D Convolutional Neural Network

In 2D CNNs, 2D convolution is performed at the

convolutional layers to extract features from local

neighborhood on feature maps in the previous layer. Then

an additive bias is applied and the result is passed through a

sigmoid function. Formally, the value of unit at position (x,

y) in the j
th

feature map in the i
th

 layer, denoted as 𝑣𝑦𝑗
𝑥𝑖 , is

given by

where tanh(·) is the hyperbolic tangent function 𝑏𝑖𝑗 , is the

bias for this feature map, m indexes over the set of feature

maps in the (i − 1)
th

 layer connected to the current feature

map, 𝑤𝑖𝑗𝑘
𝑝𝑞

 is the value at the position (p, q) of the kernel

connected to the kth feature map, and 𝑃𝑖 and 𝑄𝑖 are the

height and width of the kernel, respectively. In the

subsampling layers, the resolution of the feature maps is

reduced by pooling over local neighbourhood on the feature

maps in the previous layer, thereby increasing invariance to

distortions on the inputs. A CNN architecture can be

constructed by stacking multiple layers of convolution and

subsampling in an alternating fashion. The parameters of

CNN, such as the bias 𝑏𝑖𝑗 and the kernel weight 𝑤𝑖𝑗𝑘
𝑝𝑞

are

usually trained using either supervised or unsupervised

approaches.

Figure 2.1: Basic steps in 3D CNN

1.2 3D Convolution

In 2D CNNs, convolutions are applied on the 2D feature

maps to compute features from the spatial dimensions only.

When applied to video analysis problems, it is desirable to

capture the motion information encoded in multiple

contiguous frames. To this end, we propose to perform 3D

convolutions in the convolution stages of CNNs to compute

features from both spatial and temporal dimensions. The 3D

convolution is achieved by convolving a 3D kernel to the

cube formed by stacking multiple contiguous frames

together. By this construction, the feature maps in the

convolution layer is connected to multiple contiguous

frames in the previous layer, thereby capturing motion

information. Formally, the value at position (x, y, z) on the

j
th

 feature map in the i
th

layer is given by

Figure 4.1: A 3D CNN architecture for human action

recognition. This architecture consists of 1 hardwired layer,

3 convolution layers, 2 subsampling layers, and 1 full

connection layer

where Ri is the size of the 3D kernel along the temporal

dimension, 𝑤𝑖𝑗𝑘
𝑝𝑞

 is the (p, q, r)
th

 value of the kernel

connected to the mth feature map in the previous layer. A

comparison of 2D and 3D convolutions is given in Figure 1.

