
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Comprehensive Guidelines for Effective Linux

Kernel Patch Submission: Enhancing Contribution

Quality and Community Interaction

Anish Kumar

Email: yesanishhere[at]gmail.com

Abstract: This paper presents an extensive guide for submitting patches to the Linux kernel, focusing on best practices that enhance

patch acceptance likelihood and foster positive community interactions. The methodology covers patch preparation, recipient

identification, email configuration, submission techniques, and communication strategies during the review process. By adhering to these

guidelines, contributors can streamline the submission process, improve kernel development efficiency, and increase their impact on this

critical open - source project.

Keywords: Linux kernel, patch submission, git send - email, commit message, subsystem maintainers

1. Introduction

The Linux kernel, a cornerstone of open - source

development, relies heavily on contributions from a diverse,

global community of developers. The patch submission

process is critical to maintaining the kernel's quality,

consistency, and continuous improvement. This paper

provides a comprehensive guide to best practices for

submitting Linux kernel patches, covering all aspects from

initial preparation to final acceptance.

1) Patch Preparation

a) Commit Formation

• Squash changes into a single, well - formed commit

• Base changes on a recent stable or release candidate tag

from Linus' tree

b) Commit Message Structure

• Format: "subsystem: brief description of change"

• Include a blank line after the summary

• Provide a detailed description of the change

• Use present tense verbs (e. g., "Add feature" not "Added

feature")

• Explain the rationale for the change

• Describe any testing performed, including cross -

compilation and config option testing

c) Code Style and Documentation

• Adhere strictly to Linux kernel coding style guidelines

• Ensure proper spelling and grammar in all documentation

• Run scripts/checkpatch. pl before submission

• Perform sparse static analysis

d) Signoff

• Include a "Signed - off - by: Your Name your[at]email.

com" line

2) Recipient Identification

a) Utilizing scripts/get_maintainer. pl

• Generate patch file:

• Identify recipients:

b) Recipient Selection

• Include all listed maintainers and mailing lists

• Err on the side of including more recipients rather than

fewer

3) Email Configuration

a) Installing git - email

• Example for Debian/Ubuntu:

b) Configuring git send - email

• Set up SMTP settings:

• For Gmail, use app - specific password:

Paper ID: SR21045104206 DOI: https://dx.doi.org/10.21275/SR21045104206 1425

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:yesanishhere@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4) Patch Submission

a) Using git send - email

• Basic command structure:

• Use - s flag to automatically add Signed - off - by line

• Review email before sending by typing "e" when

prompted

b) Managing Multiple Patches

• Use [PATCH 0/n] for cover letter

• Number patches sequentially: [PATCH 1/n], [PATCH

2/n], etc.

• Ensure patches apply cleanly in order

• Consider using - - cover - letter with git format - patch

5) Patch Discussion and Revision

a) Communication Etiquette

• Use plain text email for all correspondence

• Follow inline reply convention

• Maintain politeness and professionalism

• Be patient with maintainer response times

b) Handling Feedback

• Be open to criticism and willing to revise

• Respond constructively to all feedback

c) Submitting Revisions

• Use [PATCH v2], [PATCH v3], etc. in subject line for

revisions

• Summarize changes from previous versions

• Use - - in - reply - to to maintain discussion thread

• Avoid reposting unchanged patches

d) Follow - up

• Send friendly ping emails if no response after 1 - 2 weeks

• Consider reaching out to other maintainers if needed

• Be persistent but patient

2. Conclusion

Adhering to these comprehensive best practices can

significantly improve the patch submission process for the

Linux kernel. By meticulously following these guidelines,

contributors can enhance the quality of their submissions,

facilitate smoother interactions with maintainers, and

ultimately contribute more effectively to the development of

the Linux kernel. This approach not only increases the

likelihood of patch acceptance but also fosters a collaborative

and efficient development environment within the Linux

kernel community.

The Linux kernel's success as an open - source project relies

heavily on the quality and consistency of contributions from

its global developer base. By adopting these best practices,

contributors play a crucial role in maintaining the kernel's

high standards and ensuring its continued growth and

improvement. As the kernel evolves, so too may these

practices, and contributors are encouraged to stay informed

about any changes in the submission process.

References

[1] T. Torvalds and D. Diamond, Just for Fun: The Story of

an Accidental Revolutionary. New York:

HarperCollins, 2001.

[2] Linux kernel coding style. [Online]. Available: https:

//www.kernel. org/doc/html/v4.10/process/coding -

style. html

[3] Developer's Certificate of Origin 1.1. [Online].

Available: https: //developercertificate. org/

[4] J. Corbet, G. Kroah - Hartman, and A. McPherson,

"Linux kernel development: How fast it is going, who is

doing it, what they are doing, and who is sponsoring it,

" The Linux Foundation, 2016.

[5] G. Kroah - Hartman, "The Linux kernel development

model, " in Proc. Ottawa Linux Symposium, 2005,

pp.165 - 173.

Paper ID: SR21045104206 DOI: https://dx.doi.org/10.21275/SR21045104206 1426

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://developercertificate.org/

