
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Operational Excellence: Best Practices for

Monitoring in Data - Intensive Applications

Mahidhar Mullapudi
1
, Aditya Vamsi Mamidi

2
, Mahesh Babu Munjala

3

Abstract: This paper delves into advanced strategies for fortifying operational excellence in data - intensive applications, with a

specific emphasis on harnessing the capabilities of Microsoft Azure's comprehensive cloud stack. Focusing on key Azure services such

as Azure Functions, Azure Data Factory (ADF) Pipelines, Kusto, Azure Service Bus, and Event Grid. This study highlights the best

practices for monitoring and maintaining critical services[1][2][3]. Recognizing the pivotal role of monitoring and alerting, the paper

underscores their significance in ensuring the stability and performance of data - intensive applications. In addition to established

metrics like total artifacts generated, ingestion success rate, and runtime statistics, the discussion introduces nuanced approaches to

monitoring real - time latency, resource utilization patterns, and anomaly detection mechanisms. These refined metrics provide a

comprehensive view of system health, enabling organizations to proactively address challenges and optimize performance in large -

scale data applications on the Azure cloud stack[4][5][6][7][8].

Keywords: Modern DataIngestion Platform, Artifact Analytics, Azure Event Hub, Azure Service Bus, Azure Data Factory (ADF)

Pipelines, Azure Functions, Azure Kusto (Azure Data Explorer), Operational Excellence

1. Introduction

In the dynamic landscape of data - intensive environments,

ensuring the resilience of critical services is paramount. As

organizations increasingly migrate to the cloud, Microsoft

Azure emerges as a prominent platform offering a suite of

services tailored for handling large volumes of data. This

paper delves into the intricacies of optimizing resilience in

data - intensive services, emphasizing best practices for

monitoring and maintaining robust systems using Azure

stack.

The central focus revolves around key Azure services,

including Azure Functions, Kusto, Service Bus, Event Grid,

etc., which form the backbone of many data - centric

applications. In the pursuit of resilience, effective

monitoring is indispensable. Therefore, we delve into

essential metrics to track, such as the total number of

artifacts generated, ingestion success rate, hourly ingestion

runs, total ingestions, average rate of processing artifacts,

runtime CPU, and runtime memory for each component

involved in the overall architecture [5].

To enhance the comprehensiveness of our approach, we

propose additional metrics to further refine the monitoring

strategy. These may include real - time latency, resource

utilization patterns, and anomaly detection mechanisms,

providing a more nuanced understanding of system behavior.

By incorporating these advanced metrics, organizations can

achieve a higher level of resilience, proactively addressing

potential challenges and optimizing performance in data -

intensive environments [6].

In this paper, we embark on a comprehensive exploration of

optimizing resilience to achieve operational excellence in

data intensive apps on Microsoft Azure. The ensuing

sections will delve into various facets of designing robust

data transformation pipelines, with a specific focus on

enhancing data ingestion processes [7].

We commence with a detailed System Overview (Section 2),

providing a foundational understanding of the Azure

services at the core of our discussion. Following this,

Section 3 delves into the critical realm of Monitoring &

Metrics, elucidating best practices and key indicators

essential for tracking the health and performance of data -

intensive services. Moving forward to Section 4, we explore

the significance of Dashboards as powerful visualization

tools that consolidate complex metrics into insightful

displays, aiding in real - time decision - making. As we

conclude this paper in Section 5, we synthesize the key

findings and offer actionable insights for optimizing data

resilience on Azure. The References section (Section 6)

provides a comprehensive list of cited sources, enabling

readers to delve further into the discussed topics. Through

this organized structure, we aim to equip readers with a

holistic understanding of best practices for monitoring,

maintaining, and optimizing data - intensive services in

Azure environments [9].

2. System Overview

Paper ID: SR24203225052 DOI: https://dx.doi.org/10.21275/SR24203225052 1950

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Data Ingestion pipeline Architecture Overview

As illustrated in Figure 1, this is a basic architecture of

modern data ingestion pipeline built using Azure services.