Note that a 3D convolutional kernel can only extract one

type of features from the frame cube, since the kernel

weights are replicated across the entire cube. A general

design principle of CNNs is that the number of feature maps

should be increased in late layers by generating multiple

types of features from the same set of lower-level feature

maps. Similar to the case of 2D convolution, this can be

achieved by applying multiple 3D convolutions with distinct

kernels to the same location in the previous layer

1.3 A 3D CNN Architecture

Based on the 3D convolution described above, a variety of

CNN architectures can be devised. In the following, we

describe a 3D CNN architecture that we have developed for

human action recognition on the TRECVID data set. In this

architecture shown in Figure 3, we consider 7 frames of size

60×40 centered on the current frame as inputs to the 3D

CNN model. We first apply a set of hardwired kernels to

generate multiple channels of information from the input

frames. This results in 33 feature maps in the second layer

in 5 different channels known as gray, gradient-x, gradient-

y, optflow-x, and optflow-y. The gray channel contains the

gray pixel values of the 7 input frames. The feature maps in

the gradient-x and gradient-y channels are obtained by

computing gradients along the horizontal and vertical

Paper ID: SR21410153004 DOI: 10.21275/SR21410153004 1350

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

directions, respectively, on each of the 7 input frames, and

the optflow-x and outflow-y channels contain the optical

flow fields, along the horizontal and vertical directions,

respectively, computed from adjacent input frames. This

hardwired layer is used to encode our prior knowledge on

features, and this scheme usually leads to better

performance as compared to random initialization

2. Proposed System

In this study, we utilized a 3DCNN architecture for

spatiotemporal feature learning using two approaches. In the

first approach, 3DCNN was used to extract the features

from the entire video sample, while a SoftMax layer was

used for classification. In the second approach, we aimed to

enhance the temporal dependency of the video frames. To

achieve this, the same 3DCNN architecture was trained to

extract the features from different regions in the video

sample. We then investigated different techniques for

feature fusion.

2.1 Single 3DCNN Structure

The system proposed in the first approach is illustrated in

Fig. 2. It consists of three main phases: video preprocessing,

feature learning, and classification.

1) Video Preprocessing

The first step in the preprocessing phase was converting the

input video into RGB frames sequence. Because the video

sequences had different durations, linear sampling was

applied to normalize all the sequences to a fixed length of

16 frames, as the original model was fit on video sequences

of 16 frames each. The corresponding indices of 16 frames

are calculated asin (1).

where, len(input) is the length of the input sequence. Other

techniques such as the Bag of Visual Words have been used

in the literature to normalize the temporal dimension of the

input videos. Linear sampling was preferred in this work to

preserve the order of the selected frames. The order of the

selected frames indicates essential discriminative features in

gesture recognition.

However, spatial dimension.

Figure 5.1: Cropping the signing space

normalization was also required to overcome variations in

the heights and distances of the signers from the camera.

We achieved this normalization in two steps: - First, we

employed the face detection algorithm proposed by Viola

and Jones to detect the face of the signer in the first frame

of the sequence. - Then, based on the position and height of

the detected face, we used the human body part ratios to

estimate the height and width of the gesture space to be

cropped in all frames, as illustrated in Fig. 3. The final step

in the preprocessing phase was to resize the cropped square

frames in all input videos to a fixed size of 112 × 112 pixels

while maintaining the same aspect ratio. The RGB channels

of each gesture sample were also normalized separately

such that each channel had a zero mean and unit variance.

This resizing and normalization reduced the computation

cost and training convergence of the model in the next

phase. The final inputs to the feature learning phase were

112 × 112 × 16 × 3 volumes.

2) Feature Learning

A deep 3DCNN is proposed for feature learning, to extract

the local spatiotemporal features of gesture sequences.

Transfer learning was employed here to beat the scarcity of

a large labeled dataset of gestures. We started with a pre-

trained version of the 3DCNN structure. This had already

been trained using millions of samples of human action

recognition. After excluding the output layer, the structure

consisted of six consecutive blocks. The first two blocks

have a single 3DCNN layer each. The first layer comprises

64 kernels and the second comprises 128 kernels. The third

block contains two 3DCNN layers, each of 256 kernels. The

fourth block contains two 3DCNN layers, each of 512

kernels. The fifth block contains two 3DCNN layers, each

of 512 kernels and a zero-padding layer. The sixth block

consists of two dense layers with 4096 neurons each. These

two layers globalize the feature modeling. The output of

each of the first four blocks transits to the successive block

through a max-pooling layer. All 3DCNN kernels are (3 × 3

× 3) in size with a stride of (1 × 1 × 1). All max-pooling

kernels are of size (2 × 2 × 2) with stride (2 × 2 × 2), except

for the max-pooling kernel that follows the first block,

which is of size (1 × 2 × 2) with stride (1 × 2 × 2) to

preserve the temporal information in the early stage. A

simple nonlinear function rectified linear unit (ReLU) was

used for activation, as shown in (2). This function was

preferred as it has a simple derivative to speed up large-

network training [32]. ReLU (x) = (x, x ≥ 0 0, x < 0 (2)

