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Abstract: Forests are considered carbon reservoirs and plays a critical role in modeling carbon balance. The total amount of above-

ground and below-ground organic matter of plant parts is called biomass. The forest aboveground biomass (AGB) estimation is 

important for climate change mitigation programs. Remote sensing (RS) based AGB estimation methods have gained importance and 

substantial research has been conducted in the past thirty years. This review paper provides a survey of aboveground biomass 

estimation methods using RS and demonstrates the benefits of RS over traditional methods. Optical data, Radio Detection and Ranging 

(RADAR), and Light Detection and Ranging (LIDAR) systems are the primary sources for AGB estimation. The literature review 

demonstrates the importance of biomass, description of various methods used for above-ground biomass estimation, and also reviews 

various attempts made by Indian researchers for estimating aboveground biomass using RS. This review has indicated the limitations of 

using single sensor data and the importance of integrating multi-sensor data to produce accurate results. More research is needed to 

reduce the data saturation problem through the use of advanced image processing technologies. 
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1. Introduction 
 

The rapid rates of deforestation and industrialization in 

recent years have led to a sudden increase in carbon dioxide 

(CO2) in the atmosphere from the preindustrial era. Different 

ecosystems act as carbon(C) sinks and absorb CO2 in 

varying capacities. Currently, Earth’s CO2 level is 415ppm 

which surpassed the dangerous critical threshold of 400ppm, 

in comparison to the safe level of 350ppm (Sinha et al. 

2020; Raha et al. 2020). Forests are a significant source of 

carbon sink on Earth as 80% of the terrestrial aboveground 

C stocks are contained in them, and also exchange large 

quantities of C with the atmosphere through respiration and 

photosynthesis playing a crucial role in the global carbon 

cycle (Rajashekar et al. 2018). Biomass and C stocks in 

forests vary with forest type, age, canopy cover, stand 

structure, and altitude (Srinivas and Sundarapandian 2019; 

Raha et al. 2020). Therefore, forest biomass is considered as 

a complex property that is influenced by forest structure, 

distribution, ecological processes, composition, and 

architectural attributes (Raha et al. 2020). 

 

Quantification of forest aboveground biomass (AGB) is 

important for carbon flux monitoring, carbon budget 

accounting, and supporting climate change modeling studies 

(Zhu and Liu 2015; Dang et al. 2019). The frequently used 

methods for estimating forest aboveground biomass are 

through the use of field plots (Zhu and Liu 2015). The 

accurate method to calculate AGB is based on field 

measurements, but the collection of field data is labor-

intensive and time-consuming (Lu et al. 2016). 

Alternatively, non-destructive allometric equations can be 

used to accurately estimate forest biomass, because once the 

equations have been developed, it is possible to investigate 

large study regions, and disturbances like the destruction of 

a forest stand are avoided (Kenzo et al. 2009). Apart from 

the traditional methods of aboveground biomass estimation, 

remote sensing based methods have extensively been used 

due to their comprehensive temporal and spatial coverage, 

and time and cost-effectiveness (Nandy et al. 2017). Field 

inventory data integrated with remote sensing data have 

been extensively used for estimating forest biomass 

(Muukkonen and Heiskanen 2005; Hu et al. 2016; Su et al. 

2016). The United Nations collaborative program on REDD 

has also recommended that there should be the use of RS 

technology in national forest monitoring systems for 

conducting an inventory to monitor forest cover, evaluate 

forest carbon reference, and assess forest degradation (Dang 

et al. 2019). By linking field inventory data, forest biomass 

can be estimated from RS datasets using statistical models. 

Generally, optical remote sensing [e.g., Landsat Thematic 

Mapper (TM) and Moderate Resolution Imaging 

Spectroradiometer (MODIS)] and radar techniques have 

become principal data sources for estimating AGB, because 

of their availability (Su et al. 2016). At a global level 

mapping, the medium and coarse resolution optical sensors, 

such as MODIS and NOAA AVHRR, are mostly used due 

to their frequent temporal coverage, while finer resolution 

instruments, such as ASTER, SPOT, and Landsat sensors 

are required for quantifying change at local to the regional 

level (Muukkonen and Heiskanen 2005).  

