
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Code Smells in Software Development: A Review

of Common Issues and Refactoring Approaches

Vamsi Thatikonda

Snoqualmie, WA

Email: vamsi.thatikonda[at]gmail.com

Abstract: Code smells refer to symptoms in software code that may indicate deeper design problems. Although not outright defects,

they can reduce maintainability over time. This paper reviews common code smells and associated refactoring techniques. Analysis of

empirical studies reveals certain smells routinely relate to increased change and defect rates. Based on the review, recommendations are

provided to help developers understand when and how to address code smells.

Keywords: Code smells; refactoring, software maintainability, software quality, anti-patterns, design degradation

1. Introduction

The quality of software design plays a major role in long-

term maintainability and evolution. Code that exhibits

structural weaknesses known as “code smells” often decays

in quality without continuous refactoring [1]-[3]. Common

smells include:

 Long methods

 Duplicate code

 Large classes

 Shotgun surgery

 Long parameter lists

 Feature envy

 God classes

This paper reviews the above smells along with refactoring

approaches. Empirical analysis demonstrates smells tangibly

reduce maintainability despite lacking formal defect status.

By learning smell patterns and refactoring’s, developers can

strategically improve software structure.

2. LONG METHODS

Methods containing excessive lines of code harm

understandability and change-proneness [4], [5]. Figure 1

shows an example method likely exceeding reasonable

length:

Figure 1: Long method symptom

Although precise thresholds are debated [6], studies confirm

length correlates with comprehensibility challenges and

heightened change rates [7], [8]. Refactoring long methods

using Extract Method and Replace Temp with Query

improves coherence [9].

3. Large Classes

Large, complex classes with low cohesion similarly increase

defect and change risk [10]-[12]. Figure 2 illustrates a class

with disjoint responsibilities:

Figure 2: Large class symptom

Proposed refactoring’s include Extract Class, Move Method,

and Subclassing [9]. But pervasive issues may require

architectural redesign.

4. Duplicate Code

Duplicate code bloats applications through copied logic de-

synchronization risks during maintenance [20]-[22]. Code

may duplicate across methods or entire classes. Figure 3

shows duplication across functions.

Figure 3: Duplicate code example

Eliminating duplication through Extract Method, Pull Up

Method, and related consolidations improves maintainability

despite added abstraction complexity [13], [23], [24].

Paper ID: SR231208200259 DOI: https://dx.doi.org/10.21275/SR231208200259 1932

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Shotgun Surgery

Shotgun surgery refers to situations where single

requirement changes impact code scattered across multiple

classes [25], [26]. For example, adding a product property

may force small edits in various models, validators,

controllers, and views.

This cohesion breakdown complicates debugging and testing

while enabling change inconsistencies across areas.

Proposed refactoring’s include Move Method plus

architectural restructuring guided by principles like high

cohesion [13].

6. Feature Envy

Feature envy occurs when methods use features of other

classes more heavily than their own parent class [4], [27].

For example:

Besides indicating flawed boundaries, envy spreads

dependencies that may require updates after changes [13].

Envying methods can be moved or related refactoring

pursued.

7. God Classes

So-called “god” classes centralize excessive levels of control

and state across systems while depending on data and

functionality in distant modules [4], [28], [29]. For example:

God classes demonstrate low cohesion and high coupling.

Logic decentralization across focused classes reduces

bottleneck risks and improves comprehensibility.

8. Additional Smells & Refactorings

Further smells lack empirical evidence so far but remain

logically problematic, including:

 Long parameter lists: Methods with excessive arguments

[30]. Solutions involve introducing parameter objects.

 Middle managers: Classes mainly delegating work to

other classes. Inlining delegation can help.

 Inappropriate intimacy: Excessive friendship between

classes. Stricter boundaries advised.

Alongside classic refactorings like Extract Class, techniques

like Service Decomposition, Pipeline Refactoring, and

Custom Framework Creation help address enterprise-scale

smells [13], [31].

9. EMPIRICAL EVIDENCE

Controlled experiments reveal variable but often strong

correlation between structural smells and reduced code

quality over time:

 Method length: High change & defect rates [7], [32]

 God classes: Performance issues, bottlenecks [29]

 Duplicate code: Understanding difficulty [33]

In an eight-month study, Mäntylä and Lassenius found

developers introduced smells unknowingly in 70% of cases

due to time pressures and inadequate design [34].

Research also examines causal impacts. A longitudinal

analysis by Chatzigeorgiou and Manakos found refactoring

long methods significantly reduced change effort over

multiple system versions [35]. So, while more quantification

is needed, initial evidence suggests structural weaknesses

tangibly slow development.

10. Context Considerations

Although empirical analysis demonstrates consistent general

trends, smelly structure impact depends substantially on

software contexts like size, domain, language, and team

variables [5], [36]-[38]. For example, Abbes et al. found

only large VB systems exhibited maintainability links to

“blob” classes, with small systems proving unaffected [36].

Thresholds for “too long” or “too duplicated” also vary.

Teams should analyze their change history before extensive

refactoring. Subjectivity further complicates prescriptive

rules [38]. Creating an evolving knowledge base around

contextual code quality aids decision-making.