Each 3D kernel in the first layer is convolved to a volume of

the 16 input stacking frames to produce a spatiotemporal

Paper ID: SR21410153004 DOI: 10.21275/SR21410153004 1351

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

feature map. The 3D kernels in the successive layers are

similarly convolved to a volume of stacking feature maps

produced by the predecessor layers. In general, the value at

any position (x, y, z) on the Kth feature map in the Lth layer

is calculated as

where PL, QL, and RL are the dimensions of the 3D kernel

and W pqr LKm is the (p, q, r)
th

 value of the kernel

connected to the m
th

 feature map in the preceding layer. The

two fully connected layers globalize the feature modeling

where the last layer outputs a feature vector length of 4096

to represent each sample

Figure 5.2: Fusion of parallel 3DCNN structure

3) Classification

The features extracted in the previous phase are fed into a

SoftMax layer for classification, as illustrated in Fig. 2. The

SoftMax activation function as defined in (4) outputs the

probability of each class. The predicted output is the class

with the maximum probability.

2.2 Fusion of Parallel 3DCNN Structure

In the second approach, the proposed system enhanced the

temporal contribution of the extracted features. To achieve

this, in the preprocessing phase, linear sampling is applied

to select 32 frames instead of 16 frames. Thereafter, three

instances of the deep 3DCNN structure described in the

previous approach are utilized to learn the spatiotemporal

features in the beginning, middle, and end of the video

sequence. The selected frames are divided into three short

clips of 16 frames each with a 50% overlap. Each deep

3DCNN instance is trained to extract the features from one

of the three clips. Various techniques are then utilized to

fuse the features extracted from different parts of the video

Figure 6.1: In depth cropping

Finally, the fused features are forwarded to the SoftMax

layer for classification. Fig. 5.2 illustrates a general diagram

of the second approach. Feature fusion Three techniques for

feature fusion, multilayer perceptron (MLP) neural network,

long short-term memory (LSTM) network, and stacked

autoencoder were investigated.

MLP Fusion

MLP processes the input features through a series of

computational nodes called neurons. These neurons are

grouped into consecutive layers and interconnected with one

another via weighted connections. These neurons transform

the features by performing nonlinear operations. The

features are then projected into a space where the input

becomes linearly separable. MLP architectures with

different numbers of layers were investigated in this

research.

LSTM Fusion

An LSTM is a recurrent neural network (RNN) adopted to

learn long-term contextual dependencies from learned local

feature sequences. Fig. 6.3 illustrates the basic building

block of LSTM networks. The behavior of this LSTM unit

is controlled by three gates: the input gate, the forget gate,

and the output gate. The input is fed into these gates to

control which operations are to be performed by the unit.

The memory state and output of an LSTM unit are updated

at each time step. The LSTM transition equations at time

step t can be formulated as

where xt, ht, and ct are the input vector, output vector, and

memory state, respectively, at time t. Terms i, f, o, and 𝒄 ̃

represent the input gate, forget gate, output gate, and cell

activation, respectively, all of which are the same size as the

input vector. Term σ represents nonlinear sigmoid functions.

Paper ID: SR21410153004 DOI: 10.21275/SR21410153004 1352

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6.3: LSTM building block

We utilized recurrent LSTM architectures of different

numbers of layers to enhance the automatic feature

representation and model the temporal dependencies.

3. Auto Encoder Fusion

The simplest form of an autoencoder is a single hidden fully

connected layer with input and output layers, as shown in

Fig. 6.2. The number of nodes in the output layer must be

the same as in the input layer. The autoencoder creates a

new representation for the input data through a pair of maps

𝒚𝑓 → 𝒛𝑔 → 𝒚 ′ . The first one is the encoder map 𝒛 = (𝒚),

and the second one is the decoder map 𝒚 ′ = 𝑔(𝒛). The input

data dimension is reduced by the encoder. The encoder

transforms the input data of dimension d to a smaller

dimension m [35]. The decoder reconstructs the input data

from the reduced dimension m back to the original

dimension d. During training, the autoencoder is usually

forced to prioritize which aspects of the input should be kept

[36]. The autoencoder maps an input point y to a code z via

a sigmoid activation function as

where W is a weight matrix, and b is a bias vector. The z

code is also termed the latent representation of point y. The

sigmoid function transforms the input values to the

activation values, which are mostly either close to zero or 1.