 

2. The Biomass  
 

Biomass is produced by green plants through the process of 

photosynthesis. Humans have exploited the energy stored in 

the biomass, by burning it as a fuel (McKendry 2002). 

Biomass energy generates less pollution than fossil fuels 

(such as coal, petrol), decreases dependence on foreign oil, 

reduces waste material, and creates employment 

opportunities (Demirbas 2004). Biomass consists of the 

aboveground and below ground living mass (trees, shrubs, 

and roots) and the dead mass of litter (Lu 2006). AGB is a 

crucial indicator of carbon storage and forest productivity 

(Calders et al. 2015). 

 

Above ground biomass is an important aspect of carbon 

stocks and carbon sequestration studies on the global level. 
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Estimation of the AGB is useful for comparing functional 

and structural attributes of forest (Mani and Parthasarathy 

2007). 

 

The biomass determines the C that will be released in the 

atmosphere in the form of carbon monoxide (CO) and 

carbon dioxide (CO2). The term carbon and biomass are 

used in similar meanings for biomass studies as half the 

amount of biomass is approximately equal to the carbon 

(Yaklaşımlar 2012). 

 

3. Remote sensing based approaches for the 

estimation of aboveground biomass 
 

In 1930s preliminary studies on biomass were conducted to 

estimate AGB by tree species. Harvest methods were used in 

these studies which included harvesting the trees and 

weighing them after oven drying. This type of method 

becomes difficult if below-ground biomass is included and 

could overestimate biomass density if they include large 

trees. Generally, the harvest method is not practical in high 

biomass density areas, and repeating these measurements is 

not feasible. To solve these problems, researchers have 

developed indirect methods of biomass estimation.  

 

The application of remote sensing is a cost-effective and 

practical approach to analyze data over large areas 

(Yaklaşımlar 2012). The terrestrial ecosystem of India is 

broadly studied for estimation of point biomass and 

productivity but the application of these observations has 

limitations using conventional methods (Roy and Ravan 

1996). Observations of vegetation through satellite provide 

worldwide coverage with a high spatial resolution (Dong et 

al. 2003). Remote sensing technology enables rapid 

assessment of aboveground biomass at low cost (Kumar et 

al. 2015). 

 

For biomass estimation, remote sensing technologies can be 

classified into three: Optical, RADAR, and LIDAR. 

 

3.1. Optical system 

 

Two-dimensional representation of land surface vegetation 

is provided by optical remote sensors and its reflectance 

properties are indirectly related to biophysical parameters 

(Fatoyinbo 2012). Optical sensor data is sufficient for the 

estimation of horizontal vegetation structures such as canopy 

cover and vegetation types, but it is not relevant for the 

estimation of vertical vegetation structures (Lu et al. 2016). 

Medium to high spatial resolution optical data is useful for 

studies at local to regional scale, while medium to coarse 

resolution data provides information on a regional to 

continental scale (Eisfelder et al. 2012). These optical 

sensors depend on sunlight as the light source and measure 

the amount of sunlight reflected by the crop. The reflectance 

properties of plants are related to the physiological status 

and growth of the crop (Erdle et al. 2011). 

 

3.2. RADAR systems 

 

Synthetic aperture radar (SAR) sensors are the active 

sensors, sending microwave radiation, and detecting the 

backscatter radiation by the surface (Mitchard et al. 2009). 

RADAR data is widely used in the estimation of forest stand 

parameters as they can operate day and night and record 

backscattering from the upper canopy and woody biomass 

component of the forest (Yaklaşımlar 2012). Based on the 

backscattering amplitude, the regression technique and the 

interferometry technique are commonly used in biomass 

estimation (Lu et al. 2016).  

