
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Research Gate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

VLSI Architecture Design and Implementation of

CANNY Edge Detection Subsystem

Ragi R G
1
, Jayaraj U Kidav

2
, Roshith K

3

1Department of Electronics and Communication Engg, College of Engineering, Vadakara, Kerala, India

2National Institute of Electronics & Information Technology, (NIELIT) Calicut, Kerala, India

3Department of Electronics and Instrumentation Engg, College of Engineering, Vadakara, Kerala, India

Abstract: In Edge detection is one of the most fundamental algorithms in digital image processing. The Canny edge detector is the

most implemented edge detection algorithm because of its ability to detect edges even in images that are intensely contaminated by noise.

In this paper, a modified canny edge detector is designed implemented in MATLAB and implemented in FPGA. The mask for gradient

calculation and in nonmaximal suppression bilinear interpolation of four pixels are considered. This edge detector is implemented as a

preprocessing stage in iris detection subsystem. The motivation in designing the hardware modules of canny edge detector was to reduce

its complexity, enhance its performance and to make it suitable development on a reconfigurable FPGA based platform for VLSI

implementation.

Keywords: Edge Detection, Canny Edge detector, FPGA

1. Introduction

Edge detection is a fundamental tool in image processing,

machine vision and computer vision, particularly in the

areas of feature detection and feature extraction. Computer

vision is a field of artificial intelligence that works on

enabling computers to see, identify and process images in

the same way that human vision does, and then provide the

appropriate output within fraction of a second. Detection of

edges in an image is a very important step towards

understanding image features. Edges consist of meaningful

features and contain significant information. It significantly

reduces the image size and filters out information that may

be regarded as less relevant, thus preserving the important

structural properties of an image.Edge detection includes a

variety of mathematical methods that aim at identifying

points in a digital image at which the image

brightness changes sharply or, more formally, has

discontinuities. The points at which image brightness

changes sharply are typically organized into a set of curved

line segments termed edges.

In digital image processing, the term edge is a collection of

the pixels, it refers to the part where the brightness of the

image local area changes significantly in digital image

processing. The general methods of edge detection are first

order Derivative-gradient method, Second-Order Derivative

and Optimal Edge Detection. A lot of edge detection

algorithms, such as, Robert detector, Gauss-Laplace

detector, Prewitt detector and Canny detector. Among the

existing edge detection algorithms, the Canny edge detector

has remained a standard for many years and has best

performance. The primary disadvantage of using Canny

edge detector is that it consumes a lot of time due to its

complex computation andit is difficult to implement to reach

the real-time response

FPGA, alternative to the custom ICs, can be used to

implement an entire System On one Chip (SOC). The main

advantage of FPGA is ability to reprogram. User can

reprogram an FPGA to implement a design and this is done

after the FPGA is manufactured. This brings the name

“Field Programmable”. FPGA are easy to implement within

a short time with the help of CAD tools. FPGAs are some of

the new trending areas of VLSI. The proposed system

implemented an efficient programmable system with

hardware to recognize human iris using MATLAB and

FPGA.

2. Materials and Methods

2.1 Proposed method

The block diagram of the proposed system shown in Fig -1.

The system is implemented with a canny edge detector with

a slight modification in the original Canny algorithm using

MATLAB and designed an efficient architecture for the

algorithm for hardware implementation. The algorithm is

implemented using a Hardware description language (here

Verilog HDL) & Perform simulation and synthesize using

Xilinx Design tools and verified the result. Human iris is

used as the input parameter for edge detection and

recognition.

Figure 1: The flow diagram of proposed system

Paper ID: SR21301101835 DOI: 10.21275/SR21301101835 143

https://en.wikipedia.org/wiki/Mathematical
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Luminous_intensity

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Research Gate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.2 Feature Description

The Human Irisis used as the data for the proposed system.

The iris is a thin circular diaphragm, which lies between the

cornea and the lens of the human eye. A front-on view of the

iris is shown in Fig-2. The iris is perforated close to its

centre by a circular aperture known as the pupil.

