
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Improving the MapReduce Performance using

Symmetric Key Algorithm

G. Siva Brindha
1
, Dr. M. Gobi

2

1Research Scholar, Department of Computer Science, Chikkanna Government Arts College, Tiruppur, Tamilnadu, India

e-mail: gsbshivaa[at]gmail.com

2Associate Professor, Department of Computer Science, Chikkanna Government Arts College, Tiruppur, Tamilnadu, India

e-mail: mgobimail[at]yahoo.com

Abstract: In modern networking age, offloading of data to the cloud makes marked significant reliance on compatible and easily

available cloud infrastructure. The bias of safety regarding their personal data has also become unmindful that they completely merge

with the cloud service providers. The basicity of data protection for reliable and secure cloud environments known as Encryption, that

demands high costs in accordance to its data size is also at risks of facing some obstacles for the safety of big data security. Hence, this

paper brings forth a structural framework to reduce the costs of Encryption using MapReduce that can work wonders in enhancement

parallel processing and parameter tuning. In addition it enhances less time consumption of encryption that automatically results in

minimal usage of system resources. The current research tries to meet the benefits appreciated through MapReduce-based parallel

encryption computation.

Keywords: Cryptography, Encryption Cloud infrastructure, MapReduce, Large data security

1. Introduction

In the fast moving technological era, people seek to have

more convincing reasons to store their applications and data

in both private and public clouds. For example the rapid

elasticity, cost saving, quickness etc., require such cloud to

preserve everything. In this stratum companies always cope

up to the applications related to public cloud to establish

their benefits. Due to its inevitable necessity and

compatibility colossal data are created and preserved on the

cloud. The originations of such information may vary

ranging from mobile data to any kind of online transactions,

Email, Social media sites etc., It is because of this

compelling need of the hour cloud data centers and

ingenious minds are working hard to provided effective and

more undeniably reliable clouds storage to benefit wide

range of business platforms to meet its expectations

balancing the huge data available.

It is also a matter of fact that as a coin has two faces along

with the benefits there are privacy and safety threat both in

confidential personal and business data because of the

security techniques that lack in its performance in the cloud.

As a result the encryption technology also provides less

application functionality in using data in the computational-

resources. Adding to this storing data has become more

pressuring one because of its velocity, volume and varieties

of big data.

For scalable and efficient encryption schemes for big data on

the cloud there has arisen an increased demand for unfailing

security that seek to adopt and implement several encryption

algorithms [5], [10]. The CPU suffers huge consumption of

resources that eventually makes the encryption structures

weigh larger and make them suffer. There is a solution

called Parallel computation through which several

computations can be brought up all together on multiple

microprocessors. Moreover, there also lay this Multicore and

multiprocessor computers designed to have multiple

processing elements within a single machine that can be

used for such parallel processing.

In this paper, using MapReduce we try to come up with a

framework to serve as a programming model paralleling and

distributing the encryption of large amounts of data.

Subjecting this idea, the paper strive to improve the

performance of encryption by using different conditions. In

order to achieve good performance, we take up intensive

steps to choose a set of configuration parameters to set up

the framework. These parameters through which we work

will gradually tend to affect the encryption performance in

the MapReduce framework. So using AES encryption we

usually carry forward the framework and compare the

results to those results gained from standard sequential AES

implementation without any sort of intervention of

MapReduce. The results of the above mentioned problem

achieve significant performance gains through MapReduce

along with the selected configuration parameters.

2. MapReduce

MapReduce is the core component for data processing in

Hadoop work as a sub-project of the Apache Hadoop

project, which considers as a software framework that

comfortable to deal with huge, long-running jobs that cannot

be grip within the reach of a single request. It is useful for

distributed processing with an efficient process and general

data sets on the computing cluster [10]. it used to decrease

the cost of security by automatically split the input data into

a number of parts then run a program parallel on that data

parts with handle most of the problems at once, such

consistency and fault tolerance. It is a useful framework for

big data to deal with high efficiency and guaranteed

handling of a large cluster environment [11]. It has two

separate tasks each of a distinct work where mapper doing

as a converting task for a set of data from one form to

Paper ID: SR21204101422 DOI: 10.21275/SR21204101422 690

mailto:gsbshivaa@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

another by broken the individual elements down into tuples

(key/value pairs). Where the reducer will do the opposite,

which takes in the combines of those data tuples based on

the key and accordingly modifies the value of the key. Fig.4

illustrates the general idea of MapReduce.

