
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2019): 7.583 

Volume 10 Issue 3, March 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

An Investigation and Study of Three-World 

Framework for Solving Algebraic Equations  
 

Khayriyah Nasr Amhimmid Abunaejah 
 

Department of Applied Mathematics, BaniWalid University, Libya 

 

 

Abstract: Algebra is widely considered as a key to positive result in secondary mathematics subject. However, instruction remains 

mostly teacher-centred and in procedural terms of orientation, with limited chances for students to enhance algebraic understanding. In 

this scope of paper, the research is seriously considering the data from an investigation in which high school students shift from linear 

to quadratic equations. In this context, the students did not show the term of ‘didactic cut’ the subtleties grow from conceiving an 

equation as a balance to figure out the linear equations. Rather than Students utilised the term of ‘procedural embodiments’, shifting 

terms around with including ‘rules’ to gained the fairly accurate answer. To address the with quadratic equations, the high school 

students teach to find out the formula and seems satisfied not enough with the progress. Furthermore, the scheme of interpretation of 

this data require a high level of investment within comprehensive structure that places them in developing context. This study succeeds 

to implement the enhancement of structure of mathematics section regarding the fundamentally on human perceptions and action. 

Which can use to encourage student to pleasurable more, and avoiding similar problems in future by causing confusion and even 

mathematical anxiety. This subject of predicting the observed data and structure explains lie beyond the scope of our investigation, 

which can provide students with a sound theoretical and practical. 
 

Keywords: Theories of learning; Solving Equations; Three worlds of mathematics 

 

1. Introduction 
 

Improving student outcomes in algebra have been a global 

focusin recent decades[1,2]. In the U.S., research has shown 

that school algebra is considered a pivotal gatekeeper to 

higher-level mathematics and a predictor of later academic 

success[3]. Proficiency in algebra cannot be achieved 

without high-quality instruction that creates learning 

opportunities to help students develop conceptual 

understanding of algebraic ideas and fluency with algebraic 

procedures. Investigations into algebra classrooms 

worldwide have shown variability in emphasis and 

pedagogy, both between and within countries [4].  

 

In order to improve students‟ learning opportunities, it is 

useful to understand specific aspects of teaching that have 

the potential to support students in learning algebraic ideas. 

In the U.S., efforts at instructional improvement have largely 

focused on ambitious mathematics teaching instruction that 

provides students opportunities to reason about mathematics, 

explain their thinking, and engage with mathematics in 

contextualized ways through authentic problems. For 

instance, the following studies [5] were conducted on 

developed a theoretical framework on which the teaching 

and learning of linear algebra in a technological 

environment with strong emphasis to geometry connections 

is based: “The core of this framework is three 

learning/teaching principles: The oncreteness Principle, the 

Necessity Principle, and the Generalizability Principle”. 

 

Studies of [6] are well documented, it is also well 

acknowledged that formulated the concreteness principle, as 

a fundamental approach for the teaching and learning of 

linear algebra. Previous studies [7] have emphasized 

founded in idea of conceptualentities. According to this 

principle, “for students to abstract a mathematical structure 

from a given model of that structure the elements of that 

model must be conceptual entities in the student‟s eyes; that 

is to say the student has mental procedures that can take 

these objects as inputs” [5]. Concreteness principle requires 

that “students build their understanding of a concept in a 

context that is concrete to them”. The author recommends 

MATLAB as a tool that would help students visualize 

vectors and matrices as concrete mathematical objects, in 

accordance with the concreteness principle. 

 

One such leverage point in algebra may be how procedures 

are taught. The degree to which algebra instruction should 

focus on concepts or procedures (or both) has been a 

longstanding debate, yet it is likely that the two types of 

knowledge are intertwined and develop in tandem [8,9].In 

algebra, procedures are prevalent, even with the current 

emphasis on teaching for understanding. The goal is not to 

abandon procedures but rather to teach procedures in ways 

that connect them with their conceptual underpinnings. For 

example, if students understand how and why a procedure 

works, they are better able to adapt procedures flexibly to 

new situations. Comparing and contrasting multiple 

procedures for solving the same problem promotes both 

procedural fluency and conceptual understand-ding. and 

affords students the opportunity to see and understand 

algebraic structure [10]. Providing students opportunities to 

connect procedures, representations (e.g., graphs, tables, and 

equations), and algebraic ideas supports students‟ learning 

of the embedded mathematical relationships and promotes a 

deeper understanding of expressions, equations, and the 

related procedures [11, 12]. 