Figure 2: A front-on view of the human eye

Figure 3: The structure of the iris seen in a frontal sector

The iris consists of a number of layers, the lowest is the

epithelium layer, which contains dense pigmentation cells.

The stromal layer lies above the epithelium layer, and

contains blood vessels, pigment cells and the two iris

muscles. The density of stromal pigmentation determines the

colour of the iris. The externally visible surface of the multi-

layered iris contains two zones, which often differ in colour.

An outer ciliary zone and an inner pupillary zone, and these

two zones are divided by the collarette – which appears as a

zigzag pattern. The structure of the iris seen in frontal sector

are shown in Fig.3 An iris recognition system is composed

of three main stages. Pre-processing stage Feature extraction

stage and Recognition stage.

2.3 Data Acquisition

Data set of iris comprised of images obtained from CASIA

Iris Image Database V3.0 (or CASIA-Iris V3 for short)is

used as the date set. CASIA-IrisV3 contains a total of 22,051

iris images from more than 700 subjects. All iris images are

8 bit gray-level JPEG files, collected under near infrared

illumination.The data is pre-processed and used for edge

detection, The pre-processing steps used are as follows

2.3.1Pre-processing Stage: This includes determining the

boundary of the iris within the eye image, and extracts the

iris portion from the image to facilitate its processing. The

input to this stage is the eye image and the aim is to detect

the iris portion which can be approximated by two circles,

one is the iris/sclera (outer) boundary, and another interior to

the first is the iris/pupil (inner) boundary.

2.3.2 Locating the Iris Region: The first step in the pre-

processing stage is to apply one of the edge detection

techniques to get an edge map of the iris image to enable

determining all boundaries of the iris. After getting the edge

map of the eye image a circular Hough transform is applied

to detect the two circles of the iris/sclera (outer) and

iris/pupil (inner) boundary. Then a linear Hough transform

to detect the upper and lower eyelids if they are present in

the image.

2.3.3 Iris Representation: Once the iris region is

successfully detected the iris region is transformed so that it

has fixed dimensions in order to allow comparisons. The

dimensional inconsistencies between eye images are mainly

due to the stretching of the iris caused by pupil dilation as a

result of varying levels of illumination. Other sources of

inconsistency include, varying imaging distance, rotation of

the camera, head tilt, and rotation of the eye within the eye

socket. A normalization process is needed to produce iris

regions having the same dimensions, so that two

photographs of the same iris under different conditions will

have characteristic features at the same spatial location. This

is realized by remapping each point within the iris region to

a pair of polar coordinates (ρ, θ).

2.3.4 The Feature Extraction Stage: In order to provide

accurate recognition of individuals, the most discriminating

information present in the iris pattern must be extracted.

Only the significant features of the iris must be encoded so

that comparisons between templates can be made. The

template that is generated in the feature encoding process

will also need a corresponding matching metric, which gives

a measure of similarity between two iris templates. This

metric should give one range of values when comparing

templates generated from the same eye, known as intra-class

comparisons, and another range of values when comparing

templates created from different irises, known as inter-class

comparisons. These two cases should give distinct and

separate values, so that a decision can be made with high

confidence as to whether two templates are from the same

iris, or from two different irises.

2.3.5 The Recognition Stage: In this stage the identification

and verification of different iris is done by comparing the

feature vector extracted from the iris with the other feature

vectors to identify the person with this iris.

2.4 The Canny Edge Detection Algorithm

The Process of Canny edge detection algorithm has

following different steps:

2.4.1Smoothing using Gaussian filter: All images taken

from a camera will contain some amount of noise, Since the

Canny edge detector is susceptible to noise present in raw

unprocessed image data the noise is to be removed. A filter

based on a Gaussian (bell curve), where the raw image

is convolved with a Gaussian filter is used to filter out the

noise,. The kernel of a 5X5 Gaussian filter with a standard

deviation of = 1.4 is shown in Fig- 4.