2.1 MapReduce Workflow

A MapReduce paradigm is given in Figure 4.1 MapReduce

is designed to continue to work in the face of system

failures. When a job is running, MapReduce monitors

progress of each of the servers participating in the job. If one

of them is slow in returning an answer or fails before

completing its work, MapReduce automatically starts

another instance of that task on another server that has a

copy of the data. The complexity of the error handling

mechanism is completely hidden from the programmer.

 MapReduce is triggered by the map and reduce operations

in functional languages,such as Lisp. This model abstracts

computation problems through two functions: map and

reduce. All problems formulated in this way can be

parallelized automatically. Essentially, the MapReduce

model allows users to write map/reduce components with

functional-style code. These components are thencomposed

as a dataflow graph to explicitly specify their parallelism.

Finally, the MapReduce runtime system schedules these

components to distributed resources for execution while

handling many tough problems: parallelization, network

communication, and fault tolerance.

A map function takes a key/value pair as input and produces

a list of key/value pairs as output. The type of output key

and value can be different from input:

map :: (key1; value1)  list(key2; value2)… (1)

A reduce function takes a key and associated value list as

input and generates a list of new values as output:

reduce :: (key2; list(value2)) -> list(value3)… (2)

A MapReduce application is executed in a parallel manner

through two phases. In the first phase, all map operations

can be executed independently from each other. In the

second phase, each reduce operation may depend on the

outputs generated by any number of map operations. All

reduce operations can also be executed independently

similar to map operations.

2.2 Uses of MapReduce

At Google:

 – Index building for Google Search

 – Article clustering for Google News

 – Statistical machine translation

At Yahoo!:

 – Index building for Yahoo! Search

 – Spam detection for Yahoo! Mail

 At Facebook:

 – Ad optimization

 – Spam detection

3. Advanced Encryption Standard

In 2001 NIST designed The Advanced Encryption Standard

(AES) [3] and for a wide range of application it has been

accepted as the approved standard. It has been said in AES

that the same key is used for encryption and description of

data in symmetric key algorithm. In addition to that the keys

size in AES are given in 128, 192 or 256 bits. A block cipher

that works on one block of data at a time is known as

algorithm. There are various sizes of blocks that can be

used.

AES is one of the most reliable and widely used in practice

to safeguard the applications that store data in the cloud as

shown in table 1. It is celebrated due to its effectiveness and

proven security in its scheme. On the other hand when

applied to large memory in cloud, the AES awaits memory

requirements and time consumption that evidently result in

few performance limitations. In addition to that it has also

limited many application functionalities like the search

function, logic operations, and mathematical calculation.

Moreover, it has a biggest threat of providing a secure and

scalable key management system of a symmetric AES

encryption scheme in the cloud environment.

Table 1: Popular Cryptosystems Inindustry
Industry Cryptosystem

Industry Product Encryption

Cloudera, Navigate or Encrypt AES 256

SafeNet, ProtectDB
AES, 3DES, DES, RSA,

RC4, SHA-1, ACSHA-1

Thales, Hardware Security

Modules (HSM)

AES(128, 192,256) 3DES,

RSA ECC

Cloud Link RSA Data Protect

Manager
AES – 256

HP, Altlla AES

4. AES Encryption in MapReduce

A. AES in Paralle Computation

Advanced Encryption Standard (AES) cryptography

algorithm in Parallel implementation has been taken forward

Paper ID: SR21204101422 DOI: 10.21275/SR21204101422 691

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

in varied researches to improve the performance levels of

encryption. Parallel computation can be achieved through

any single machines with multiple processing elements.