 

In general, the RADAR transmitted energy at low frequency 

in the form of electromagnetic wave, penetrates the forest 

canopy and is reflected from forest components like foliage, 

branches, stems, and soil. Knowing the value of transmitted 

and received energy, a relationship has been developed so 

that the ratio of these energies is related to properties of the 

forest (Saatchi et al. 2011). SAR data is obtained in X, C, L, 

and P bands. To extract details about the surface layer of 

trees X band is suitable as it is scattered by leaves and 

canopy cover surface. The C band penetrates through leaves 

and is scattered by small branches and lower layer elements. 

The L band is scattered by the trunk and main branches. The 

P band penetrates canopy cover and greater part 

backscattering of P band is caused by trunk and ground. For 

aboveground biomass estimation SAR L band data have 

been proven valuable (Yaklaşımlar 2012). 

 

An important parameter of the SAR data is the polarization 

of the SAR signals. The polarization of electromagnetic 

waves depends upon the interaction between signals and 

reflectors. Most of the microwave sensors emit signals in 

horizontal or vertical polarization. The SAR data may have 

four polarizations: HH, HV, VH, VV. HV polarization is 

most sensitive to aboveground biomass estimation (Sinha et 

al. 2015). 

 

In the RADAR data saturation problem is also common. The 

saturation level depends upon polarization, wavelengths, 

ground conditions, and characteristics of vegetation stand 

structure. L-band backscatter is suitable in tropical regions 

for estimating biomass of regenerating forests (Lu 2006). 

 

For distinguishing vegetation types it is difficult to use radar 

data because it reflects roughness of land surface instead of 

distinction between vegetation types. Another problem is 

speckle in radar data. Proper employing filtering methods to 

lessen outliers and noise in Interferometric Synthetic 

Aperture Radar (InSAR) data are required to improve 

performance in vegetation height estimation, (Lu et al. 

2016). 

 

3.3. LIDAR systems 

 

LIDAR is an active RS technology (Lim et al. 2003). The 

instrument positioned on a platform emits laser pulses 

towards a target for example woodland (Fatoyinbo 2012) 

and measures reflected energy and time difference between 

pulse emission and reception (Yaklaşımlar 2012). The 

LIDAR ‘footprint’ is the area illuminated by the laser pulse 

and the size of the footprint is determined by laser 

divergence and distance from the target of the LIDAR 

system. Interactions of laser pulse with vegetation are 

depended upon the wavelength of emitted pulse, reflectance, 

transmittance, rates of absorption for each foliage, bark, and 

background type (Fatoyinbo 2012). 
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LIDAR systems can be divided into two: discreet return and 

full-waveform systems (Laurin et al. 2014). The difference 

between the full-waveform and discrete return systems is 

that former records the entire backscattered signal which is 

above noise threshold while the latter records first and last 

returns or sometimes, several intermediate points (Rosette et 

al. 2012). The discreet return system evaluates the distance 

between the target and the sensor while the Full-waveform 

system records the shape and intensity of the pulse reflected 

from targets, which allows retrieval of the three-dimensional 

distribution of tree canopy (Yang et al. 2013). 

 

The investigation of full-waveform data has improved 

enhanced point extraction, height estimations, and additional 

target information. The full-waveform LIDAR system has 

also been used in forestries such as single tree detection, 

estimation of forest structure characteristics, and tree species 

classification (Cao et al. 2014). The laser penetration indices 

that are derived from discreet-return LIDAR data are 

frequently used to estimate biomass of forest but the 

disadvantage of the discreet-return LIDAR system is that 

they record several limited returns, so canopy cover cannot 

be determined accurately (Nie et al. 2017). 

 

4. The current state of remote sensing 

applications for aboveground biomass 

estimation in India. 
 

Several methods have been used for the estimation of forest 

biomass such as by harvest method, by using allometric 

equations. This section elaborates on the various attempts 

made by Indian researchers for estimating aboveground 

biomass using remote sensing. The various available 

literature on biomass estimation is also summarised in table 

1. 