The decoder then maps this activation to the reconstructed

y′ to the same dimensional space of y such that

where the weight matrix of the decoder is often the

transpose of the weight matrix of the encoder, 𝑾′ = 𝑾𝑻 .

Training the autoencoder means finding the optimal values

for 𝑾, 𝒃, and 𝒃 ̅ that minimize the cost function [35]. A

deeper stacked autoencoder, as used in our experiments, can

be built by adding more paired layers to the encoder and

decoder sides.

3.1 Hand Locating Based On Faster R-CNN

Sign language is mainly the movement of the hand, and has

nothing to do with the complex background and movement

of the human body. The interference of external factors will

affect the result of sign language recognition. Therefore, the

hand locating of sign language words is not only a crucial

pretreatment step in sign language recognition, but also an

essential step to extract gesture features and further gesture

simulation. In the image sequence of sign language, the

gesture is accompanied by the interference of a large

number of skinlike region, which has the characteristics of

complex and variable hand shape, much special hand shape

and fuzzy hand movement. Therefore, the traditional

methods of skin color detection and template classification

cannot locate and classify gestures well. As one of the most

advanced target detection networks, Faster R-CNN

integrates the RPN module and the Faster R-CNN

measurement module into an end-to-end network, so as to

obtain better performance in terms of speed and accuracy.

Compared with the single-stage target detection algorithm

such as YOLO, Faster R-CNN can better meet the

requirements of accurate detection and location of gestures.

Compared with Fast R-CNN, Faster R-CNN designs the

RPN module. RPN is a convolutional neural network, which

uses the shared CNN feature to generate candidate regions,

and replaces the traditional selective search candidate region

extraction algorithm, significantly improving the accuracy

of candidate regions. At the same time, because the RPN

module shares convolutional network with Fast R-CNN

detection module, the detection speed of the Faster R-CNN

module is also improved significantly. We train the Faster

R-CNN hand locating network by using a data set consisting

of 40 common words and 10,000 sign language images,

among which the optimizer uses Stochastic Batch Gradient

Descent (SGD). It can be found from the figure that the loss

value of network decreases gradually with the increase of

training times, and at 55000 iterations, the network tends to

converge without overfitting. It compares the accuracy of

hand locating of Faster R-CNN and the other two methods

3.2 Temporal Structure Modeling

Many research works have been devoted to modeling the

temporal structure of video for action recognition [19], [20],

[21], [22], [59], [60]. Gaidon et al. [20] annotated each

atomic action for each video and proposed Actom Sequence

Model (ASM) for action detection. Niebles et al. [19]

proposed to use latent variables to model the temporal

decomposition of complex actions, and resorted to the

Latent SVM [61] to learn the model parameters in an

iterative approach. Wang et al. [21] and Pirsiavash et al.

[59] extended the temporal decomposition of complex

action into a hierarchical manner using Latent Hierarchical

Model (LHM) and Segmental Grammar Model (SGM),

respectively. Wang et al. [60] designed a sequential skeleton

model (SSM) to capture the relations among dynamic-

poselets, and performed spatio-temporal action detection.