Paper ID: SR21301101835 DOI: 10.21275/SR21301101835 144

https://en.wikipedia.org/wiki/Gaussian_filter
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Gaussian_filter

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Research Gate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Gaussian filter

Figure 5: Mask to compute Gradients

2.4.2 Find the intensity gradient of the image: The

Canny’s algorithm marks boundaries at maxima in the

magnitude of the image gradient in the direction of the

gradient. These areas are found by determining gradients of

the image. The original Canny’s code use the mask shown in

Fig-5 to compute X and Y components of the gradient.

An edge in an image may point in a variety of directions, so

new implementation uses the mask [-1 0 1] to compute first

differences in four directions: H(horizontal), V(vertical), D1

and D2 (diagonal).The X and Y components of the gradients

are computed by projecting the diagonal differences onto the

axes areGX = H +
D1+D2

2
 and 𝐺𝑌 = 𝑉 +

𝐷1−𝐷2

2
. The

gradient magnitudes (also known as the edge strengths) can

then be determined as an Euclidean distance measure by

applying the law of Pythagoras equation G= 𝐺𝑥
2 + 𝐺𝑦

2..

The direction of the edges is determined and stored to use

for further processing as shown in Equation below.

𝜃 = arctan(
𝐺𝑦

𝐺𝑥

)

2.4.3 Non-maximum suppression: The purpose of this step

is to convert the “blurred” edges in the image of the gradient

magnitudes to “sharp” edges. Basically this is done by

preserving all local maxima in the gradient image, and

deleting everything else. The algorithm is for each pixel in

the gradient image. Given estimates of the image gradients,

a search is then carried out to determine if the gradient

magnitude assumes a local maximum in the gradient

direction. The edge strengths are indicated both as colors

and numbers, while the gradient directions are shown as

arrows. Almost all pixels have gradient directions pointing

north. They are therefore compared with the pixels above

and below. The pixels that turn out to be maximal in this

comparison are marked with white borders. All other pixels

will be suppressed. The resulting edge pixels are marked

with white borders.

The original canny algorithm uses a 9-pixel neighborhood.

The normal to the edge direction (the gradient) is shown as

an arrow, and it has components (ux,uy). To non-maximum

suppress the gradient magnitude in this direction, there is

only discrete values of the gradient at points Pi,j. Three

points are required for non-maximum suppression, one of

which will be Px,y and the other two should be estimates of

the gradient magnitude at points displaced from Px,y by the

vector u.

Figure 6: Support of the non-maximum suppression

operator

Figure 7: Bilinear interpolation

Now for any u consider the two points in the 8-pixel

neighborhood of Px,y which lie closest to the line through

Px,yin direction u. The gradient magnitude at these two

points together with the gradient at the point Px,y define a

plane which cuts the gradient magnitude surface at these

points. The plane is used locally approximate the surface,

and to estimate the value at a point on the line. For example,

in Fig -6 the value of a point in between Px,y+1 and Px+1,y+1

that lies on the line is estimated. The value of the

interpolated gradient is

𝐺1 =
𝑢𝑥

𝑢𝑦

𝐺 𝑥 + 1, 𝑦 + 1 +
𝑢𝑦 − 𝑢𝑥

𝑢𝑦

𝐺 𝑥, 𝑦 + 1

Similarly the interpolated gradient at a point on the opposite

side of Px,yis

𝐺2 =
𝑢𝑥

𝑢𝑦

𝐺 𝑥 − 1, 𝑦 − 1 +
𝑢𝑦 − 𝑢𝑥

𝑢𝑦

𝐺 𝑥, 𝑦 − 1

The point Px,y is marked as a maximum if G(x,y) > G1 and

G(x,y) > G2. The interpolation is similar for other gradient

directions, and it will always involve one diagonal and one

non-diagonal point. In practice, the divisions can be avoided

by multiplying through by uy. This scheme involves five

multiplications per point, but this is not excessive, and it

performs much better than a simpler scheme which

compares the point Px,y with two of its neighbours. It also

performs better than a scheme which used an averaged value

for the gradient along the edge, rather than just the value at

Px,y.

