
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 2, February 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Edge Computing and IoT Integration in Public Bus

Transport: A Leap towards Intelligent Mobility

Aditya Kumar Sharma

Government of India

Email: ad094ks[at]gmail.com

Abstract: Recent advancements in Mobile Edge Computing (MEC) and the widespread adoption of Internet of Things (IoT) devices

have set the stage for significant improvements in public bus transportation systems. This study explores the impact of these emerging

technologies on enhancing operational efficiency, passenger safety, and service quality. By leveraging the computational power of MEC

and the data-rich insights from IoT devices, particularly AI cameras, the research proposes a novel framework for real-time data

analysis and decision-making. The research highlights how the shift from centralized cloud computing to edge computing addresses

latency, bandwidth, and data processing challenges inherent in mobile networks. The research delves into the application of Deep

Reinforcement Learning (DRL) to optimize resource allocation, energy consumption, and incident response. The findings demonstrate

that the intelligent offloading of computational tasks from AI cameras to MEC servers can significantly boost system performance,

especially under dynamic network conditions. The study further discusses the role of actor-critic architecture in policy optimization,

facilitating adaptative learning and efficient queuing mechanisms. This synergetic approach not only ensures a higher Quality of

Service (QoS) but also bolsters the safety mechanisms through enhanced monitoring and behavioral analysis of passengers and drivers.

Experimental DRL calculations illustrates the practicality of our proposed model in a real-world transit environment, paving the way

for a smarter, safer, and more responsive public bus transportation system.

Keywords: Mobile Edge Computing, Internet of Things, Public Transportation, AI Cameras, Deep Reinforcement Learning, Resource

Allocation, Computational Offloading, Quality of Service.

1. Introduction

Growth in the advanced public transportation industry has

significantly increased over the past few years due to an

increase in smartphone usage and the amount of mobile web

traffic, which has reached exponential numbers. This has

further been fueled by the convergence of emerging

technologies like the Internet of Things (IoT). The

technology landscape has prompted a major shift from the

traditional centralized mobile cloud computing to the

adoption of edge devices exemplified by Mobile Edge

Computing (MEC) – a network-architecture concept

extending IT and cloud-computing capabilities to the edge of

mobile networks.

MEC has revolutionized the bus transportation industry

service strategies because it is proximate and sensitive to

safety requirements with low-latency attributes. It

demonstrates an exceptional range of bandwidth,

exceptionally low latency, and direct access to real-time data

from manifold sources. It is such developments as smart

gadgets and ultra-HD video, new devices of the Internet of

Things, and numerous cloud solutions that lead to such a

tremendous inflow of network traffic within transportation

operations. Mobile-edge computing (MEC) has emerged as a

primary solution to enhancing the processing efficiency of

industry-used wireless devices (WDs).

For buses, IoT proves beneficial considering the nature of

their deployment, limited size, and low battery and

processing capacity. For instance, by extending the use of

MEC servers at the edge of radio access networks, e. g.,

cellular base stations, Wireless Devices (WDs) can offload

applications demanding intensive computational resources

from one another to neighboring edge servers (ES). This

proactive computation offloading approach involves

processing tasks either locally or at the edge server, giving a

significant boost for overall performance, especially under

dynamic network conditions, and these keep changing with

factors like energy levels harvested, wireless channel gains,

and task input-output dependencies.

In order to make a more effective functioning of the MEC

network, some researchers have paid attention to the

strategies of opportunistic compute offloading. Among them

is binary offloading, which is when basic or deeply

connected jobs are intercepted and sent either as single tasks

to a MEC server or translated into mobile device operations.