We discuss some of the key components in this architecture

below:

Azure Functions:

Overview: Azure Functions[1], a serverless compute service,

plays a pivotal role in data - intensive applications by

executing code in response to events. This includes tasks

such as data curation and transformation.

Sample Use Case: For instance, an Azure Function can be

employed to preprocess incoming data streams, applying

transformation logic before further processing.

Azure Data Factory (ADF):
Overview: Azure Data Factory is Azure's cloud ETL service

for scale - out serverless data integration and data

transformation. It offers a code - free UI for intuitive

authoring and single - pane - of - glass monitoring and

management[2].

Sample Use Case: ADF can be configured to schedule and

coordinate the ingestion of data from various sources,

orchestrating the extraction, transformation, and loading

(ETL) processes.

Azure Storage:

Overview: Azure Storage serves as an intermediate or

destination for data, providing scalable and cost - effective

storage solutions for various data types[3].

Sample Use Case: Storing raw data in Azure Blob Storage

before subsequent transformation and analysis allows

efficient data handling.

Azure Service Bus:

Overview: Azure Service Bus acts as a reliable messaging

platform, facilitating communication between various

components in data pipeline [10].

Sample Use Case: Service Bus ensures the orderly transfer

of messages between Azure Functions, enabling coordinated

data processing.

Azure Event Grid:

Overview: Azure Event Grid is a scalable event - routing

service that responds to events and enables dynamic

reactions within the system[8][11].

Sample Use Case: Event Grid can be employed to trigger

specific actions, such as initiating data transformations in

response to changes in Azure Storage.

Azure Data Explorer (Kusto):
Overview: Azure Data Explorer is a robust destination

storage solution tailored for high - performance analytics

and efficient storage of vast amounts of data[3].

Sample Use Case: Data Explorer can be utilized to store

time - series data efficiently, enabling fast and complex

analytical queries on large datasets[4].

Metrics for Monitoring:

To effectively monitor the success and failures of these

components, a set of key metrics must be captured:

 Total Number of Artifacts Generated: Provides insights

into the volume of processed data.

 Ingestion Success Rate: Indicates the percentage of

successful data ingestions.

 Total Ingestions Run Per Hour: Helps evaluate the

frequency and efficiency of data processes.

 Runtime CPU and Memory: Offers insights into the

resource utilization of Azure Functions and other

compute resources.

 Average Rate of Processing Artifacts: Measures the

speed and efficiency of data processing within the

system.

 In the subsequent sections, we delve into Monitoring &

Metrics (Section 3), providing a more detailed

exploration of these metrics and best practices for

tracking and interpreting them[4][5][6].

3. Monitoring & Metrics

In this section we look at some of the key metrics to monitor

for each of the services and how to capture those metricsin

Azure.

Paper ID: SR24203225052 DOI: https://dx.doi.org/10.21275/SR24203225052 1951

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Azure Functions:

Execution Time: Measure the time taken for an Azure

Function to execute. Utilize Azure Application Insights to

capture function execution times and create a visual

representation through Azure Monitor, showcasing average

execution times and identifying outliers.

Throughput: Track the number of function executions per

unit of time. Implement custom logging within functions and

leverage Azure Monitor to create throughput charts,

highlighting peak usage times and potential scaling needs.

Error Rate: Monitor the percentage of function invocations

resulting in errors. Set up Azure Alerts based on Application

Insights telemetry, triggering notifications for a sudden spike

in errors.

Azure Data Factory (ADF):
Pipeline Execution Time: Measure the time taken for

pipeline execution. Use Azure Monitor to capture pipeline

execution times and visualize trends, aiding in identifying

and optimizing performance bottlenecks.

Pipeline Throughput: Track the number of successful

pipeline executions. Leverage Azure Data Factory Metrics

and Azure Monitor to create throughput dashboards,

facilitating an understanding of overall system efficiency.

Data Movement Latency: Monitor the time it takes to move

data between sources and destinations. Implement custom

logging in data movement activities, and use Azure Monitor

to create latency heatmaps, enabling the identification of

data flow delays.

Azure Storage (Blob Storage):
Throughput: Track the rate of data read and write operations.