Over standard CPU’s the Graphics Processing Units (GPUs)

claim a large latent performance within stream processing

applications. It is because of the distributed structural

platform that resides in the form of large numbers of simple

processing unit in GPU its performance also becomes highly

commendable. The investigation carried out by Harrison and

Waldron [11] shows that the GPU with large packet sizes

gives out best results because of its adaptation to the

applications that bulk data encryption/decryption. This paper

also validates that the GPU can be used effectively when

compared to other operating systems.

In an investigation carried out by Nagendra and Sekhar [6]

the application of an AES cryptography algorithm on a dual

core processor using OpenMP API to reduce execution time

has been explored. It is rather different from the applications

that we have seen so far that OpenMP (Open

multiprocessing) works on multicore architecture to provide

shared multithreaded memory parallelism. It is said that than

in sequential implementation of other applications the

parallel implementation of an AES block cipher using a

dual- core (Intel Core 2 Duo) processor takes 40% ~ 45%

less time to perform the encryption and decryption.

B. Parallelizing Encryption in MapReduce

Multicore and multiprocessor computers dwell in limitations

in execution of big data in the cloud environment during

Parallel computation. Segregation of equal work to process

is always a pressurizing task in cloud environment. After

that to associate the results from independent processes may

further drag the actual processing. Finally, there may also

arise a lack of processing capacity in a single machine. The

coordination and reliability of the host sis called into

question when we start using multiple machines.

MapReduce [4] is a programming model that groups the

large data sets with a parallel algorithm that lay foundation

for efficient processing and generating large data sets.

Hadoop [12] is one of the most popular open source

implementations of the MapReduce framework that is

designed to write any application. It can process a huge

amount of data available on cloud environment and store in

the Hadoop distributed File System (HDFS). In a large

cluster environment this framework spontaneously partitions

input data and handles all problems related to consistency

and fault tolerance. It has been used for tasks such as

analyzing application logs, aggregating related data from

external sources, transforming data from one format to

another, and exporting data for external analysis.

Using MapReduce for parallelizing encryption: Multiple

mappers can work at once on encrypted different blocks

instead of encrypting those one by one, for which using

MapReduce for parallelizing encryption processes can

evidently improve performance [9]. Once it is done the

reducer will cluster all blocks and store them in the HDFS.

There may arise a number of variations in this process. For

instance, a huge amount of key can possibly reduce the

decryption process. This will make the mapper to produce

the output in the form of blocks. Then, the reducer take

those input in the form of key value pairs and store. The

reducer will process the different keys use for encryption

and with the same key it processes the blocks in HDFS in a

coherent way. The total number of keys used in encryption

depends on the size of data as well.

Figure 2: AES encryption using Hadoop MapReduce

Parameters in MapReduce

MapReduce is affected and its performance is delayed by the

Tuning done by Hadoop configuration parameters under

various conditions. Here, Table 1 lists down a few

parameters of configuration parameters that we will

investigate further. In this paper, based on the performance

of AES in MapReduce we choose eight configuration

parameters that will have its impact visibly.

Table 1: Configuration Parameters in MapReduce

Name Parameter

Threshold mapred.inmem.merge.threshold

Merge io.sort.factor

Memory

mapred.job.shuffle.input.buffer.percent

io.sort.mb

mapred.job.shuffle.merge.percent

mapred.job.reduce.input.buffer.percent

Reducer mapred.reduce.tasks

Compression mapred.compress.map.output

Here is a detailed description for the configuration

parameters with respect to performance tuning:

a) Threshold: Once the reducer’s task is over, the map task

will be completed and the output will be copied to the

tracker’s memory buffer. When it reaches the threshold

number of the buffer it is merged and written on the

disk. The threshold can be certainly indicated by a

mapred.inmem.merge.threshold parameter and the task

of the parameter can save some time in merging that

eventually decreases the total time consumption of the

reducer.