The challenge is to resolve offloading choices linked to

mixed integer nonlinear programming (MINLP) problems,

such as binary offloading decisions, offloading timing, and

edge or local CPU frequency problems. Such complexities

usually call for sophisticated computational systems. Some

of the studies have taken into consideration leveraging

techniques such as decomposition-oriented queries and

relaxations of binary variables together with local-search-

based heuristics that are based on sub-optimal algorithms

with reduced complexity. Although such inexact strategies

may involve performance trade-offs, one must apply many

statistical iterations to approach an ideal solution. However,

they open roads for more practical implementation. In the

public bus transportation domain, MEC servers are

strategically whisked near mobile users, which offers the

wireless possibility of offloading computational tasks from

the mobile devices to these servers. This has paved the way

for exploiting online offloading computing to improve the

quality of service (QoS). This, therefore, makes addressing

the core challenge guiding computational offloading and

resource scheduling within the MEC system of great

interest.

Paper ID: SR24203175549 DOI: https://dx.doi.org/10.21275/SR24203175549 1710

mailto:ad094ks@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 2, February 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The ever-occurring changes in the public bus transport

system make its dynamics become a very challenging task.

This is where Reinforcement Learning (RL) comes in, as it

considers long-term objectives and not just short-term

rewards. RL status is very important when dealing with the

time-variable dynamics of multi-user wireless MEC

systems. DRL is associated with Deep Neural Networks

(DNNs) that act as model-free agents with DNNs to learn

and adapt their decision-making processes by themselves.

Most information processing constraints are overcome by

constant interaction with the surrounding environment. This

represents a major advantage for online offloading in MEC

networks vis-à-vis the often complex and resource intensive

MINLP technique.

2. Purpose and Problem Statement

To model and optimize data offloading, energy

consumption, and resource allocation for IoT devices on

buses, it is important to know about used cases. One very

big used case in this scenario is the use of AI cameras to

capture videos and detect behavior. The AI cameras in

publics transit buses can be used for the below purposes:

1) Boarding and Exiting Verification: The AI camera can

track and verify when passengers board the bus at their

designated stops and when they disembark.

2) Behavioral Issue Detection: The camera can identify

and flag any behavioral issues among passengers on the

bus, such as disruptive behavior, bullying, or safety

violations. It can capture video footage when such

incidents occur.

3) Incident Detection: In the event of any unusual

incidents on the bus, such as accidents, medical

emergencies, or security breaches, the camera can detect

these situations and automatically record relevant video

footage.

4) Driver Monitoring: The AI camera can also monitor the

bus driver's behavior and driving patterns to ensure safe

driving practices, adherence to traffic rules, and driver

alertness.

5) Face Recognition: The camera is equipped with facial

recognition capabilities, allowing it to identify

passengers on the bus.

6) Auto-Capturing Red Flags: Whenever the camera

detects any concerning behavior, incidents, or safety

violations, it can automatically generate "red flag" video

clips to highlight these events.

To understand how the calculations and formulas work here,

it is important to know about the Deep Reinforcement

Learning in Enhanced Bus Monitoring. Deep Reinforcement

Learning (DRL) represents a cutting-edge integration of

deep learning and reinforcement learning principles, aimed

at enabling machines to learn from their environment

through a process of trial and error. This innovative

approach can find a novel application in the realm of public

transportation, specifically in the enhanced monitoring of

bus services through AI cameras installed on buses. The

application of DRL in this domain signifies a transformative

step towards smart public transportation systems. It

leverages the power of AI to bring about significant

improvements in monitoring and managing bus operations,

contributing to safer, more efficient, and user-friendly transit

services. Let us now consider defining various functions and

variables.

In the realm of AI-enhanced bus monitoring, a sophisticated

approach involving Deep Reinforcement Learning is utilized

to optimize the use of AI cameras on buses. This involves

defining a State Space (S), which encompasses data such as

the camera's status, detected events like passenger

movements or behavioral issues, and channel conditions.

The Action Space (A) is outlined, representing possible

offloading decisions for the camera, while the Reward

Function (R) quantifies system objectives, rewarding actions

that enhance safety and penalizing inefficient or missed

events. The system adopts an Actor-Critic architecture,

using deep neural networks (DNNs) for implementation. The

actor module, guided by the current state, predicts a

probability distribution over possible actions, while the critic

module evaluates the potential of state-action pairs, aiding in

the training process through algorithms like Proximal Policy

Optimization (PPO) or Trust Region Policy Optimization

(TRPO). This training aims to maximize cumulative rewards

by refining offloading decisions.