Fernando et al. [22] modeled the temporal evolution of

BoVW representations for action recognition. Several recent

works focused on modeling long-range temporal structure

with ConvNets [4], [24], [25], [58]. In general, these

methods directly operated on a continuous video frame

sequence with recurrent neural networks [4], [25], [55] or

3D ConvNets [24], [58]. Although these methods0162-8828

(c) 2018 IEEE. Personal use is permitted, but

republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rig

hts/index.html for more information. This article has been

accepted for publication in a future issue of this journal, but

has not been fully edited. Content may change prior to final

publication. Citation information: DOI 10.1109/

TPAMI.2018.2868668, IEEE Transactions on Pattern

Analysis and Machine Intelligence 4 aim to deal with longer

Paper ID: SR21410153004 DOI: 10.21275/SR21410153004 1353

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

video duration, they usually process sequences of fixed

lengths ranging from 5 to 120 frames due to the limit of

computational cost and GPU memory. It is still non-trivial

for these methods to learn from the entire video due to their

limited temporal coverage. Our method differs from these

end-to-end deep ConvNets by its novel adoption of a sparse

temporal sampling strategy, which enables efficient learning

using the entire videos without the limitation of sequence

length. Therefore, our temporal segment network is a video-

level and end-to-end framework for temporal structure

modeling on the entire video. 3

3.3 Temporal Segment Networks

In this section, we give a detailed description of our

temporal segment network framework. Specifically, we first

discuss the motivation of segment based sampling. Then, we

introduce the architecture of temporal segment network

framework. After this, we present several aggregating

functions of temporal segment network and provide analysis

on these functions. Finally, we investigate several practical

issues for the instantiation of temporal segment network

framework. 3.1 Segment Based Sampling As discussed in

Sec. 1, long-range temporal modeling is important for action

understanding in videos. The existing deep architectures

such as two-stream ConvNets [1] and 3D convolutional

networks [16] are designed to operate on a single frame or a

stack of frames (e.g., 16 frames) with limited temporal

durations. Therefore, these structures lack capacity of

incorporating long-range temporal information of videos

into the learning of action models. In order to model long-

range temporal structures, several approaches have been

proposed to stack more consecutive frames at a fixed

sampling rate [4], [24], [58]. Although this dense and local

sampling could help to relieve the problem of the original

short-term CovNets [1], [16], it still suffers in both

computational and modeling aspects. From the

computational perspective, it would greatly increase the cost

of ConvNet training, as this dense sampling usually requires

a large number of frames to capture long-range structures.

For example, it totally samples 100 frames in the work of

[24] and 120 frames for the method of [4]. From the

modeling perspective, its temporal coverage is still local and

limited by its fixed sampling interval, failing to capture the

visual content over the entire video. For instance, the

sampled 100 frames [24] only occupy a small portion of a

10-second video (around 300 frames). We observe that

although the frames are densely recorded in the videos, the

content changes relatively slowly. This motivates us to

explore a new paradigm for temporal structure modeling,

called segment based sampling. This strategy is essentially a

kind of sparse and global sampling method. Concerning the

property of spareness, only a small number of sparsely

sampled snippets would be used to model the temporal

structures in a human action. Normally, the number of

sampled frames for one training iteration is fixed to a

predefined value independent of the durations of the videos.

This guarantees that the computational cost will be constant,

regardless of the temporal range we are dealing with. On the

global property, our segment based sampling ensures these

sampled snippets would distribute uniformly along the

temporal dimension. Therefore, no matter how long the

action videos will last for, our sampled snippets would

always roughly cover the visual content of whole video,

enabling us to model the long-range temporal structure

throughout the entire video. Based on this paradigm for

temporal structure modeling, we propose temporal segment

network, a video-level training framework as shown in

Figure 1, which would be explained in the next subsection.

4. Conclusion

1) In the preprocessing phase, linear sampling was used to

normalize the temporal dimension of hand gesture

samples. For spatial dimension normalization,

2) The detected face and human body part ratios.

Thenused 3DCNN for feature learning in two

approaches

3) In the first approach, a single 3DCNN instance was

trained to extract the hand gesture features from the

entire video.