 

Another approach is to consider how to support students in 

making sense of new algebraic ideas. Algebra is more 

abstract than the mathematics students have previously 

encountered, something that can cause difficulty for students 

[13]. Students can develop meaning for these abstractions 

when they connect symbolic representations for algebraic 

ideas and procedures to their concrete [14]. The author [15] 

recommend connecting familiar and concrete representations 

of mathematical ideas to their abstract and symbolic 
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counterparts in order to promote both learning and transfer. 

Concreteness fading explicitly moving from concrete to 

more abstract representationshas also been shown to help 

students develop meaning for more abstract ideas [16].  

 

2. Building a new framework for long term 

of Mathematics  
 

While various approaches to the curriculum have led to 

“Math Wars” arguing between approaches to mathematics 

learning, we can now shift to a higher multi-contextual level 

where learning “the basics of arithmetic” can be related 

flexibly to the meaning of expressions. As children 

experience mathematical ideas in practical contexts, they 

will naturally pick up aspects related to each context. 

Making sense of different contexts to draw out common 

ideas is more complicated than having available simple 

principles that work in multiple contexts. This is part of a 

much broader framework for making long-term sense in 

mathematics as a whole. In How Humans Learn to Think 

Mathematically [17] formulated a framework for long-term 

mathematical thinking beginning from the child‟s 

perceptions and operations with the physical world and with 

others in society. One strand of development senses the 

properties of objects, initially physical, and then constructed 

mentally, which researcher termed conceptual embodiment. 

 

Another strand focuses on the properties of operations that 

researcher termed operational symbolism. Both of these 

develop in sophistication from practical mathematics based 

on the coherence of properties that occur in practice in 

theoretical mathematics where the properties are defined and 

relationships are deduced one from another in what may be 

termed consequence  [18]. At the turn of the twentieth 

century, a further strand developed based on properties 

defined using set theory or logic which researcher termed 

axiomatic formalism. For many mathematicians, formal 

mathematical proof starts with Euclidean geometry. But 

there is a huge difference between mathematics based on 

properties of pictures or on known calculations and 

mathematics based on formal definition and proof. Prior to 

the end of the nineteenth century, the study of mathematics 

and science based on naturally occurring phenomena was 

described as “natural philosophy”. Researcher therefore 

distinguish “theoretical mathematics” based on “natural 

phenomena” from “axiomatic formal mathematics” based on 

set theory and logic (Figure 1.). 

 

 
Figure 1: The long-term development of mathematical 

thinking 

Figure 1. simplified view of the theoretical framework 

developed in [17], based on the new information available 

from neuroscience. Researcher termed the three main 

strands as “worlds of mathematics” because each world 

represents a fundamentally different way of thinking that 

evolves both in history and in the individual. Conceptual 

embodiment existed in many species and in human ancestors 

several hundred thousand years ago. Operational symbolism 

evolved in Homo sapiens in the last fifty thousand years, 

proliferating in various communities in Egypt, Babylon, 

India and China around five thousand years ago, becoming 

increasingly theoretical in Greek mathematics with the first 

flowering of mathematical proof two and a half thousand 

years ago.  

 

Axiomatic formal mathematics has been around for little 

more than a century. Now new possibilities are emerging in 

our digital age enabling Homo sapiens to use new digital 

tools to enhance the possibilities of enactive interface, 

dynamic visualization, symbolic computation and 

emergence of new forms of artificial intelligence. In this 

ongoing evolution, the biological brain evolves slowly. 

There is no reason to suppose that the biological brain of the 

ancient Greeks is substantially different from our own. In 

contrast, the technical evolution of digital tools available to 

support the mathematical mind that have occurred within a 

generation is immense. Although researcher now knows that 

the biological brain is more complex than a simple duality 

between left and right brain, it still continues to support 

conceptual embodiment and operational symbolism with the 

forebrain taking an increasing role in integrating 

mathematical thinking in new forms of axiomatic formalism 

[18]. 