Concurrently, the critic module is trained to estimate

expected returns from different state-action pairs, providing

valuable feedback to the actor module about the quality of

its decisions. This iterative training process continually

updates both modules, enhancing the system's ability to

make informed offloading decisions that prioritize safety

and efficiency. Furthermore, an adaptive mechanism is

employed to determine the value of Mi, the probable

candidates for offloading actions, considering dynamic

factors and the progress of training. The integration of a

queuing module is pivotal in managing the video and energy

queues of the AI camera, ensuring efficient processing of

video data and effective energy management.

In the advanced application of Reinforcement Deep

Learning (DRL) for AI camera systems on buses, several

key parameters are defined to facilitate intelligent decision-

making and efficient video data management. Firstly, the

Data Arrival Rate (Ai n) reflects the frequency at which

video data, such as footage of passenger boarding, incidents,

or behavioral issues, is captured by the AI camera. For

instance, with a capture rate of 10 frames per second, the

data arrival rate is calculated as Ai n = 10 fps. Then, the

Channel Gain (hi n) denotes the strength and quality of the

wireless connection between the AI camera (referred to as

the Wireless Device or WD) and the edge server (ES). For

example, if the signal-to-noise ratio (SNR) of the wireless

connection is 20 dB, it would be used to calculate the

channel gain. The system also considers the Offloading

Decision (xi n), a binary choice where the AI camera

decides whether to offload video footage to the edge server

(1) or process it locally (0). This decision is particularly

crucial in scenarios like incident detection, where immediate

offloading might be necessary for rapid analysis. Energy

Consumption for Offloading (Ei) accounts for the power

used by the camera when transmitting video clips. For

instance, transmitting 1 minute of video data could consume

1 Joule of energy. This metric is vital for ensuring efficient

energy usage during data transmission. Data Processed

Paper ID: SR24203175549 DOI: https://dx.doi.org/10.21275/SR24203175549 1711

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 2, February 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

During Offloading (Di) represents the volume of video data

processed and analyzed during offloading to the edge server.

In real-world scenarios, this might translate to offloading 10

MB of video data when an incident is detected. Resource

Allocation (τi) is about the time allocated for transmitting

video data from the AI camera to the edge server, ensuring

sufficient time for offloading critical video clips. A practical

example would be allocating 30 seconds for this purpose.

The Reward Function (R) is designed to quantify the

system's objectives, with positive rewards for actions that

enhance safety and negative penalties for inefficiencies. For

example, successfully offloading video of an incident might

yield a (+10) reward, while failing to offload critical data

could result in a (-5) penalty. Furthermore, the system

includes a Queuing Module to manage the video data and

energy queues, ensuring efficient processing, particularly in

cases of multiple incidents. Finally, the Actor-Critic

Modules work in tandem; the actor module decides when

and what video data to offload based on real-time

conditions, while the critic module evaluates the offloading

decisions to select the best actions. By incorporating these

DRL calculations into the AI camera system on buses, the

system can make intelligent decisions about when to offload

video data, how to allocate resources, and when to capture

crucial footage, thereby enhancing safety, ensuring

accountability, and effectively monitoring and addressing

behavioral issues during bus transportation.

The quantitative problem statement of this research revolves

around the need to optimize the deployment of AI cameras

in public buses to minimize energy consumption, reduce

data offloading time, and ensure real-time queue stability.

This involves quantitatively determining the energy

requirements for local computing and offloading, calculating

data offloading based on specific bandwidth and channel

gain parameters, minimizing the Lyapunov drift as a

quantitative measure of queue stability, and quantitatively

formulating a Deep Reinforcement Learning (DRL) policy

for offloading decisions.

3. Formulas and Calculations

1) Energy Consumption Model

The energy consumption in a MEC environment can be

modeled considering both local computation and edge

offloading. For a Wireless Device (WD), such as an AI

camera, the energy consumption can be divided into two

parts: local computing energy Elocal and offloading energy

Eoffload.

a) Local Computing Energy: Elocal=κT. Where κ is the

effective switched capacitance, f is the CPU frequency,

and T is the computation time.

b) Offloading Energy: Eoffload=Ptransmit*Ttransmit.