Utilize Azure Storage Analytics to capture throughput and

visualize trends through Azure Monitor to understand data

access patterns.

Latency: Measure the time taken to complete reading and

writing operations. Implement Azure Storage logging and

use Azure Monitor to create latency histograms, identifying

peak usage periods and optimizing storage access patterns.

Error Rate: Monitor the percentage of failed operations. Set

up Azure Alerts based on error rates captured by Azure

Storage Analytics, enabling proactive responses to potential

issues.

Azure Service Bus:

Message Throughput: Track the rate of successful message

deliveries. Utilize Azure Service Bus Metrics and Azure

Monitor to create throughput charts, enabling insights into

message delivery trends and demand patterns.

Latency: Measure the time taken for messages to be

delivered. Leverage Service Bus logging and Azure Monitor

to visualize message latency over time, aiding in identifying

potential communication bottlenecks.

Error Rate: Monitor the percentage of failed message

deliveries. Implement dead - lettering for failed messages

and set up Azure Alerts to trigger notifications based on

elevated error rates.

Azure Event Grid:

Event Delivery Time: Measure the time taken for events to

be delivered. Utilize Azure Monitor to capture event

delivery times and create visualizations that highlight

latency patterns and potential optimizations.

Event Throughput: Track the rate of successful event

deliveries. Leverage Azure Event Grid Metrics and Azure

Monitor to create throughput dashboards, facilitating

insights into event processing trends.

Subscription Errors: Monitor errors related to event

subscriptions. Set up Azure Alerts based on subscription

error rates captured by Azure Monitor, ensuring prompt

responses to subscription - related issues.

Azure Data Explorer (Kusto):
Query Performance: Measure the time taken for query

execution. Utilize Azure Monitor to capture query

performance metrics, creating visualizations that showcase

average query execution times and identifying potential

optimization opportunities.

Data Ingestion Rate: Track the rate of data ingestion into

Data Explorer. Leverage Data Explorer Metrics and Azure

Monitor to create ingestion rate charts, aiding in

understanding data volume patterns and scaling needs.

Resource Utilization: Monitor CPU and memory utilization.

Utilize Azure Monitor to capture resource utilization

metrics, creating visualizations that showcase resource

trends and guide scaling decisions.

Technical Considerations:

Latency Calculation:

Formula: Latency = Time of completion - Time of initiation

Example: If an Azure Function takes 500 milliseconds to

execute, the latency is calculated as 500 milliseconds.

Throughput Calculation:

Formula: Throughput = Number of successful operations /

Time interval

Example: If Azure Storage processes 1000 read operations in

1 minute, the throughput is calculated as 1000 operations per

minute.

This comprehensive approach to monitoring and metrics

provides not only a technical deep dive into the metrics to

monitor but also practical examples and creative ways to

visualize and analyze these metrics using Azure services.

4. Dashboards

Creating a comprehensive monitoring dashboard in Azure

involves using Azure Monitor, a unified monitoring solution

that provides full - stack observability for applications and

infrastructure. Below are the steps to create a dashboard to

monitor the components discussed in the data - intensive

architecture[5][12][13][14][15][16][17][18]:

 Step 1: Accessing Azure Portal

 Log in to the Azure Portal.

 Step 2: Open Azure Monitor

 Navigate to the left - hand menu.

 Scroll down to "Monitor" and select "Azure Monitor. "

 Step 3: Create a New Dashboard

 In the Azure Monitor blade, select "Dashboards" from

the left - hand menu.

 Click on the "+ New Dashboard" button.

 Step 4: Add Tiles for Each Component

 For each Azure service/component (Azure Functions,

Azure Data Factory, Azure Storage, Azure Service Bus,

Paper ID: SR24203225052 DOI: https://dx.doi.org/10.21275/SR24203225052 1952

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Azure Event Grid, Azure Data Explorer), add relevant

tiles based on the metrics discussed:

Example for Azure Functions:

 Click on "Add Tile. "

 Choose the "Metric" type.

 Select the appropriate subscription, resource group, and

Azure Function App.

 Choose the metric (e. g., "Average Function Execution

Time").

 Configure additional settings such as time range and

aggregation.