Paper ID: SR21301101835 DOI: 10.21275/SR21301101835 145

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Research Gate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

In this work, the centre pixel Px,y is compared with two

intensities G1 and G2,where G1 and G2 are the gradient

obtained by the bilinear interpolation of four neighboring

cells. The four cells are the four immediate pixels to the

point where gradient orientation meet a circle of radius 2.

2.4.4 Bilinear interpolation: In computer vision and image

processing, bilinear interpolation is one of the basic

resampling technique. Bilinear interpolation uses only the 4

nearest pixel values which are located in diagonal directions

from a given pixel in order to find the appropriate color

intensity values of that pixel.

Bilinear interpolation considers the closest 2x2

neighborhood of known pixel values surrounding the

unknown pixel's computed location. It then takes a weighted

average of these 4 pixels to arrive at its final, interpolated

value. The weight on each of the 4 pixel values is based on

the computed pixel's distance (in 2D space) from each of the

known points.

To calculate G1 the bilinear interpolation of four pixels tl,

tr,bl and br from Fig-7 the following equations can be used.

In the Fig-7 hfrac and vfrac represents the fractional part of

horizontal and vertical offset corresponding to the particular

orientation ie fractional part of xoff and yoff. First the upper

average and lower average are calculated using bilinear

interpolation as

𝑢𝑝𝑝𝑒𝑟 𝑎𝑣𝑔 = 1 − 𝑕𝑓𝑟𝑎𝑐 𝑡𝑙 + 𝑕𝑓𝑟𝑎𝑐 𝑡𝑟 = 𝑡𝑙 + 𝑡𝑟 − 𝑡𝑙 𝑕𝑓𝑟𝑎𝑐

𝑙𝑜𝑤𝑒𝑟 𝑎𝑣𝑔 = 1 − 𝑕𝑓𝑟𝑎𝑐 𝑏𝑙 + 𝑕𝑓𝑟𝑎𝑐 𝑏𝑟

= 𝑏𝑙 + 𝑏𝑟 − 𝑏𝑙 𝑕𝑓𝑟𝑎𝑐

Then using the upper avg and lower avg by using bilinear

interpolation G1 can be calculated as

𝐺1 = 1 − 𝑣𝑓𝑟𝑎𝑐 𝑢𝑝𝑝𝑒𝑟 𝑎𝑣𝑔 + 𝑣𝑓𝑟𝑎𝑐 𝑙𝑜𝑤𝑒𝑟 𝑎𝑣𝑔

 = 𝑢𝑝𝑝𝑒𝑟 𝑎𝑣𝑔 + 𝑙𝑜𝑤𝑒𝑟 𝑎𝑣𝑔 − 𝑢𝑝𝑝𝑒𝑟 𝑎𝑣𝑔 𝑕𝑓𝑟𝑎𝑐

Fig-6shows the effect of non-maximal suppression on the

test image.From this stage referred to as non-maximum

suppression, a set of edge points, in the form of a binary

image, is obtained. These are sometimes referred to as "thin

edges".

2.4.5 Edge tracking by hysteresis thresholding

Large intensity gradients are more likely to correspond to

edges than small intensity gradients. It is in most cases

impossible to specify a threshold at which a given intensity

gradient switches from corresponding to an edge into not

doing so. Therefore Canny uses thresholding with hysteresis.

The edge-pixels remaining after the non-maximum

suppression step are (still) marked with their strength pixel-

by-pixel. Many of these will probably be true edges in the

image, but some may be caused by noise or colour variations

for instance due to rough surfaces. The simplest way to

discern between these would be to use a threshold, so that

only edges stronger that a certain value would be preserved.

The Canny edge detection algorithm uses double

thresholding. Edge pixels stronger than the high threshold

are marked as strong; edge pixels weaker than the low

threshold are suppressed and edge pixels between the two

thresholds are marked as weak.