Where Ptransmit is the transmission power, and

Ttransmit is the time taken to transmit the data to the

edge server.

2) Data Offloading Model

In a scenario where tasks are offloaded from the AI camera

to the edge server, the amount of data offloaded and the time

it takes are crucial. The data offloading can be calculated as:

a) Data Offloading: Doffload=W*Ttransmit*log2 (1+ (

Ptransmit*h) / (N0)), Where W is the bandwidth, h is

the channel gain, and N0 is the noise power.

3) Lyapunov Optimization for Queue Stability

Lyapunov optimization can be used to ensure stability in

data queues, especially in a dynamic environment like a

public bus. The Lyapunov function L (Q (t)) for a queue Q

(t) can be formulated as:

a) Lyapunov Function:L(Q(t))=1/2 ∑i=1NQi(t)^2 , Where

Qi(t) is the queue length for the i-th device at time t.

b) Lyapunov Drift:Δ(𝐿(𝑄(𝑡))) = 𝐿(𝑄(𝑡 + 1)) − 𝐿(𝑄(𝑡)).

The goal is to minimize the drift to ensure queue

stability.

4) Deep Reinforcement Learning for Offloading

Decisions

Using DRL, the system can learn the optimal offloading

decision policy. The Q-value function in DRL can be

represented as:

a) Q-value Function:Q(s,a)=E[Rt+γmaxa′Q(s′,a′)∣s,a].

Where s is the current state, a is the action taken, Rt is

the reward at time t, γ is the discount factor, and ′s′ is

the next state.

5) Data Processing and Queue Management

a) For managing the data processing and queues in the

system, you can calculate the processing rate and queue

update as follows:

b) Processing Rate: λprocess=Dprocessed/T Where

Dprocessed is the amount of data processed in time T.

c) Queue Update: Qnew=max (Qold+Darriving

−Dprocessed, 0), Where Darriving is the incoming data

in the queue.

These formulas provide a framework for understanding and

calculating key aspects of the system, such as energy

consumption, data offloading, queue stability, and decision-

making processes. In the scenario where the AI camera in

the bus is used for monitoring behavior, safety incidents, and

driver performance, the AI system processes visual data,

detects anomalies (like behavior issues or safety incidents),

and offloads significant events to a centralized server for

further analysis or alerts.

6) Energy Consumption Model

Assumptions:

a) CPU Frequency, f = 1 GHz (typical for a small

embedded system)

b) Effective Switched Capacitance, κ = 10^ (−12) Joules

per cycle (a typical value for modern processors)

c) Computation Time, T = 1 hour = 3600 seconds

(assuming continuous monitoring during a trip)

d) Transmission Power, Ptransmit = 0.5 Watts (typical for

small IoT devices)

e) Transmission Time, Ttransmit = 5 minutes = 300

seconds (time to offload a day’s critical data)

Calculations:

a) Local Computing Energy:

b) 𝐸local = 𝜅𝑓^2𝑇 = 10^(−12) × (10^5)^2 × 3600 =

36 Joules

c) Offloading Energy:

Paper ID: SR24203175549 DOI: https://dx.doi.org/10.21275/SR24203175549 1712

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 2, February 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

d) 𝐸offload = 𝑃transmit ⋅ 𝑇transmit = 0.5 × 300 =

150 Joules

7) Data Offloading Model

Assumptions:

a) Bandwidth, W = 20 MHz (typical for Wi-Fi)

b) Channel Gain, h = 100 (a reasonable value for short-

range communication)

c) Noise Power, N0 = 10^ (−13) Watts (typical value)

d) Calculation:

e) Data Offloading: 𝐷offload = 20 × 10^6 × 300 ×

log2 (1 + (0.5 × 100) / (10−13)) = 600 × 106 ×

log2 (1 + 5 × 1011) ≈ 600 × 106 × 39 bits
 (This is a simplification as the logarithmic term would be

very large)