 

It is interesting to note that the diagram in Figure 1. nowhere 

explicitly mentions the role of language. Instinctively, when 

researcher originally thought about the framework, 

researcher saw mathematical thinking to be related to the 

complementary roles of visual imagination, sequential 

symbolic operation and later logical deduction, with verbal 

language being used to describe connections between 

different parts of the framework. The resulting two-

dimensional picture gives only a partial idea of the broader 

complexity of the workings of the human brain. For 

example, it focuses on cognitive aspects that occur in the 

surface areas of the cortex and says little about the activity 

of the limbic system in the center of the brain that not only 

performs many cognitive tasks relating to short-term and 

long-term memory but also responds emotionally to 

supportive and problematic aspects of mathematical 

thinking. 

 

3. Experimental data and theoretical structure 

for the solution of linear equations 
 

According to theories of learning view, which can improve 

the phenomena all over time. it is important to noticed that 

formulated consistent ways that later need to take new data 

into consideration. The concept of idea is possible for 

student to comprehend. Thus, specific data in linear 

equations and the transition to quadratic equations can lead 

to place in a broader structure for cognitive enhancement 

that provides together some distinct strands of study within a 
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single theory. The authors [19] bring some information 

about the background of the problem and propose that a 

formula such as 3x − 1 =5 with an terms on the left anda 

number on the right is more easier to find out symbolically 

than an formula such as 3x + 2 = x + 6.  The reason behinds 

that the first canbe „undone‟ arithmetically by reversing the 

function of  „multiply by 3 and subtract 1 to get 5‟ by add 

up1– 5 to get 3𝑥 = 6 and thendividing 6 by 3 to get the 

solution 𝑥 =  2.  

 

Meanwhile the equation 3𝑥 +  2 =  𝑥 +  6 cannot be 

solved by arithmetic undoing and requires algebraic 

operations to be performed to simplify the equation to give a 

solution. A more comprehensive description can be found in 

[20]. This phenomenon is known as „the didactic cut‟. It 

interfaces to the observation that students  to notice the 

„equals‟ sign as an function, growing out of experience in 

arithmetic where an formula of the structure3 +  4 = 7 is 

known as a dynamic function to perform the calculation, 

„three plus four rather than requiring algebraic manipulation 

[B]. makes 7‟, Thus,  that an formula such as 3𝑥 −  1 = 5 

is clear as an operation which can lead to possibly be solved. 

For example, research [21] suggests that classified an 

equation of the form „expression = number‟ as an evaluation 

equation, because it involved the numerical evaluation of an 

algebraic expression where the input value of𝑥 could be 

found by numerical „undoing‟, and more general linear 

equations as manipulation equations, because they required 

algebraic manipulation for their solution. 

 

It is important to bear in mind, if the solution of linear 

equations is considered in point of view of the conceptually 

embodied notion of a „balance‟, the complicated of the 

equations is reversed. The equation 3x + 2 = x + 6 can easily 

be solved as a balance by imagining the 𝑥𝑠 to be identical 

unknown objects of the same weight and representing the 

equation with 3 𝑥𝑠 and 2 units on the left and one 𝑥𝑎𝑛𝑑 6 

units on the right. It is then possible to remove 2 units from 

either side to retain the balance as 3x = x + 4, and then 

remove an x from both sides to obtain 2x = 4, leading to x = 

2. In authorship the prophetic study [22] has entitlement „the 

balance model: hindrance or encourage for the solving of 

linear equations with one uncertain. The study has mention 

that, since the moment a negative quantities or subtraction 

are concerned, then the embodiment turns into more 

sophisticated and hinders understanding. By way of 

illustration, the with 1 bring away if the value of 𝑥is not 

known. equation 3𝑥 −  1 = 5 cannot be able to get 

reshown directly as a balance because the left-hand side 

3𝑥 −  1 cannot be able to imagined as 3𝑥.In this 

connection, this brings to light that the didactic cut and the 

balance model provide rise to very different orders of 

difficulty. In the didactic cut the equation 3x − 1 = 5 is 

easier to solve than the equation 3x + 2 = x + 6, but in the 

balance model the order of difficulty is reversed. 

