A Curious Connection between Fermat's Number and Multiple Factoriangular Numbers

Swati Bisht¹, Dr. Anand Singh Uniyal²

Govt. P.G. College Uttarakhand, India

Abstract: In the seventeenth century Fermat defined a sequence of numbers $F_n=2^{2^n}+1$ for $n \ge 0$ known as Fermat's number. If F_n happens to be prime then F_n is called Fermat prime. All the Fermat's numbers are of the form $n!^k + \Sigma n^k$ for some fixed value of k and n. Further we will prove that after F_4 no other Fermat prime exist upto 10^{50} .

Keywords: Fermat's Number, prime number, multiple factoriangular numbers, Fermat prime

1. Introduction

Fermat Number: a positive number of the form $F_n = 2^{2^n} + 1$ where n is non negative integer.

First few Fermat's number are 3, 5, 17, 257, 65537,...

Pierre de Fermat conjectured that all numbers

- (1.1) $F_n=2^{2^n}+1$ for m = 0, 1, 2, ... are prime. Nowadays we know that the first five members of this sequence are prime and that (see [2])
- (1.2) F_n is composite for $5 \le m \le 32$.

The status of F_{33} is for the time being unknown, i.e., we do not know yet whether it is prime or composite.

The numbers F_n are called Fermat numbers. If F_n is prime, we say that it is a Fermat prime.

Fermat numbers were most likely a mathematical interest before 1796. When C. F. Gauss mentioned that there is a remarkable relation between the Euclidean construction (i.e., by ruler and compass) of regular polygons and the Fermat numbers, interest in the Fermat primes skyrocketed. In particular, he proved that if the number of sides of a regular polygonal shape is of the form $2^k F_{m1} \dots F_{mr}$, where $k \ge 0, r \ge 0$, where F_{mi} are distinct Fermat primes, then this polygonal shape can be made by using compass ruler . The converse statement was proved later by Wantzel in [8].

There exist many necessary and sufficient conditions concerning the primality of F_n . For instance, the number $F_n(n > 0)$ is a prime if and only if it can be written as a sum

of two squares in essentially only one way, namely $F_n = (2^{2^{n-1}})^2 + 1^2$.

Recall also further necessary and sufficient conditions: the well-known Pepin's test, Wilson's Theorem, Lucas's Theorem for primality, etc., see [4].

Multiple Factoriangular number [7]: A generalization of factoriangular number is known as multiple factoriangular numbers and are defined as $F_t(n,k)=(n!)^k + \Sigma n^k$

Where $T_n(k) = \sum n^k = 1^k + 2^k \dots + n^k$.

In this paper, we establish a connection between multiple factoriangular numbers and Fermat number.

n	$F_t(2,2^n-1)$	Prime factorization	Number	Sum of squares
		of $F_t(n, 15)$	of digits	of prime, integer,
			-	natural numbers
0	3	Prime	1	
1	5	Prime	1	$2^2 + 1^2$
2	17	Prime	2	$4^2 + 1^2$
3	257	Prime	3	$16^2 + 1^2$
4	65537	Prime	5	$256^2 + 1^2$
5	4294 967297	$641 \times 6\ 700417$	10	$65536^2 + 1^2$
6	18 446744	274177 × 67 280421	20	4046 803256 ² +
	073709 551617	310721		1438 793759 ²
7	340 282366	59649 589127	39	18 446744
	920938 463463	497217×5704		073709 551616 ²
	374607 431768	689200 685129		+ 12
	211457	054721		
8	115792 089237	238 926361 552897	78	339 840244
	316195 423570	× 93 461639 715357		399005 511779
	985008 687907	977769 163558		394711 120340
	853269 984665	199606 896584		$266111^2 + 17$
	640564 039457	051237 541638		340632 172455
	584007 913129	188580 280321		487023 654788
	639937			790090 010704 ²

By the common observation we see that the sequence of number so formed is well known Fermat Number Sequence and it follow the properties described in[2],[4].

Now

$$F_{t}(2, 2^{n}-1) = (2!)^{2^{n}-1} + \Sigma 2^{2^{n}-1} = 2^{2^{n}} + 1.$$

Corollary: All the Fermat prime are multiple factoriangular primes.

2. Conclusion

We end up with the conclusion that the only primes we get in different sequences of multiple factoriangular numbers till 10^{50} are the Fermat Prime F₀, F₁, F₂, F₃, F₄. Also Sequence of Fermat Number are a special case of multiple Factoriangular number by fixing n=2, k= 2ⁿ-1.

Volume 10 Issue 4, April 2021

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR21310103215

References

- [1] D. M. Burton, Elementary Number Theory, fourth edition. McGraw-Hill, New York (1998).
- [2] R. E. Crandall, E. Mayer, J. Papadopoulos, The twentyfourth Fermat number iscomposite. Math. Comp. (submitted).
- [3] M. Křížek,, J. Chleboun, A note on factorization of the Fermat numbers and theirfactors of the form 3h2ⁿ + 1. Mathmetica.Bohemica.119, (1994), 437–445.
- [4] M. Křížek, F.Luca.17 Lectures on Fermat Numbers. From Number Theoryto Geometry. Springer, New York (2001).
- [5] I. Niven, H. S.Zuckerman. An Introduction to the Theory ofNumbers, fifth edition. John Wiley and Sons, New York 1991.
- [6] S. Bisht, A. S. Uniyal . Representation and nature of multiple factoriangular numbers, International journal of advanced research. *Int. J. of Adv. Res.* 6 (Sep). 448-451.

DOI: 10.21275/SR21310103215

540