4) In the second approach, three instances of the 3DCNN

structure were trained to extract the hand gesture

features from the beginning, middle, and end of the

video sample

5) Temporal Segment Network (TSN), a video-level

framework that aims to model long range temporal

structure

6) The former provides an effective and efficient way to

capture long-range temporal structure, while the latter

makes it possible to train very deep networks on a

limited training set without severe over-fitting

References

[1] K. Simonyan and A. Zisserman, ―Two-stream

convolutional networks for action recognition in

videos,‖ in NIPS, 2014, pp. 568–576.

[2] H. Wang and C. Schmid, ―Action recognition with

improvedtrajectories,‖ in ICCV, 2013, pp. 3551–3558.

[3] L. Wang, Y. Qiao, and X. Tang, ―Motionlets: Mid-

level 3D parts forhuman motion recognition,‖ in

CVPR, 2013, pp. 2674–2681.

[4] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O.

Vinyals,R. Monga, and G. Toderici, ―Beyond short

snippets: Deep networks for video classification,‖ in

CVPR, 2015, pp. 4694–4702.

[5] L. Wang, Y. Qiao, and X. Tang, ―Action recognition

with trajectorypooled deep-convolutional descriptors,‖

in CVPR, 2015, pp. 4305–4314.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

―Gradient-basedlearning applied to document

recognition,‖ Proceedings of the IEEE,vol. 86, no. 11,

pp. 2278–2324, 1998.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

―ImageNet classification with deep convolutional

neural networks,‖ in NIPS, 2012,pp. 1106–1114.

[8] K. Simonyan and A. Zisserman, ―Very deep

convolutional networks for large-scale image

recognition,‖ in ICLR, 2015, pp. 1–14.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, and A.

Rabinovich, ―Going deeper withconvolutions,‖ in

CVPR, 2015, pp. 1–9.

Paper ID: SR21410153004 DOI: 10.21275/SR21410153004 1354

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[10] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A.

Oliva, ―Learn-ing deep features for scene recognition

using places database,‖ inNIPS, 2014, pp. 487–495.

[11] D. Bragg, O. Koller, M. Bellard, L. Berke, P.

Boudrealt, A. Braffort, N. Caselli, M. Huenerfauth, H.

Kacorri, T. Verhoef, and C. Vogler, ‗‗Sign language

recognition, generation, and translation: An

interdisciplinary perspective,‘‘ 2019,

arXiv:1908.08597. [Online]. Available:

https://arxiv.org/ abs/1908.08597

[12] G. O. Young, ‗‗Synthetic structure of industrial

plastics,‘‘ in Plastics, vol. 3, J. Peters, Ed., 2nd ed.

New York, NY, USA: McGraw-Hill, 1964, pp. 15–64.

[13] L.-C. Wang, R. Wang, D.-H. Kong, and B.-C. Yin,

‗‗Similarity assessment model for Chinese sign

language videos,‘‘ IEEE Trans. Multimedia, vol. 16,

no. 3, pp. 751–761, Apr. 2014.

[14] L. Pigou, A. van den Oord, S. Dieleman, M. Van

Herreweghe, and J. Dambre, ‗‗Beyond temporal

pooling: Recurrence and temporal convolutions for

gesture recognition in video,‘‘ 2015,

arXiv:1506.01911. [Online]. Available:

https://arxiv.org/abs/1506.01911

[15] Y. X. Molchanov, S. Gupta, K. Kim, S. Tyree, and J.

Kautz, ‗‗Online detection and classification of

dynamic hand gestures with recurrent 3D

convolutional neural network,‘‘ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Las Vegas,

NV, USA, Jun. 2016, pp. 4207–4215.

[16] L. Pigou, S. Dieleman, P. J. Kindermans, and B.

Schrauwen, ‗‗Sign language recognition using

convolutional neural networks,‘‘ in Proc. Workshop

Eur. Conf. Comput. Vis., Zurich, Switzerland, 2014,

pp. 572–578.