 

The data of study [23] presented an analysis of Brazilian 

students‟ work with linear equations that did not fit either 

the didactic cut or the balance model. Their teachers had 

used an „expert-novice‟ view of teaching and had introduced 

the students to the methodology that they, as experts, found 

appropriate for solving equations, using the general principle 

of „doing the same thing to both sides‟ to simplify the 

equation and move towards a solution. However, when 

interviewed after the course, students rarely used the general 

principle. They did not treat the equation as a balance to „do 

the same thing to both sides‟, nor did they show any 

evidence of the didactic cut. Instead, they focused more on 

the specific actions that they performed to shift symbols 

around and „move towards a solution‟ using two main 

tactics: 

 

1) „swop sides, swop signs‟ to get:  

in which an equation 3𝑥 −  1 = 3 +  𝑥 is operated upon by 

shifting the 1 to the right and the x to the left and changing 

signs 

3𝑥 −  𝑥 =  3 +  1 
 2𝑥 =  4. 

2) „swop sides and place underneath‟ in which the 2 

associated with the expression 2𝑥 in the equation above is 

moved from one side of the equation to the 

other, then placed underneath to give: 

𝑥 =
4

2
= 2 

In an attempt to use such rules, some students made 

mistakes, such as changing 2x = 4 to: 

 

(a) 𝑥
= 4 − 2   

 𝑏  
𝑥 =

4

−2
 

 𝑐  
  𝑥 =

4

2
 

 

In (𝑎)𝑋 = 4 − 2 the 2 is passed over the other side and its 

sign is changed; (b) 𝑥 =
4

−2
 correctly „shifts the 2 over and 

puts it underneath‟ but also „swops the sign‟; (c) 𝑥 =  
4

−2
 

shifts the 2 over and puts the 4 underneath. When 

questioned, no student mentioned the principle of „doing the 

same thing to both sides‟, instead they developed what Lima 

and Tall called procedural embodiments which involved 

embodied actions on the symbols to „pick them up‟ and 

„move them to the other side‟ with an extra „magic‟ 

principle such as „change signs‟ or „put it underneath‟ to „get 

the right answer‟. Procedural embodiments worked for some 

students but they also proved to be fragile and 

misremembered by many others, leading to the wide range 

of errors that are well known in the literature [24, 25]. The 

aim is not easy to achieved and catalogue errors. The study 

seeks to evolve a single theoretical framework that covers all 

three aspects: the didactic cut, the balance model and the 

problem with „doing the same thing to both sides‟. Such a 

theoretical framework can be relating to both cognitive 

development and the emotional effects of the learning 

experience.  

 

4. The Development of Algebraic Reasoning  
 

The issue-posing paper researcher identify takes in account 

the domain of algebra. The research has been carried out 

with attention to detail. The learning algebra requires 

mastery of abstract symbolic systems of representation, and 

require students to make integrate into between different 

representational forms. Moreover, students can be a critical 

transition from operating on known quantities based on 

symbols to represent unknown quantities. In this regard, 

manipulate, solve equations, and to represent functions in 

various formats [26, 27]. Students might view an algebraic 

equation as a string of operations rather than a statement of 
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equality and might have difficulty operating on variables 

conceptualized as both fixed unknown quantities and 

quantities that change [28]. Students struggle to navigate the 

structural “grammar” of algebraic expressions, to 

symbolically represent their intuitive understanding of 

relationships, research suggests that embedding algebra in 

relevant contexts can allow students to draw upon their 

everyday knowledge and informal ways of reasoning to 

support their learning. In this way, personalization may be a 

particularly effective approach to allowing students to grasp 

the abstractions and multiple representations involved with 

learning algebra. 

 

5. The three worlds of Mathematics  
 

This is the field of study [17,29] that deals with the 

framework of three worlds of mathematics, which is an total 

theory of cognitive and meaningful increase in mathematics 

that has improved to build from the early enhancement of 

ideas in the child, by the years of schooling and on to the 

boundaries of study in formal mathematics. It is closely 

connected to a wide range of theoretical frameworks 

formulated by [30], theories of advanced mathematical 

thinking by [31]. Moreover, theories from cognitive science 

such as the embodied theory of Lakoff and his colleagues 

[32]. In this regard, the blending of cognitive structures 

formulated for example by Fauconnier and Turner [33] and 

other aspects such as the role of various levels of 

consciousness by [34]. These approaches have been 

influential in the field by [17]. On the other hand, the key 

objective of the theoretical framework is not to collate all 

these theories together with all their intricate details that 

differ in many ways, but to find the essential ideas that they 

have in common sense . As a rule, the learning of school 

mathematics involve that the student blends together.In this 

context, the proposed by the following authors Fauconnier 

and Turner [35], embodied perception and operation that can 

be lead to geometry. At the higher levels of school 

mathematics, methods of reasoning lead to Euclidean proof 

in geometry and symbolic proof– based on the „rules of 

arithmetic‟ – in arithmetic and algebra. Moreover, in 

university can used mathematicians broadly build on their 

experience of natural phenomena to construct mathematical. 