Repeat these steps for each Azure service, selecting relevant

metrics. Below are some custom ways to organize the tiles to

get better visualization:

1) Azure Functions:

Place tiles for "Execution Time" prominently to quickly

identify any anomalies or performance issues.

Group tiles for "Throughput" and "Error Rate" together to

monitor overall function efficiency.

2) Azure Data Factory (ADF):

Create a section for "Pipeline Execution Time" to visually

track the efficiency of data movement and transformation

processes.

Group tiles for "Pipeline Throughput" and "Data Movement

Latency" to monitor overall pipeline health.

3) Azure Storage (Blob Storage):

Arrange tiles for "Throughput" and "Latency" side by side to

visualize data access patterns and potential bottlenecks

[19][17].

Group tiles for "Error Rate" in a dedicated section to

monitor any unexpected storage errors.

4) Azure Service Bus:

Place tiles for "Message Throughput" and "Latency"

together to ensure efficient message delivery[20].

Figure 2: Sample Dashboard for Ingestion Metrics

Figure 3: Sample Dashboard for Kusto and Function

Create a dedicated section for "Error Rate" tiles to monitor

any issues related to message processing.

5) Azure Event Grid:

Group tiles for "Event Delivery Time" and "Event

Throughput" together for a comprehensive view of event

processing efficiency.

Allocate a section for "Subscription Errors" tiles to quickly

identify and address any subscription - related issues

[9][11][21][22].

6) Azure Data Explorer (Kusto):

Arrange tiles for "Query Performance" prominently to

monitor the responsiveness of data exploration queries

[21][23].

Paper ID: SR24203225052 DOI: https://dx.doi.org/10.21275/SR24203225052 1953

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Group tiles for "Data Ingestion Rate" and "Resource

Utilization" together to ensure optimal use of Data Explorer

resources.

Additional Tips:

Color Coding: Use consistent color - coding for similar

metrics across different services to create visual

associations.

Use of Widgets: Utilize different visualization widgets (line

charts, heatmaps, grids) based on the type of metric being

monitored.

Time - Range Alignment: Align tiles based on time ranges

(e. g., placing "Throughput" and "Latency" tiles with similar

time scales) for coherent analysis.

Critical Metrics Section: Create a dedicated section for

critical metrics that require immediate attention.

By organizing your tiles in a logical and intuitive manner,

you create a dashboard that provides a quick, comprehensive

view of the health and performance of your data - intensive

architecture. Regularly review and update the organization

based on evolving monitoring needs and system changes.

5. Conclusion

In the intricate realm of data - intensive environments within

the Azure ecosystem, this exploration has delved into the

intricacies of fortifying resilience and optimizing

performance.

Focused on key Azure services such as Azure Functions,

Azure Data Factory, Azure Storage, Azure Service Bus,

Azure Event Grid, and Azure Data Explorer, our discussion

unraveled the critical components orchestrating the

ingestion, curation, and transformation of data [23][19].

Emphasizing the centrality of monitoring and metrics, we

traversed the technical nuances of capturing and interpreting

critical metrics for each service. From Azure Functions'

execution times to Azure Data Explorer's query

performance, a granular understanding emerged. The

creation of a robust monitoring dashboard in Azure serves as

a real - time observatory, offering a dynamic and actionable

interface into the intricacies of data processing[24].

Technical considerations, including latency and throughput

calculations, were explored alongside creative visualization

strategies. This comprehensive approach empowers

professionals to navigate the complexities of data - intensive

environments on Azure with precision and clarity, ensuring

not just functionality but excellence in data processing and

analytics [25].

As organizations continue harnessing the power of Azure,

the principles and practices outlined in this paper serve as a

beacon for achieving optimal performance and resilience.

The journey involves not only leveraging the capabilities of

each service but also orchestrating them harmoniously to

create a resilient, efficient, and high - performance data

ecosystem.

In the ever - evolving landscape of cloud computing, this

exploration lays groundwork for continuous improvement,

urging professionals to delve deeper into the technical

intricacies and emerging best practices, ensuring their data -

intensive applications thrive in the Azure environment.