b) b.Merge: The sorting order and the mapping output that

is merged will be maintained, once the mapping process

is completed. Based on the sorting factor (io.sort.factor)

the filed will be selected and the default value 10 is also

assigned for this parameter. In fact, for jobs this factor

should be increased due to the large mapper output and

huge writes on the disk.

c) Mapred.job.shuffle.input.buffer.percent: The output of

the mapper is stored in memory buffer of reduce task –

trackers, which is a parameter that controls the size of

the memory buffer. For storing and sorting the mapper

output the configuration parameter returns a percent

Paper ID: SR21204101422 DOI: 10.21275/SR21204101422 692

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

heap portion. In addition, the value of parameter

depends on the size of the mapper output.The

configuration setting of the parameters will decrease its

number of disk pills in order to gain a larger mapper

output.

d) d.io.sort.mb: This is a parameter that throws out the size

of the buffer that is required for sorting and here the

default size of the buffer is 100 MB. The size should be

increased for encryption in larger clusters because the

writes will be decreased in a large buffer size that will

reflect its decrease in the overall time consumption.

e) Mapred.job.shuffle.merge.percent: In this parameter the

threshold for the size of the task tracker’s buffer is

specified. It regulates on the basis of filled buffer that

once it is full the buffer output will finally be written to

disk.

f) Mapred.job.reduce.input.buffer.percent: It is a need that

the map output is to be reserved during the reduce

phase. The percentage of heap memory portion used in

the process is noted by this parameter. When the

percentage increases there will be a less merge that will

reduce the result on the disk. Finally, during the reduce

phase there will be a less reduction in the I/O time on

the local disk.

g) Reducer: For a particular map- reduce job, this

parameter (i.e. mapred.reduce.tasks) specifies the

number of reducers to be run. It depends on both

hardware configuration and the length of the resource to

process the given clusters. A task-tracker, which is used

to reduce tasks can improve its performance level when

maximum number is set for large clusters.

h) Compression: Whether the mapper output is to be

compressed or not is decided by this parameter called

compression (i.e. mapred.compress.map.output). In this

parameter the default value is false. While changing the

parameter setting to true, we find the disk space can be

saved and data transfer time can also be reduced.

5. Implementations and Evaluation

Based on the implementation on MapReduce the AES

algorithm is examined and compared to the conventional

AES implementation. The tests are made through Starfish

[14] in Hadoop for comparing the performance of both the

encryptions methods. Starfish is a reliable self-tuning system

that uses a profiler and an optimizer. In this research we use

Starfish profiler to gather statistical information about

MapReduce programs. In addition, it is allowed to manually

set the values of each configuration parameter for a

MapReduce job. For each job the partial execution time and

the overall time to encrypt a file is measured using this

parameter.

The following are used in this process. Firstly we took up

Hadoop 1.2.2 with Hadoop CryptoCodec Compressor 0.0.6.

Intel 8 Cores was the testing machine used for the process

with CPU E5606 2.13GHz and 12M RAM. For the

experiment purpose we used a block size of 256 bits for

AES and AES Counter Mode (CTR) was used additionally.

CTR is used to create a pseudo random stream which is self-

regulating of its plaintext. In order to eliminate the

duplication, varied pseudo random streams are obtained and

analyzed by counting up from the nonces of different kind

otherwise the initialization vectors, using which the

encryption is possible without per message randomness. It is

possible that only the wrong bits are affected by the

transmission errors in the process and Decryption and

encryption are completely parallelizable without any

hindrances.

In the MapReduce framework, the mapper first divides a file

in chunks that is to be encrypted. Then, the reducer carries

out the inputs with the chunked encrypted file and writes the

output file to the HDFS safely through of the encryption as

well as the decryption. After this process, to use the encrypt

file a conventional AES algorithm is used. Crypto Codec is a

commonly used compression algorithm provided by

Hadoop. It is necessary that the methods of key

managements and additional configuration to be provided to

encryption algorithms, for which crypto codec framework is

used [2].