 

Madugundu et al. (2008) demonstrated the potential of the 

IRS P6 LISS-IV sensor for the aboveground biomass (AGB) 

estimation. They conducted their study in Haliyal and 

Yellapur forest divisions, Western Ghats of Karnataka, 

India. In their study, they derive regression equations 

describing the relationship between Normalized Difference 

Vegetation Index (NDVI) and Estimated Leaf Area Index 

(ELAI) and Estimated aboveground biomass (EAGB). 

Based on a regression equation between NDVI and ELAI 

remote sensing data based Predicted Leaf Area Index 

(PLAI) was generated. Further, the Predicted Aboveground 

Biomass (PAGB) image was generated based on the 

regression equation between PLAI and EAGB.  

 

Bijalwan et al. (2010) conducted a study in the Raipur 

district of Chhattisgarh to characterize carbon status and 

land use of the tropical forest using GIS (Geographic 

Information System) and RS techniques. The highest AGB 

was found in the mixed forest and lowest in degraded 

forests.  

 

Suresh et al. (2014) used ALOS PALSAR data along with 

field inventory data to estimate aboveground biomass over 

Odisha state, India. They used linear regression models by 

using log transformations of field biomass data for 

establishing a relationship between the backscattering 

coefficient of ALOS PALSAR and field AGB. 

 

Yadav and Nandy (2015) attempted to map aboveground 

woody biomass (AGWB) using forest inventory, remote 

sensing, and geostatistical techniques. The study was 

conducted in the Bhabar-dun sal forest (Uttarakhand, India). 

IRS P6 LISS-III satellite data (December 1, 2012) was used. 

The study compared geostatistical techniques that are Direct 

Radiometric Relationships (DRR), CoKriging (CoK), and 

K-Nearest Neighbour (k-NN). For DRR, the spectral bands 

and vegetation indices (independent variables) were 

regressed with AGWB values (dependent variable). Using 

the best relationship between independent variables and 

dependent variables a biomass map was generated. For the 

k-NN technique, the same variables were used to create a 

biomass map using k-NN Forest software. For CoK 

Gaussian, exponential and circular semivariograms were 

examined for the best fit. The k-NN method with 

Mahalanobis distance was considered to be the best 

technique for biomass mapping. 

 

Thumaty et al. (2016) used ALOS PALSAR L-Band data to 

estimate AGB for Central Indian Deciduous Forests. The 

study was conducted in Madhya Pradesh, India. The data of 

415 sampling plots was used which was collected over the 

study area during 2009-2010. By using volume equations 

plot-level AGB estimates were computed using field 

inventory data. The plot-level aboveground biomass 

estimates were modeled with PALSAR backscatter 

information in HV, HH. The total AGB of the study area 

was estimated to be 367.4Mt. 

 

Nandy et al. (2017) estimated forest biomass by integrating 

field inventory data and RS satellite data using an artificial 

neural network (ANN) technique. For field data collection 

stratified random sampling was adopted to lay out sample 

plots in different strata. The volume of trees in the plots was 

calculated using species-specific volumetric equations 

developed by Forest Survey of India (FSI) for the same 

locality. The AGB was calculated by multiplying volume by 

specific gravity and biomass expansion factor (BEF). 

Multivariable linear regression (MLR) was carried out with 

top texture and spectral variables for estimating biomass.   

 

Reddy et al. (2017) estimated AGB using texture derived 

information from IRS Cartosat-1 data in the evergreen 

forests of Western Ghats. In their study, plot-level estimated 

aboveground biomass from 15 plots was used to relate with 

texture derived metrics from IRS Cartosat-1 data. Using 

Cartosat-F (viewing angle = 26

) imagery the effect of 

viewing geometry on the relationship was measured. 