References

[1] "Azure Functions, " [Online]. Available: https: //learn.

microsoft. com/en - us/azure/azure - functions/.

[2] "Azure Data Factory, " [Online]. Available: https:

//azure. microsoft. com/en - us/products/data - factory.

[3] "Azure Data Explorer, " [Online]. Available: https:

//learn. microsoft. com/en - us/azure/data - explorer/.

[4] "Azure Monitor, " [Online]. Available: https: //learn.

microsoft. com/en - us/azure/azure - monitor/.

[5] "Azure Monitor Metrics overview, " [Online].

Available: https: //learn. microsoft. com/en -

us/azure/azure - monitor/essentials/data - platform -

metrics.

[6] "Best practices for Azure Monitor alerts, " [Online].

Available: https: //learn. microsoft. com/en -

us/azure/azure - monitor/best - practices - alerts.

[7] "Data collection in Azure Monitor, " [Online].

Available: https: //learn. microsoft. com/en -

us/azure/azure - monitor/essentials/data - collection.

[8] "Azure Event Hubs, " [Online]. Available: https:

//learn. microsoft. com/en - us/azure/event - hubs/event

- hubs - about.

[9] M. Yang, "Designing A High Concurrency, Low

Latency System Architecture, " [Online]. Available:

https: //medium. com/[at]markyangjw/designing - a -

high - concurrency - low - latency - system -

architecture - part - 1 - f5f3a5f32e36.

[10] "What is Azure Service Bus, " [Online]. Available:

https: //learn. microsoft. com/en - us/azure/service -

bus - messaging/service - bus - messaging - overview.

[11] "What is Azure Event Grid, " [Online]. Available:

https: //learn. microsoft. com/en - us/azure/event -

grid/overview.

[12] "Analyze and visualize monitoring dat, " [Online].

Available: https: //learn. microsoft. com/en -

us/azure/azure - monitor/best - practices - analysis.

[13] "Graphana, " [Online]. Available: https: //grafana.

com/.

[14] "Prometheus, " [Online]. Available: https:

//prometheus. io/docs/introduction/overview/.

[15] "Prometheus Wiki, " [Online]. Available: https: //en.

wikipedia. org/wiki/Prometheus.

[16] "Azure Kubernetes Service (AKS), " [Online].

Available: https: //learn. microsoft. com/en -

us/azure/aks/.

[17] "Low latency system design, " [Online]. Available:

https: //kayzen. io/blog/large - scale - low - latency -

system - design.

[18] B. Schmaus, "Deploying the Netflix API, " 2013.

[Online]. Available: http: //techblog. netflix.

com/2013/08/deploying - netflix - api. html.

[19] "Augment security, observability, and analytics by

using Microsoft Sentinel, Azure Monitor, and Azure

Data Explorer, " [Online]. Available: https: //learn.

microsoft. com/en - us/azure/architecture/solution -

ideas/articles/monitor - azure - data - explorer.

[20] "How does Flink support streaming data pipelines, "

[Online]. Available: https: //www.confluent.

Paper ID: SR24203225052 DOI: https://dx.doi.org/10.21275/SR24203225052 1954

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

io/blog/apache - flink - stream - processing - use -

cases - with - examples.

[21] "Stateful stream processing, " [Online]. Available:

https: //medium. com/[at]knoldus/stateful - stream -

processing - with - apache - flink - part - 1 - an -

introduction - bd5ca107cea7.

[22] "Azure Event Hubs - how it works, " [Online].

Available: https: //learn. microsoft. com/en -

us/azure/event - hubs/event - hubs - about#how - it -

works.

[23] "What is Azure Data Factory?, " [Online]. Available:

https: //learn. microsoft. com/en - us/azure/data -

factory/introduction.

[24] "Create Data factory by using the Azure portal, "

[Online]. Available: https: //learn. microsoft. com/en -

us/azure/data - factory/quickstart - create - data -

factory.

[25] Kleppmann, Martin, Designing Data - Intensive

Applications, O'Reilly Media, 2017.

Paper ID: SR24203225052 DOI: https://dx.doi.org/10.21275/SR24203225052 1955