The one hand arithmetic and algebra on the other. Bothof 

them can be blended together, for instance, through 

representation of relationships in the Cartesian plane, where 

perceptual ideas of dynamic change are related to 

operational techniques for computing change and growth in 

calculus models that can be used to reason about situations 

and compute solutions. Pure mathematicians take natural 

ideas and translate them into formal objects specified set-

theoretically and deducing their properties using 

mathematical proof. Underlying this whole enhancement is 

the nature of the species Homo Sapiens where the child 

builds on initial sensory perception and action and evolves 

increasingly sophisticated forms of mathematical thinking 

using language and symbolism. The sensory side develops 

through exploring and interacting with the structures of 

target, recognizing properties, Applinglanguage to describe, 

define and deduce relationships in an increasingly 

sophisticated mental world of conceptual embodiment that 

includes geometry and other perceptual representations; it 

develops over the longer term from physical perception to 

increasingly subtle mental imagination using by 

experiments. This may be described using the four van Hiele 

levels that may usefully be subdivided into two distinct 

forms of thinking: the practical ideas of shape and space 

developed through recognition and description and the 

theoretical ideas of Euclidean geometry developed through 

definition and deduction using Euclidean proof [17].  

 

6. Tasks with quadratic equations  
 

In this task with quadratic equations, the data used to 

investigate the students‟ conceptions of quadratic equations 

came from two instruments, an equation solving task, with 

three linear equations and four quadratic equations:  

3𝑙2  −  𝑙 =  0,   𝑟2  −  𝑟 =  2, 𝑎2  −  2𝑎 −  3 =  0,
𝑚2  =  9, 

together with a questionnaire that included two quadratic 

equations: 

𝑡2 −  2𝑡 =  0      (𝑦 −  3)(𝑦 −  2)  =  0. 

 

The questionnaire also included a request to respond to the 

solution of the final quadratic equation as given by an 

imaginary student „John‟: Interviews with some selected 

students revealed additional personal information on how 

they interpreted the tasks and their thinking in seeking 

solutions. 

 

7. Conceptual embodiment and the transition 

to operational symbolism 
 

Students‟ responses bring little evidence of attempts to make 

use of conceptual embodiments of equations. Indeed, if we 

look at previous research involving both linear and quadratic 

equations, we find that such embodiments tend to have 

limitations beyond the simpler cases. The work, for 

example, has already shown how the conceptual 

embodiment of a linear equation as a balance proves to be 

supportive in simple cases but is problematic where negative 

quantities are involved. In relation to quadratic equations, an 

interesting visual approach arose from the time of the 

Babylonians, and extended in Arabic mathematics in terms 

of physically „completing the square‟. Based on this idea, 

Radford and Guérette [36] designed „a teaching sequence 

whose purpose is to lead the students to reinvent the formula 

that solves the general quadratic equation‟. An example is 

given in Figure 2. 

 
Figure 2: The Babylonian geometric model 

 

The pieces were cut out of cardboard and the solution could 

be found by cutting the rectangle vertically in half (Figure 

3a), rearranging the pieces to move one half rectangle round 

to the bottom (Figure 3b), then realizing that what is missing 

to „complete the square‟ is the corner square with sides 

5 ×  5. Filling this in to get a total area of 39 +  25 =  64 

units (Figure 3c), we find the larger square has side 8 units 

and so, taking off the 5 units leaves 𝑥 =  3. Students were 
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then encouraged to think of a number of similar examples 

and derive a symbolic solution to equations of the form 

𝑥2 +  𝑏𝑥 =  𝑐 to find the general solution. Figure4. 

presents attempting to cut off two rectangles of size 5 × x. 

 
 

Figure 3: (a) Cut the 10 ×  𝑥 rectangle, (b) rearrange the 

pieces, (c) complete the square 

 

𝑥 =   𝑐 +  
𝑏

2
 

2 

−  
𝑏

2
 . 