[17] T. Liu, W. Zhou, and H. Li, ‗‗Sign language

recognition with long shortterm memory,‘‘ in Proc.

IEEE Int. Conf. Image Process. (ICIP), Phoenix, AZ,

USA, Sep. 2016, pp. 2871–2875.

[18] X. Li, C. Mao, S. Huang, and Z. Ye, ‗‗Chinese sign

language recognition based on SHS descriptor and

encoder-decoder LSTM model,‘‘ in Proc. Chin. Conf.

Biometric Recognition Cham, Switzerland: Springer,

2017, pp. 719–728.

[19] S. Huang, C. Mao, J. Tao, and Z. Ye, ‗‗A novel

Chinese sign language recognition method based on

keyframe-centered clips,‘‘ IEEE Signal Process. Lett.,

vol. 25, no. 3, pp. 442–446, Mar. 201

[20] H. Brashear, ‗‗Improving the efficacy of automated

sign language practice tools,‘‘ ACM SIGACCESS

Accessibility Comput., vol. 89, no. 1, pp. 11–17,Sep.

2007.

[21] Y. Bouzid, M. A. Khenissi, F. Essalmi, and M. Jemni,

‗‗Using educational games for sign language

learning—A signwriting learning game: Case study,‘‘

Educ. Technol. Soc., vol. 19, no. 1, pp. 129–141, Jan.

2016.

[22] C.-H. Chuan and C. A. Guardino, ‗‗Designing

smartsignplay: An interactive and intelligent american

sign language app for children who are deaf or hard of

hearing and their families,‘‘ in Proc. 21st Int.

Conf.Intell. User Interfaces. New York, NY, USA:

ACM, 2016, pp. 45–48.doi:

10.1145/2876456.2879483.

[23] J. Gameiro, T. Cardoso, and Y. Rybarczyk, ‗‗Kinect-

sign: Teaching sign language to ‗listeners‘ through a

game,‘‘ in Proc. Int. Summer Workshop Multimodal

Inter. New York, NY, USA, Springer, 2013, pp. 141–

159.

[24] N. Adamo-Villani, E. Carpenter, and L. Arns, ‗‗An

immersive virtual environment for learning sign

language mathematics,‘‘ in Proc. ACMSIGGRAPH

Educators Program, Jul. 2006, p. 20.

[25] E. Efthimiou et al., ‗‗Sign language recognition,

generation, and modelling: A research effort with

applications in deaf communication,‘‘ in Proc. 4th

Workshop Represent. Process. Sign Lang. Corpora

Sign Lang.Technol., 2010, pp. 80–83.

[26] P. Dreuw et al., The signspeak project—Bridging the

gap between signers and speakers,‘‘ in Proc. LREC,

2010, pp. 476–481. [Online].Available

https://repository.ubn.ru.nl/handle/2066/85929

[27] J. A. Bangham et al., ‗‗Virtual signing: Capture,

animation, storage and transmission-an overview of

the visicast project,‘‘ Tech. Rep., 2000.

[28] M. J. Cheok, Z. Omar, and M. H. Jaward, ‗‗A review

of hand gesture and sign language recognition

techniques,‘‘ Int. J. Mach. Learn. Cybern.,vol. 10, no.

1, pp. 131–153, Jan. 2017.

[29] L. Quesada and G. Lòpez, and L. Guerrero,

‗‗Automatic recognition of the american sign language

fingerspelling alphabet to assist people living with

speech or hearing impairments,‘‘ J. Ambient Intell.

Humanized Computer.,vol. 8, no. 4, pp. 625–635,

Aug. 2017.

[30] P. Kumar, H. Gauba, P. P. Roy, and D. P. Dogra, ‗‗A

multimodal framework for sensor based sign language

recognition,‘‘ Neurocomputing, vol. 259,pp. 21–38,

Oct. 2017

Paper ID: SR21410153004 DOI: 10.21275/SR21410153004 1355