Strong edges are interpreted as “certain edges”, and can

immediately be included in the final edge image. Weak

edges are included if and only if they are connected to strong

edges. The logic is of course that noise and other small

variations are unlikely to result in a strong edge (with proper

adjustment of the threshold levels). Thus strong edges will

(almost) only be due to true edges in the original image. The

weak edges can either be due to true edges or noise/colour

variations. The latter type will probably be distributed

independently of edges on the entire image, and thus only a

small amount will be located adjacent to strong edges. Weak

edges due to true edges are much more likely to be

connected directly to strong edges.

Once this process is complete the result is a binary image

where each pixel is marked as either an edge pixel or a non-

edge pixel. From complementary output from the edge

tracing step, the binary edge map obtained in this way can

also be treated as a set of edge curves, which after further

processing can be represented as polygons in the image

domain.

2.5 MATLAB Implementation

MATLAB is a software package for computation in

engineering, science, and applied mathematics. It offers a

powerful programming language, excellent graphics, and a

wide range of expert knowledge. MATLAB is published by

and a trademark of The Math Works, Inc. The canny edge

detection is implemented in MATLAB with a slight

modification in the gradient calculation. . MATLAB now

optionally supports parallel computing. Still, MATLAB is

usually not the tool of choice for maximum-performance

computing.

The steps for implementation in MATLAB are

 Read the image

 Define different parameters: scaling, sigma, hi_thres,

lo_thres, vert.horz,gamma,radius

 Function Gradient: Perform Gaussian filtering for noise

removal and calculate magnitude and orientation of

intensity gradient at each pixel

 Function Adjgamma: Adjusts image gamma. Gamma

values in the range 0-1 enhance contrast of bright regions,

values > 1 enhance contrast in dark regions.

 Function Non max sup: Gradient magnitude is non

maxima suppressed in the gradient direction

 Function Hysthresh: Function performs hysteresis

thresholding of an image.

2.6. Introduction to FPGA

FPGA contains a two dimensional array of logic blocks and

interconnections between logic blocks. Both the logic blocks

and interconnections are programmable. Logic blocks are

programmed to implement a desired function and the

interconnects are programmed using the switch boxes to

connect the logic blocks.To get our desired design, all the

sub functions implemented in logic blocks must be

connected and this is done by programming. Xilinx logic

block consists of one Look up Table (LUT) and one Flip-

flop. An LUT is used to implement number of different

functionality. The output of the LUT gives the result of the

Paper ID: SR21301101835 DOI: 10.21275/SR21301101835 146

http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Resampling

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Research Gate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

logic function that it implements and the output of logic

block is registered or unregistered output from the LUT.

SRAM is used to implement a LUT.A k-input logic function

is implemented using 2
k
X 1 size SRAM. Advantage of such

an architecture is that it supports implementation of so many

logic functions, however the disadvantage is unusually large

number of memory cells required to implement such a logic

block in case number of inputs is large.

LUT based design provides for better logic block utilization.

A k-input LUT based logic block can be implemented in

number of different ways with tradeoff between

performance and logic density. An n-LUT can be shown as a

direct implementation of a function truth table. Each of the

latch hold’s the value of the function corresponding to one

input combination. A wire segment can be described as two

end points of interconnect with no programmable switch

between them. A sequence of one or more wire segments in

an FPGA can be termed as a track. Typically, an FPGA has

logic blocks, interconnects and switch blocks (Input/output

blocks). Switch blocks lie in the periphery of logic blocks

and interconnect. Wire segments are connected to logic

blocks through switch blocks. Depending on the required

design, one logic block is connected to another and so on.

2.7 FPGA design flow

A simplified version of design flow is given in the Fig -8.

There are different techniques for design entry. Schematic

based, Hardware Description Language and combination of

both etc. Selection of a method depends on the design and

designer. If the designer wants to deal more with Hardware,

then Schematic entry is the better choice. When the design is

complex or the designer thinks the design in an algorithmic

way then HDL is the better choice. Language based entry is

faster but lag in performance and density.

Figure 8: FPGA Design Cycle

HDLs represent a level of abstraction that can isolate the

designers from the details of the hardware implementation.