 

Sivasankar et al. (2018) used SAR data from Sentinel-1 and 

ALOS-2/PALSAR data for biomass estimation. The field 

data collected from the Environment department and 

Meghalaya Forest was used in the study. Tree volume was 

calculated using species-specific volumetric equations and 

biomass was estimated by multiplying volume with specific 

gravity. Regression analysis was executed between 

aboveground biomass and backscattering coefficients of L-

band and C-band separately.  
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Table 1: A brief description for selected research in India for estimation of AGB using remote sensing 

Study region 
Use of remote 

sensing data 
Methodology Reference 

Haliyal and Yellapur 

Forest divisions in 

Western Ghats 

(Karnataka) 

IRS P6 LISS-

IV 

1) In the study area 30 plots were distributed using the randomizer function of 

ERDAS Imagine software and in each plot, all adult trees were measured for girth at 

breast height (GBH), 2) The allometric regression model (Murali et al. 2005) was 

used for EAGB estimation, 3) IRS P6 LISS-IV image processing, 4) All 8 vegetation 

classes were delineated based on their spectral signature, 5) Integration of EAGB and 

RS based PLAI. 

Madugundu 

et al.(2008) 

Balamadi watershed 

(part of 

Barnawapara 

sanctuary, Raipur 

districts in 

Chattisgarh) 

IRS 1D LISSIII 

1) Delineation of vegetation types and different land use by digitally analyzing RS 

satellite data, 2) Generation of NDVI map and color-coded map, 3) Preparation of 

contour and drainage maps, 4) Laying of sample plots in different forest types using 

a stratified random sampling approach, 5) Use of species-specific volume equations 

published by Forest Survey of India (FSI), 6) Volume of every tree in each quadrat 

was multiplied with its mean density to obtain stem biomass, which was further 

multiplied with biomass expansion factor to obtain AGB. 

Bijalwan et 

al.(2010) 

Odisha 
ALOS 

PALSAR 50m 

1) By using the allometric equation and wood densities, tree-level measurements 

(collected during field inventory data in 2009-2010) were converted to biomass 

density, 2) Integration of field inventory based biomass estimation and ALOS-

PALSAR backscatter coefficients to obtain spatial forest AGB, 3) SVM based Radial 

Basis Function classification was used to carry out binary classification using field 

inventory data and ALOS-PALSAR HV and HH backscatter coefficient images 

Suresh et 

al.(2014) 

Bhabar-dun Sal 

Forest 

IRS P6 LISS-

III 

1) Collection of biophysical data using Stratified random sampling, 2) Species-

specific volumetric equations were employed to calculate volume, further 

multiplying volume by specific gravity to get biomass, 3) 3 forest-type density 

classes of Shorea robusta and 4 non-forest classes were delineated from IRS P6 

LISS-III imagery, 4) Vegetation indices and spectral bands were used as independent 

variables while, biomass as the dependent variable for comparing DRR, CoK, and k-

NN. 

Yadav and 

Nandy(2015) 

Madhya Pradesh 

ALOS 

PALSAR L-

Band 

1) Allometric volume equations and miscellaneous volume equations were used to 

compute tree volume, 2) The DN data of PALSAR HV and HH mosaics were 

converted to Normalized Radar Cross Section (NRSC), 3) The plot-level 

aboveground biomass estimates were empirically modeled with PALSAR 

information in HV, HH and their ratios from various forest types. 

Thumaty et 

al.(2016) 

Barkot forest, 

Uttarakhand 

Resourcesat-1 

LISS-III 

1) LISS-III satellite data was used and the digital numbers of all bands of this data 

were converted into reflectance image, 2) The image was geometrically referenced 

and subset image of the study area was extracted, 3) Spectral variables were 

extracted, 4) GLCM (Gray level co-occurrence matrix) method was used to derive 

texture variables, 5) Optimum kernel size was determined for the extraction of all the 

texture variables, 6) False color composite (FCC) was used for stratification of 

different vegetation types and canopy density categories, 7) For field data collection, 

stratified random sampling was applied for laying sample plots in different strata, 8) 

Using volumetric equations volume of trees of sample plots was calculated and AGB 

was determined by multiplying volume by specific gravity and BEF, 9) Below 

ground biomass (BGB) was calculated using root shoot ratio, 10) Total shrub, herb 

and litter biomass per plot was calculated by drying the sample in oven at 80oC, 11) 

Total biomass per plot was calculated by adding AGB, BGB, shrub biomass, herb 

biomass and litter biomass, 12) Multi layer perceptron (MLP) was used considering 

biomass as dependent variable, spectral and textural variables as independent 

variables, 13) ANN model was used to optimize independent variables, 14) MLR 

was run between biomass, spectral and textural variables separately to determine 

stabilized R2 value, 15) Using coefficients for selected variables empirical equation 

was established for biomass estimation. 