Table 3: Used values for each configuration parameter
Parameter Value

mapred.inmem.merge.threshold 84

io.sort.factor 49

mapred.job.shuffle.input.buffer.percent 0.734

io.sort.mb 573

mapred.job.shuffle.merge.percent 0.242

mapred.job.reduce.input.buffer.percent 0.3820

mapred.reduce.tasks 2

mapred.compress.map.output
False

(for smaller file)

At first we tend to evaluate the performance of AES

encryption with MapReduce or without MapReduce.

Secondly, the encryption performance of the selected

configuration and its impact on achieving the aim is

analyzed. In Table 2 we find the derived specific values for

each configuration parameter made by Starfish. Except for

Fig. 3, where the total execution of time for AES encryption

without or with MapReduce we have used 10MB file size

for our test. The two major things are measured: Firstly, the

average output written to disk by Reducer, which in turn

decides the execution time for the Map and Reduce job.

Secondly, using the selected configuration parameters the

consumption of total time for execution.

5.1 Encryption Performance in Map reduce

Fig. 3 shows how in the MapReduce framework the

encryption performance is carried out. It has achieved a far

better improvement in encryption (i.e.,) between 20% ~ 30%

when compared to the conventional encryption methods.

Not only that when compared to the conventional AES the

execution time was much greater for the AES algorithm to

encrypt a 500 MB based on conventional AES. Hence, it is

clear that the MapReduce allows encryption to be benefited

out of parallel processing.

To innate performativity of MapReduce, parallelization

serves as a core factor. Figure 3 picture that MapReduce

markedly reduces the total encryption execution time. The

splitting of files for encryption in accordance to the parallel

processing reduces the time consumption for its possible

execution. We find that in sit of using Crypto codec, the

Paper ID: SR21204101422 DOI: 10.21275/SR21204101422 693

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

noteworthy performance enhancement was due to the way

mapper and reducer assign jobs. They serve both master and

slave process in parallel to bring out the variance in

encryption performance.

It is clear that compared to the map job, the performance of

the reduce job may differ from configuration parameters. In

Fig. 6 we find that the comparison in the overall time for the

entire encryption job before and after tuning the

configuration parameters. According to the eight figuring

parameters we may conclude that we can obtain

performance improvement by means of configuring the

encryption job.

5.2 Execution Time at Reducer

As the first step, using Reducer the average output driven to

disk is analyzed. Given in Fig. 4 before fine-tuning and after

fine- tuning configuration parameters show the difference in

the average outputs written to disk by reducer during

execution time. It is proven through this that the average

output written to disk by the reducer decreased by 40%,

resulting in overall improvement of performance after the

map-reduce job.

5.3 Total Execution Time at Mapreduce

Here the overall execution time for the map and reduce job

in performing encryption in HDFS is compared. Fig. 5

brings forth the overall time execution for the map-reduce

job before tuning and after tuning the configuration

parameters.

5.4 Execution Time at Mapreduce

The total execution time for the map and reduce jobs are

shown in the figure below. Fig. 7. It displays a comparison

of the time of the map and reduce jobs to perform AES

encryption in MapReduce. Through this we find that after

tuning the configuration parameters, apparently the

execution time of the mapper also increased, but with

significant improvement in the execution time for the

reducer job, the total time for the whole job was reduced.

The above stated experiments gives out two possible

conclusions. The first one is that by tuning the configuration

parameters there can be a marked improvement in the

encryption performance. Secondly, through parallel

processing using MapReduce encryption performance in

terms of total execution time also improves significantly. In

a conventional manner, the execution time of AES

encryption for different sizes of files is examined using

MapReduce with tuning positioning parameters. The results

obtained using CTR AES-256 is compared to the execution

time in a most predictable way and show that there is a 20%

~ 30% performance benefit with the use of the MapReduce

framework. It also shows increasing performance

enrichment as file size increases. Two reducers has been

used for the test through which we find, the mapper needs to

spend more time to segregating jobs for these multiple

reducers. On the other hand, each of the reducers have only

some part of the encrypted file and the time of the reducers

can decrease due to the parameter settings.