Schematic based entry gives designers much more visibility

into the hardware. It is the better choice for those who are

hardware oriented. Another method but rarely used is state-

machines. It is the better choice for the designers who think

the design as a series of states. But the tools for state

machine entry are limited.

Synthesis: The process which translates Verilog code into a

device netlist format, i.e. a complete circuit with logical

elements (gates, flip flops, etc…) for the design. If the

design contains more than one sub designs, ex. to implement

a processor, we need a CPU as one design element and

RAM as another and so on, then the synthesis process

generates netlist for each design element.adc= Synthesis

process will check code syntax and analyze the hierarchy of

the design which ensures that the design is optimized for the

design architecture, the designer has selected. The resulting

netlist(s) is saved to an NGC (Native Generic Circuit) file

(for Xilinx® Synthesis Technology (XST)). In this thesis the

proposed design is implemented on FPGA. The design is

verified by simulation and compared with the MATLAB

simulation results. The design is successfully implemented

in VIRTEX 6 (XC6VLX240T) FPGA and the estimated

frequency of operation is 100MHz.

2.8 The Canny Edge Detection System Architecture

Fig-9shows the hardware architecture for the canny edge

detection system.It consists of different processing

blocks,input, output and intermediate memories and a

controller to control the data transfer between different

processing blocks and memories.

Paper ID: SR21301101835 DOI: 10.21275/SR21301101835 147

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Research Gate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 9: The system architecture of canny edge detector

3. Results and Discussions

3.1 MATLAB Simulation Results

a)To locate the iris boundary the edge map of original input

eyeimage is created and output is obtained as in Fig 10.

Figure 10: MATLAB simulation result showing complete

edge map

3.2 Implementation result and discussion

Here ISim Simulator tool was used in order to simulate the

design and check the functionality of the design. Once the

functional verification is done, the design was synthesized

from the XILINX ISE Design Suite 14.3 tool. The

appropriate tests cases have been identified in order to test

this modeled architecture. Based on identified values, the

simulation results which describe the operation of process

has been achieved. This proves that the modeled design

work’s properly as per its functionality.

3.3 Simulation result

The test bench is developed in order to test the modeled

design. This developed test bench will automatically force

the inputs and will make the operations of algorithm to

perform. Simulation results are shown in Fig-11.

3.3.1 Behavioral simulation (RTL simulation) :This is

first of all simulation steps those are encountered throughout

the hierarchy of the design flow. This simulation is

performed before synthesis process to verify RTL

(behavioral) code and to confirm that design is functioning

as intended. Behavioral simulation can be performed on

Verilog designs. In this process, signals and variables are

observed, procedures and functions are traced and

breakpoints are set. This is very fast simulation and so

allows the designs to change the HDL code of the required

functionality is not met within a short time period. Similar

to the MATLAB model, given 84 X 96 scaled eye image is

given as the input to the algorithm and tested and verified

the algorithm for each block separately.

Figure 11: The simulation result

3.3.2 Synthesis results

The developed design was simulated and verified their

functionality. Once the functional verification are done, the

RTL model was taken to the synthesis process using the

Xilinx ISE tool. In synthesis process, the RTL model will be

converted to the gate level net list mapped to a specific

technology library.The Gradient calculation block

implemented in verilog and coding was done for ML605

Paper ID: SR21301101835 DOI: 10.21275/SR21301101835 148

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Research Gate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Evaluation Kit. The ML605 Evaluation Kit is based on the

XC6VLX240T-1FFG1156 Virtex-6 FPGA.The input to

gradient block ie the original eye image is loaded initially

into a block RAM using a .coe file. Since the original eye

image size from CASIA database is 280 X 320, that means

the image contain 89600 pixels. The gradient calculation on

this original image will results in shortage of hardware

resources. So the original image is scaled by a factor of 0.3

to get a smaller image of size 84 X 96, ie total 8064 pixels.

Then using an image rearrange block, the image is

rearranged to 8 different memories in 8 different ways. For

that 8 synchronous dual port RAMs are used, in which

through one port data will be written into RAM and through

the other port data is read from memory.