The significance of the Energy Consumption and Data

Offloading Models in this study is substantial, particularly in

the context of integrating IoT devices, like AI cameras, into

public bus transportation systems. The Energy Consumption

Model, with its detailed assumptions about CPU frequency,

effective switched capacitance, computation time, and

transmission power, provides a comprehensive framework

for understanding and managing the energy demands of IoT

devices in a real-world scenario. The calculated local

computing energy and offloading energy, totaling 186 Joules

for a typical one-hour monitoring period, underscores the

feasibility of using AI cameras for continuous monitoring

without imposing excessive energy demands. This is crucial

in a public transportation context where resources are

limited, and sustainability is a key concern.

Moreover, the Data Offloading Model, considering

bandwidth, channel gain, and noise power, offers critical

insights into the capacity of these devices to handle

significant volumes of data. The model's calculations

demonstrate the potential for transmitting large amounts of

data (approximately 600×10^6×39 bits) efficiently, which is

essential for real-time video surveillance and data analysis in

dynamic bus environments. This capability is particularly

important for ensuring that critical events are captured and

analyzed promptly, thereby enhancing passenger safety and

operational efficiency.

In summary, this study's analysis provides a solid foundation

for the implementation of IoT devices in public

transportation. It addresses key operational challenges,

particularly around energy consumption and data

management, and demonstrates the practicality and

sustainability of integrating such technologies into everyday

urban mobility solutions. The study's findings are not just

theoretically significant but also offer practical value, paving

the way for more intelligent, efficient, and sustainable public

transportation systems. By following the trends and various

ML algorithms, we can get more specific data on queue

lengths and variability. The aim would be to minimize the

Lyapunov drift to ensure that the queue doesn’t grow too

large, indicating efficient data processing and offloading.

For DRL, a set of states representing different scenarios (e.

g., normal behavior, behavioral issues, safety incidents) and

actions (e. g., process locally, offload) can be received. The

Q-value function would guide the system inlearning the best

action for each state to minimize energy use while

maximizing data capture and offloading efficiency.

Decision-Making Conclusions

1) Energy Management: The AI system should balance

local processing and data offloading to manage energy

consumption effectively. Given the above energy

calculations, it might favor local processing for routine

monitoring and selectively offload when specific

incidents or anomalies are detected.

2) Data Offloading: With the high capacity for data

offloading (in the order of several gigabytes), the

system can afford to offload detailed data about

incidents. However, it should do so judiciously to avoid

unnecessary energy use.

3) Queue Management: The system should continuously

monitor and manage the data queue to prevent overflow

or data loss, ensuring all critical incidents are recorded

and offloaded as needed.

4) Adaptive Learning: Using DRL, the system can adapt

over time, learning which scenarios are most critical and

require offloading, thus optimizing its performance

continuously.

5) In summary, the AI system should prioritize energy-

efficient processing, be capable of handling large

amounts of data offloading when necessary, and

continuously adapt to the bus environment to improve

decision-making regarding data processing and

offloading.

4. Future Scope

1) Expansion of IoT Applications: Future developments

could see an expansion of IoT applications in buses,

including advanced telematics for vehicle health

monitoring, environmental sensing for urban planning,

and personalized passenger information systems.

2) Integration with Smart City Infrastructure: Seamless

integration with smart city infrastructures, such as

traffic light systems and emergency services, can further

enhance operational efficiency and emergency response

times.

3) Advancements in DRL Algorithms: Continuous

improvements in Deep Reinforcement Learning

algorithms will enable more sophisticated decision-

making processes, allowing for more nuanced and

context-aware actions by the system.

4) Autonomous Bus Technology: In the long term, the

integration of MEC and IoT could pave the way for

autonomous or semi-autonomous buses, revolutionizing

public transport systems and significantly enhancing

safety and efficiency.

5) Data-Driven Urban Planning: The wealth of data

generated and processed can be invaluable for urban

planners, offering insights into traffic patterns,

passenger behavior, and service usage, thus informing

more effective urban development strategies.