They were shown how 𝑎𝑥2  +  𝑏𝑥 =  𝑐 could be rewritten 

as 𝑥2 + (b/a)x = (c/a), and substituting 𝑏/𝑎 𝑓𝑜𝑟 𝑏and 𝑐/
𝑎 𝑓𝑜𝑟 𝑐 gives the general solution of 𝑎𝑥2 + 𝑏𝑥 =  𝑐 as: 

𝑥 =   𝑐 +  
𝑏

2𝑎
 

2 

−  
𝑏

2𝑎
 . 

 

 
Figure 4: Attempting to cut off two rectangles of size 5 × x. 

 

The next step suggested is to replace 𝑐 𝑏𝑦 − 𝑐 to obtain the 

solution of 𝑎𝑥2  +  𝑏𝑥 +  𝑐 =  0 as: 

 

𝑥 =   −𝑐 +  
𝑏

2𝑎
 

2 

−  
𝑏

2𝑎
 . 

 

This formula is equivalent to the well-known formula. 

−𝑏 ±  𝑏2 − 4𝑎𝑐

2𝑎
 

where, in order to obtain all the numerical solutions, one 

also needs to consider the negative square root 𝑜𝑓 𝑏2  −
 4𝑎𝑐. This leads us to the formula: 

 

−𝑏 ±  𝑏2 − 4𝑎𝑐

2𝑎
 

 

The authors suggest that this is a good way to introduce the 

quadratic formula for students because it relates geometry 

and algebra, aiming „to provide a useful context to help the 

students develop a meaning for symbols‟. They note that 

many students were able to solve the initial tasks but „need 

some time to abandon the geometrical context themselves to 

the numerical formulae‟, commenting on the complexity of 

the semiotic structures, without any explicit reasons for the 

difficulties. The three-world framework clarifies the details. 

 

The representation of variables geometrically as lengths 

requires the adding rectangles 5 ×  𝑥, this involves cutting 

them away. Having cut off one rectangle from the right-hand 

side of the square, quantities to be positive. If the same 

method is applied to an equation of the form 𝑥2  −  𝑏𝑥 =  𝑐 

such as 𝑥2 −  10𝑥 =  64, instead of as in Fig. 4, the lower 

right 10 × 5 square has already been removed, so it is no 

longer possible to cut away the full rectangle size 5 × x 

along the bottom. 

 

8. Conclusion 
 

The development of algebra is part of the whole growth of 

mathematical thinking which is formulated as blending 

embodiment and symbolism in school mathematics, leading 

to embodied and symbolic forms of reasoning, which are 

later transformed into an axiomatic formal world of set-

theoretic definition and proof in university pure 

mathematics. The three-world framework formul-ates the 

cognitive and affective development of mathematical 

thinking over a lifetime from a newborn child to the full 

spectrum of adult mathematical thinking. It includes the 

effects of supportive met-before that enable generalizations 

in new contexts and problematic met-before that impede 

progress, with a growing awareness of the crystalline 

structure of mathematical concepts that enable them to be 

grasped and manipulated as mental entities with flexible 

meaningful links between them.  

 

The particular study of the solution of linear and quadratic 

equations occurs in operational symbolism with some 

support from embodied representations. The forms of 

reasoning appropriate to school algebra involve more formal 

use of embodiment and symbolism without any reference to 

the third world of axiomatic formalism. The reasoning in the 

solution of algebraic equations builds symbolically on the 

operations of generalized arithmetic, shifting from 

evaluation equations to equations requiring more general 

symbolic manipulation that give rise to the problematic 

aspects of the didactic cut. This may be blended with various 

conceptual embodiments such as seeing the solution of 

equations as the intersection of graphs, imagining the 

equation as a physical balance or cutting up squares in the 

case of quadratic equations.  

 

Methods that work with physical quantities such as the 

equation as a balance, or the representation of 𝑥2 as a 

physical square – become problematic when negative 

quantities are introduced. The introduction of more general 

strategies, such as „doing the same thing to both sides‟ prove 

to be problematic for students who interpret the generalities 

in terms of procedural symbol-shifting. The perceptual 

divide reveals a spectrum of performance between those 

who remain limited to learning step-by-step procedures and 

those with the flexibility of being able to grasp the 

crystalline structure of mathematical concepts. 
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