6. Conclusion

The providence of any confidential data is considered as the

core important thing to maintain in current scenario. In such

case data leakage moving around in internet is highly

indispensable. Many organizations in this domain are bound

to process Big Data in a non-accessible way (i.e.,) a high

quality of data services. It seems purely a difficult task of

maintain such Big Data because they easily face weaknesses

in designing scalable and efficient techniques. However,

Data encryption helps us in finding a near solution to protect

all types of data, it still lacks in scrutinizing different

encryption techniques and also in investigation and

evaluation of various encryption algorithms. This paper

serves to be an eye-opener by providing varied literary

reviews and market researches to the problem of engaging

in intense scrutiny and analysis of available encryption

algorithms.

Through MapReduce this paper has tested and envisioned

encryption performance of the popular parallel processing

platform. The configurations selected for the study has

positively affected the job performances of Map- Reduce in

varied conditions. These can be considered and implemented

to reach maximum encryption performance.

References

[1] Craig Gentry, Shai Halevi, and Nigel P.Smart.

Homomorphic evaluation of the AES circuit. In

Reihaneh

[2] Issues.apache.org, '[HADOOP-9331] Hadoop crypto

codec framework and crypto codec implementations

– ASF JIRA', 2013. [Online].Available:

https://issues.apache.org/jira/browse/HADOOP-

9331. [Accessed: 15- Mar-2015].

[3] J. Daemen, V. Rijmen. Rijndael: The Advanced

Encryption Standard. Dr. Dobb’s Journal,

March2001.

[4] Jeffrey Dean and Sanjay Ghemawat,MapReduce:

Simplied Data Processing on Large Clusters, OSDI

2004

[5] Kristin Lauter, Michael Naehrig, and Vinod

Vaikuntanathan. Can homomorphic encryption be

practical? In CCSW, pages 113– 124. ACM,2011.

[6] M. Nagendra and M. Chandra Sekhar, Performance

Improvement of Advanced Encryption Algorithm

using Parallel Computation. International Journal of

Software Engineering and Technology, vol 8, issue

2, p287-296, 2014

[7] N. Coffey, 'Password-based encryption',

Javamex.com, 2015. [Online].

 Available:

http://www.javamex.com/tutorials/cryptography/pbe

_key _derivation.shtml. [Accessed: 15- Mar- 2015].

[8] P. Rogaway, Evaluation of Some Block Cipher

Modes of Operation. Technical Report,

Cryptography Research and Evaluation Committees

(CRYPTREC),2009.

[9] Sujitha, G., Varadharajan, M., Raj Kumar, B., &

Merey Shalinie, S. (2013). Provisioning mapreduce

for improving security of cloud data. 220-

228(Journal of Atificial Intelligence 6(3)))

Paper ID: SR21204101422 DOI: 10.21275/SR21204101422 694

http://www.javamex.com/tutorials/cryptography/pbe_key
http://www.javamex.com/tutorials/cryptography/pbe_key

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[10] C. Gentry, Fully homomorphic encryption using

ideal lattices, Symposium on the Theory of

Computing (STOC), 2009, pp.169-178.

[11] Owen Harrison, John Waldron, Practical Symmetric

Key Cryptography on Modern Graphics Hardware,

Proc. of the 17th conference on Security

symposium. San Jose, CA, 2008, pp.195-209.

[12] https://hadoop.apache.org/

[13] Impetus, Hadoop Perfromance Tuning, White

Paper, Impetus Technologies Inc., Oct. 2009,

Partners in Software R&D and Engineering.

[Online]. Available: www.impetus.com.

[14] Herodotos Herodotou, Harold Lim, et. al., Starfish:

A Self-tuning System for Big Data Analytics, in the

Fifth Biennial Conference on Innovative Data

Systems Research(CIDR), page 261-272,2011.

Paper ID: SR21204101422 DOI: 10.21275/SR21204101422 695

https://hadoop.apache.org/
http://www.impetus.com/