6) Enhanced Connectivity Solutions: Exploring more

advanced wireless communication technologies (like

5G) to further reduce latency and increase bandwidth,

thereby improving the speed and reliability of data

transmission from buses to edge servers.

Paper ID: SR24203175549 DOI: https://dx.doi.org/10.21275/SR24203175549 1713

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 2, February 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Conclusion

The integration of Mobile Edge Computing (MEC) and

Internet of Things (IoT) technologies into the public bus

transportation system represents a significant leap forward in

achieving a smarter, safer, and more efficient public

transport network. By leveraging the edge's proximity and

the high computational capabilities of MEC servers, along

with the continuous data feed from IoT devices such as AI

cameras, the transportation industry can now effectively

address the ever-growing demands for improved Quality of

Service (QoS).

The deployment of AI cameras on buses, enhanced by Deep

Reinforcement Learning (DRL) algorithms, has

demonstrated a notable potential to optimize data offloading,

energy consumption, and resource allocation. This

technological synergy not only improves real-time data

analysis but also enhances energy efficiency and

transportation safety. With systems capable of intelligent

decision-making, such as boarding verification, incident

detection, and behavior monitoring, the role of AI in public

transportation has transcended conventional boundaries.

Furthermore, the use of actor-critic models for policy

optimization in DRL provides a robust framework for

adapting to dynamic network conditions and efficiently

managing the data and energy queues. This ensures that

computational resources are judiciously used, critical

incidents are promptly addressed, and the overall system

operates within the desired energy constraints. By advancing

computation offloading strategies and harnessing the

capabilities of DRL, public bus transportation can continue

to evolve, offering passengers a safer, more reliable and

responsive service. Such innovations, while presenting

certain challenges such as complex MINLP problems and

the need for adaptive learning mechanisms, pave the way for

a more resilient public transportation infrastructure that is

well-equipped to meet the challenges of modern urban

mobility.

References

[1] Aziz, A., & Mohamad, J. (2020). PUBLIC

TRANSPORT PLANNING: LOCAL BUS SERVICE

INTEGRATION AND IMPROVEMENTS IN

PENANG, MALAYSIA. PLANNING MALAYSIA,

18 (13). https: //doi. org/10.21837/PM. V18I13.784

[2] Muñoz, L. (2019). Edge Computing, IoT and Social

Computing in Smart Energy Scenarios. Sensors.

[3] Paydar, F. (2019). Edge Computing for IoT:

Challenges and Solutions. Journal of Communications

Technology, Electronics and Computer Science.

[4] Kim, B.-G. (2018). Secure integration of IoT and

Cloud Computing. Future Generation Computer

Systems.

[5] Vieira, D. (2019). Optimized Placement of Scalable

IoT Services in Edge Computing.2019 IFIP/IEEE

Symposium on Integrated Network and Service

Management (IM).

[6] Lockhart, E. (2018). Relational Deep Reinforcement

Learning. ArXiv.

[7] Fakhri, B., Keech, A., Schlosser, J., Brooks, E.,

Venkateswara, H., Panchanathan, S., & Kira, Z.

(2018). Deep Reinforcement Learning Methods for

Navigational Aids. Lecture Notes in Computer

Science, 66–75. https: //doi. org/10.1007/978-3-030-

04375-9_6

[8] Satria, D. (2017). Recovery for overloaded mobile

edge computing. Future Generation Computer

Systems.

[9] Marquez-Barja, J. M. (2020). Leveraging Mobile Edge

Computing to Improve Vehicular

Communications.2020 IEEE 17th Annual Consumer

Communications Networking Conference (CCNC).

[10] Tao, X. (2017). Performance Guaranteed Computation

Offloading for Mobile-Edge Cloud Computing. IEEE

Wireless Communications Letters.

Paper ID: SR24203175549 DOI: https://dx.doi.org/10.21275/SR24203175549 1714

https://doi.org/10.21837/PM.V18I13.784
https://doi.org/10.1007/978-3-030-04375-9_6
https://doi.org/10.1007/978-3-030-04375-9_6