Then from these eight rearranged images, the XY

calculation block subtract one image from the other in a

specific way to get horizontal(h), vertical(v), diagonal(d1)

and off-diagonal(d2) components of gradient. Then the X

and Y components of gradient is calculated from the

previously described equation. Then the gradient calculation

block calculate the gradient and orientation of the gradient at

each pixel. For gradient calculation to calculate square root

the CORDIC IP core is utilized. For orientation calculation

block to evaluate tangent CORDIC IP core is utilized.

The inputs and outputs viewed through ChipScope Pro

Analyzer is as shown in Fig 12.

Figure 12: Chipscope output on ML 605 Evaluation kit

The input eye image and the gradient output displayed on

the VGA screen is as in Fig 13.

Figure 13 (a): Input eye image

Figure 13 (b): output displayed on VGA display

4. Conclusions

The canny edge detection subsystem with slight

modification in both gradient mask and non-maximal

suppression which is as a pre-processing part for iris

detection system, is implemented in MATLAB for output

verification. This edge map is used to detect inner and outer

iris boundary and eyelid boundary in iris if any. The next

step is VLSI implementation. The programming is done in

Verilog and the functionalities are verified using XILINX

ISE tools. This project has an efficient VLSI architecture

design and implementation on Xilinx FPGA. Here the

system performance in terms of speed and hardware

utilization FPGA system is very efficient.

The hardware architecture of gradient processor using 84 X

96 pixels block of 8-bit image information as input has been

presented. The entire system was simulated using MATLAB

for a84X96 eye image. Apart from the MATLAB software

model, in order to compare the performance of the system

the algorithm was developed using Verilog and simulated on

Paper ID: SR21301101835 DOI: 10.21275/SR21301101835 149

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Research Gate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

ISim simulation tool and analyzed the performance. Once

the functional verification sare done, all modules in the

architecture were synthesized by using Xilinx ISE design

tools.

Advancements in FPGA, flash memory, and capacitor

technologies have enabled a lower power, nonvolatile

memory backup solution that supports a battery-free

environment and the benefits. The biometric security

recognition system is profoundly scalable, secure, rapid,

assessable and accurate. This module of image processing

proposes an efficient section for any biometric device

utilized for a real-time identification process with higher

performance and greater accuracy.

References

[1] E. Wolff. Anatomy of the Eye and Orbit. 7th edition.

H. K. Lewis & Co. LTD, 1976

[2] J. F. Canny, "Finding edges and lines in images," M.S.

thesis, Mass.Inst. Technol.; AI Lab. TR-720, 1983.

[3] John Canny. “A computational approach to edge

detection”. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, PAMI-8(6):679–698, Nov. 1986.

[4] L. Masek, "Recognition of Human Iris Patterns For

Biometric identification", Thesis Report, The University

of Western Australia, 2003.

[5] P. C. Kronfeld, “The gross anatomy and embryology of

the eye,” in The Eye, vol. 1, H. Davson, Ed. London:

Academic,1968, pp. 1–66.

[6] F. H. Adler, “Physiology of the Eye”. St. Louis, MO:

Mosby, 1965.

[7] D. Ziou, S. Tabbone, “Edge Detection Techniques – An

Overview”

[8] D. Marr and E. C. Hildreth. Theory of edge detection.

Proceedings of the Royal Society, London B, 207:187-

217, 1980

[9] Jean Ponce, “Lecture 26: Edge Detection II”, 12/2/2004.

[10] S. Price, "Edges: The Canny Edge Detector", July 4,

1996.

[11] Margaret M Fleck “Some defects in finite difference

edge finders” IEEE PAMI No. 3, Vol. 14. March 1992.

pp 337-345

[12] Chinese Academy of Science - Institute of Automation

(CASIA).Database of the Eye Grayscale

Images.http:llwww.sinobiomtrics.com

.

Paper ID: SR21301101835 DOI: 10.21275/SR21301101835 150