Nandy et al. 

(2017) 

Uppangala, near 

Pushpagiri Wildlife 

sanctuary, Western 

Ghats 

IRS Cartosat-1, 

IKONOS 

1) Total of 15 plots was laid in the accessible zones possessing homogenous canopy 

texture and from each plot, field measurements were obtained, 2) AGB was 

determined using regional allometric model, 3) Satellite image of the study area was 

divided into 125 X 125 m contiguous unit windows, 4) On each unit window, 2D 

Fast Fourier Transformation (FFT) was applied and r-spectra was generated, 5) 

Using z-score normalization r-spectra was standardized over all windows over the 

entire image, 6) Principal component analysis (PCA) was performed on r-spectra, 7) 

The first three PC axes were used as texture indices, 8) These texture indices were 

related to AGB of 15 plots using multivariate linear regression. 

Reddy et al. 

(2017) 

Nongkhyllem 

Wildlife Sanctuary 

and Reserve Forest, 

Meghalaya 

Sentinel-1, 

ALOS-

2/PALSAR-2 

1) Species-specific volumetric equations were used for estimating tree volumes of 

sample plots and it was converted into AGB by multiplying volume with specific 

gravity using species-specific gravity, 2) SAR data from Sentinel-1 and PALSAR-2 

were calibrated using SNAP for generating backscattering coefficients, 3) Refined 

Lee filter was used for speckle noise reduction, 4) The extracted backscatter 

signatures of C-band VV, VH polarization, and L-band HH, HV polarizations were 

correlated with AGB, 5) SVM technique was adopted to obtain a relation between 

SAR backscatter and AGB. 

Sivasankar 

et al. (2018) 
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5. Conclusion 
 

Aboveground biomass is an important indicator of C 

storage, forest productivity, and sequestration of forests 

(Calders et al. 2015). Estimating AGB is useful for 

comparing functional and structural attributes of forest 

ecosystems across a broad range of environmental 

conditions (Mani and Parthasarathy 2007). 

 

Traditional methods of AGB estimation depend upon field 

measurements such as diameter at breast height, tree height, 

etc. These methods are costly and labor-intensive. The 

limitation of the traditional method is the biasness in the 

selection of representative samples. However, the 

application of RS methods is the most economical and 

practical alternative to retrieve data over large areas. Remote 

sensing is an accurate tool for biomass studies because of its 

ability to periodically measure the area of interest. AGB 

estimation using RS is a complex process in which many 

factors, like atmospheric conditions, data saturation, mixed 

pixels, extracted remote sensing variables, insufficient 

sample data, and selected algorithms may affect the 

performance of AGB estimation (Lu 2006).  

 

Radar data are an important source of data for aboveground 

biomass estimation. Radar is suitable for biomass estimation 

because of its ability to capture vertical forest structure 

features, but its inability to distinguish vegetation types 

affect AGB estimation accuracy. 

 

Integration of multiscale data from medium spatial 

resolution datasets, like RADAR and Landsat, high spatial 

resolution datasets, such as LIDAR and Quickbird, and 

coarse spatial resolution datasets, like MODIS, may be used 

for global biomass estimation (Lu et al. 2016).  

 

Optical sensor data can be used for developing a horizontal 

vegetation structure instead of a vertical structure.  The 

stereo-viewing capability in optical sensor data like Terra 

ASTER, ALOS/PRISM can provide vertical vegetation 

structure. So, proper integration of optical spectral response 

and this vertical structure features in a biomass estimation 

model can be used to improve biomass estimation accuracy 

(Lu et al. 2016). 
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