11. Recommendations

Considering analysis limitations, structured smell

management remains advisable through:

 Reviewing architectures early to mitigate larger debt

 Monitoring code routinely for symptomatic weaknesses

 Prioritizing highest payoff refactoring opportunities

 Considering developer workflow integrations to ease

identification/correction

 Tracking contextual metrics over time to focus initiatives

 Embedding smell principles in training

Paper ID: SR231208200259 DOI: https://dx.doi.org/10.21275/SR231208200259 1933

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Research also recommends emphasizing architectural

solutions over localized fixes for sustainable improvements

[40]. Relying solely on automated detection also proves

insufficient - tools generate false positives/negatives while

lacking the semantic design comprehension central to

quality software construction.

12. Conclusion

This paper has reviewed current research on common code

smells along with associated refactoring techniques and

empirical analyses. Controlled studies reveal measurable

correlations between certain structural weaknesses and

reduced maintainability over time. However, impacts remain

contextually variable based on language, system scale, team

experience, and other properties. By taking a managed

approach to identification, assessment, analysis, and

adaptively refactoring symptoms, software teams can

strategically improve structural quality and balance value

delivery with long-term sustainability.

References

[1] C. Izurieta, A. Vetrò, N. Zazworka, Y. Cai, C. Seaman

and F. Shull, "Organizing the technical debt

landscape," in Proceedings of the Third International

Workshop on Managing Technical Debt, pp. 23-26,

2012.

[2] A. Nugroho, J. Visser and T. Kuipers, “An empirical

model of technical debt and interest,” in Proceedings

of the 2nd workshop on managing technical debt,

2011, pp. 1-8.

[3] D. Falessi, M. Shaw, F. Shull, K. Mullen and M.

Sabbagh, "Practical considerations, challenges, and

requirements of tool-support for managing technical

debt," in 2013 4th International Workshop on

Managing Technical Debt (MTD), 2013, pp. 16-19.

[4] M. Fowler and K. Beck, Refactoring: improving the

design of existing code. Boston: Addison-Wesley,

1999.

[5] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and

F. Palomba, “An experimental investigation on the

innate relationship between quality and refactoring,”

Journal of Systems and Software, vol. 107, pp. 1-14,

2015.

[6] F. A. Fontana, V. Ferme, M. Zanoni and R. Roveda,

“Towards a prioritization of code debt: A code smell

intensity index,” in 2017 IEEE/ACM 7th International

Workshop on Managing Technical Debt (MTD), 2017,

pp. 16-24.

[7] F. Khomh, M. Di Penta and Y.-G. Guéhéneuc, "An

exploratory study of the impact of code smells on

software change-proneness," in Reverse Engineering,

2009. WCRE'09. 16th Working Conference on, 2009,

pp. 75-84: IEEE.

[8] S. R. Chidamber and C. F. Kemerer, “A metrics suite

for object oriented design,” IEEE Transactions on

software engineering, vol. 20, no. 6, pp. 476-493,

1994.

[9] M. Abbes, F. Khomh, Y. Gueheneuc and G. Antoniol,

"An empirical study of the impact of two antipatterns,

blob and spaghetti code, on program comprehension,"

in 2011 15th European Conference on Software

Maintenance and Reengineering, 2011, pp. 181-190:

IEEE.

[10] A. Yamashita and S. Counsell, "Code smells as

system-level indicators of maintainability: An

empirical study," Journal of Systems and Software,

vol. 86, no. 10, pp. 2639-2653, 2013.

[11] J. Ratzinger, M. Fischer and H. Gall, “Improving

evolvability through refactoring,” in Proceedings of the

2005 conference on Specification and verification of

component-based systems, 2005, pp. 1-17.

[12] R. C. Martin, Clean code: a handbook of agile software

craftsmanship. Upper Saddle River, NJ: Prentice Hall,

2009.

[13] M. Fowler, Refactoring: Improving the Design of

Existing Code. Boston: Addison-Wesley, 1999.

[14] K. Beck, Test driven development: by example.

Addison-Wesley Professional, 2003.

[15] M. Abbes, F. Khomh, Y. Gueheneuc and G. Antoniol,

"An empirical study of the impact of two antipatterns,

blob and spaghetti code, on program comprehension,"

in 2011 15th European Conference on Software

Maintenance and Reengineering, 2011, pp. 181-190:

IEEE.

[16] F. Khomh, M. Di Penta and Y.-G. Guéhéneuc, "An

exploratory study of the impact of code smells on

software change-proneness," in Reverse Engineering,

2009. WCRE'09. 16th Working Conference on, 2009,

pp. 75-84: IEEE.

[17] S. Murali, N. Dintzner, A. Dinesh and R. Bhat,

“Machine learning based detection of function-level

code smells,” in Proceedings of the ACM India Joint

International Conference on Data Science and

Management of Data, 2019, pp. 299-304.

[18] J. Ratzinger, M. Fischer and H. Gall, “Improving

evolvability through refactoring,” in Proceedings of the

2005 conference on Specification and verification of

component-based systems, 2005, pp. 1-17.

[19] N. Moha, Y.-G. Gueheneuc, L. Duchien and A.-F. Le

Meur, “Decor: A method for the specification and

detection of code and design smells,” IEEE

Transactions on Software Engineering, vol. 36, no. 1,

pp. 20-36, 2009.

[20] A. Lozano, M. Wermelinger and B. Nuseibeh,

“Assessing the impact of bad smells using historical

information,” in International Workshop on Principles

of Software Evolution, 2007, pp. 31-34: ACM

[21] F. A. Fontana, V. Ferme, M. Zanoni and R. Roveda,

“Towards a prioritization of code debt: A code smell

intensity index,” in 2017 IEEE/ACM 7th International

Workshop on Managing Technical Debt (MTD), 2017,

pp. 16-24.

[22] Z. Li, P. Avgeriou and P. Liang, “A systematic

mapping study on technical debt and its management,”

Journal of Systems and Software, vol. 101, pp. 193-

220, 2015.

[23] S. Counsell, Z. Duric, E. Mendes and G. Loizou,

“Evaluating method extraction and refactoring to

improve the maintainability of object-oriented code,”

Empirical Software Engineering, vol. 12, no. 4, pp.

339-369, 2007.

[24] G. Szoke, C. Nagy, L. J. Fulop and R. Ferenc,

“FaultBuster: An Automatic Code Smell Refactoring

Paper ID: SR231208200259 DOI: https://dx.doi.org/10.21275/SR231208200259 1934

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Toolset,” Acta PolytechnicaHungarica, vol. 15, no. 8,

pp. 199-216, 2018.

[25] J. Garcia, D. Popescu, G. Edwards and N. Medvidovic,

“Toward a catalogue of architectural bad smells,” in

International Conference on the Quality of Software

Architectures, 2009, pp. 146-162: Springer.

[26] K. De Hondt, “A novel approach to architectural

recovery using concerns,” in Proceedings of the

Working IEEE/IFIP Conference on Software

Architecture (WICSA 2008), 2008, pp. 114-123.

[27] M. Fowler and K. Beck, Refactoring: improving the

design of existing code. Boston: Addison-Wesley,

1999.

[28] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto and

A. Zaidman, “On the diffusion of test smells in

automatically generated test code: An empirical

study,” in Proceedings of the 9th International

Workshop on Search-Based Software Testing, 2016,

pp. 5-14.

[29] M. Abbes, F. Khomh, Y. Gueheneuc and G. Antoniol,

"An empirical study of the impact of two antipatterns,

blob and spaghetti code, on program comprehension,"

in 2011 15th European Conference on Software

Maintenance and Reengineering, 2011, pp. 181-190:

IEEE.

[30] G. Szoke, C. Nagy, L. J. Fulop and R. Ferenc,

“FaultBuster: An Automatic Code Smell Refactoring

Toolset,” Acta PolytechnicaHungarica, vol. 15, no. 8,

pp. 199-216, 2018.

[31] W. Fenske, J. Meinicke, S. Schulze, S. Klinger and G.

Saake, “Variant-preserving refactoring in feature-

oriented software product lines,” in Proceedings of the

Eighth International Workshop on Variability

Modelling of Software-Intensive Systems, 2014, pp.

25-32.

[32] A. Yamashita and S. Counsell, "Code smells as

system-level indicators of maintainability: An

empirical study," Journal of Systems and Software,

vol. 86, no. 10, pp. 2639-2653, 2013.

[33] M. Abbes, F. Khomh, Y. Gueheneuc and G. Antoniol,

"An empirical study of the impact of two antipatterns,

blob and spaghetti code, on program comprehension,"

in 2011 15th European Conference on Software

Maintenance and Reengineering, 2011, pp. 181-190:

IEEE.

[34] M. V. Mäntylä and C. Lassenius, “Drivers for software

refactoring decisions,” in Proceedings of the 2006

ACM/IEEE international symposium on Empirical

software engineering, 2006, pp. 297-306.

[35] A. Chatzigeorgiou and A. Manakos, “Investigating the

evolution of code smells in object-oriented systems,”

in 2010 Seventh International Conference on the

Quality of Information and Communications

Technology, 2010, pp. 25-30: IEEE.

[36] M. Abbes, F. Khomh, Y.-G. Gueheneuc and G.

Antoniol, “An empirical study of the impact of two

antipatterns, blob and spaghetti code, on program

comprehension,” in Software Maintenance and

Reengineering (CSMR), 2011 15th European

Conference on, 2011, pp. 181-190: IEEE.

[37] F. A. Fontana, V. Ferme, M. Zanoni and R. Roveda,

“Towards a prioritization of code debt: A code smell

intensity index,” in 2017 IEEE/ACM 7th International

Workshop on Managing Technical Debt (MTD), 2017,

pp. 16-24.

[38] Z. Li, P. Avgeriou and P. Liang, “A systematic

mapping study on technical debt and its management,”

Journal of Systems and Software, vol. 101, pp. 193-

220, 2015.

Paper ID: SR231208200259 DOI: https://dx.doi.org/10.21275/SR231208200259 1935

