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Abstract: Recent advancements in Mobile Edge Computing (MEC) and the widespread adoption of Internet of Things (IoT) devices 

have set the stage for significant improvements in public bus transportation systems. This study explores the impact of these emerging 

technologies on enhancing operational efficiency, passenger safety, and service quality. By leveraging the computational power of MEC 

and the data-rich insights from IoT devices, particularly AI cameras, the research proposes a novel framework for real-time data 

analysis and decision-making. The research highlights how the shift from centralized cloud computing to edge computing addresses 

latency, bandwidth, and data processing challenges inherent in mobile networks. The research delves into the application of Deep 

Reinforcement Learning (DRL) to optimize resource allocation, energy consumption, and incident response. The findings demonstrate 

that the intelligent offloading of computational tasks from AI cameras to MEC servers can significantly boost system performance, 

especially under dynamic network conditions. The study further discusses the role of actor-critic architecture in policy optimization, 

facilitating adaptative learning and efficient queuing mechanisms. This synergetic approach not only ensures a higher Quality of 

Service (QoS) but also bolsters the safety mechanisms through enhanced monitoring and behavioral analysis of passengers and drivers. 

Experimental DRL calculations illustrates the practicality of our proposed model in a real-world transit environment, paving the way 

for a smarter, safer, and more responsive public bus transportation system.  
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1. Introduction 
 

Growth in the advanced public transportation industry has 

significantly increased over the past few years due to an 

increase in smartphone usage and the amount of mobile web 

traffic, which has reached exponential numbers. This has 

further been fueled by the convergence of emerging 

technologies like the Internet of Things (IoT). The 

technology landscape has prompted a major shift from the 

traditional centralized mobile cloud computing to the 

adoption of edge devices exemplified by Mobile Edge 

Computing (MEC) – a network-architecture concept 

extending IT and cloud-computing capabilities to the edge of 

mobile networks.  

 

MEC has revolutionized the bus transportation industry 

service strategies because it is proximate and sensitive to 

safety requirements with low-latency attributes. It 

demonstrates an exceptional range of bandwidth, 

exceptionally low latency, and direct access to real-time data 

from manifold sources. It is such developments as smart 

gadgets and ultra-HD video, new devices of the Internet of 

Things, and numerous cloud solutions that lead to such a 

tremendous inflow of network traffic within transportation 

operations. Mobile-edge computing (MEC) has emerged as a 

primary solution to enhancing the processing efficiency of 

industry-used wireless devices (WDs).  

 

For buses, IoT proves beneficial considering the nature of 

their deployment, limited size, and low battery and 

processing capacity. For instance, by extending the use of 

MEC servers at the edge of radio access networks, e. g., 

cellular base stations, Wireless Devices (WDs) can offload 

applications demanding intensive computational resources 

from one another to neighboring edge servers (ES). This 

proactive computation offloading approach involves 

processing tasks either locally or at the edge server, giving a 

significant boost for overall performance, especially under 

dynamic network conditions, and these keep changing with 

factors like energy levels harvested, wireless channel gains, 

and task input-output dependencies.  

 

In order to make a more effective functioning of the MEC 

network, some researchers have paid attention to the 

strategies of opportunistic compute offloading. Among them 

is binary offloading, which is when basic or deeply 

connected jobs are intercepted and sent either as single tasks 

to a MEC server or translated into mobile device operations. 

The challenge is to resolve offloading choices linked to 

mixed integer nonlinear programming (MINLP) problems, 

such as binary offloading decisions, offloading timing, and 

edge or local CPU frequency problems. Such complexities 

usually call for sophisticated computational systems. Some 

of the studies have taken into consideration leveraging 

techniques such as decomposition-oriented queries and 

relaxations of binary variables together with local-search-

based heuristics that are based on sub-optimal algorithms 

with reduced complexity. Although such inexact strategies 

may involve performance trade-offs, one must apply many 

statistical iterations to approach an ideal solution. However, 

they open roads for more practical implementation. In the 

public bus transportation domain, MEC servers are 

strategically whisked near mobile users, which offers the 

wireless possibility of offloading computational tasks from 

the mobile devices to these servers. This has paved the way 

for exploiting online offloading computing to improve the 

quality of service (QoS). This, therefore, makes addressing 

the core challenge guiding computational offloading and 

resource scheduling within the MEC system of great 

interest.  
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The ever-occurring changes in the public bus transport 

system make its dynamics become a very challenging task. 

This is where Reinforcement Learning (RL) comes in, as it 

considers long-term objectives and not just short-term 

rewards. RL status is very important when dealing with the 

time-variable dynamics of multi-user wireless MEC 

systems. DRL is associated with Deep Neural Networks 

(DNNs) that act as model-free agents with DNNs to learn 

and adapt their decision-making processes by themselves. 

Most information processing constraints are overcome by 

constant interaction with the surrounding environment. This 

represents a major advantage for online offloading in MEC 

networks vis-à-vis the often complex and resource intensive 

MINLP technique.  

 

2. Purpose and Problem Statement 
 

To model and optimize data offloading, energy 

consumption, and resource allocation for IoT devices on 

buses, it is important to know about used cases. One very 

big used case in this scenario is the use of AI cameras to 

capture videos and detect behavior. The AI cameras in 

publics transit buses can be used for the below purposes:  

 

1) Boarding and Exiting Verification: The AI camera can 

track and verify when passengers board the bus at their 

designated stops and when they disembark.  

2) Behavioral Issue Detection: The camera can identify 

and flag any behavioral issues among passengers on the 

bus, such as disruptive behavior, bullying, or safety 

violations. It can capture video footage when such 

incidents occur.  

3) Incident Detection: In the event of any unusual 

incidents on the bus, such as accidents, medical 

emergencies, or security breaches, the camera can detect 

these situations and automatically record relevant video 

footage.  

4) Driver Monitoring: The AI camera can also monitor the 

bus driver's behavior and driving patterns to ensure safe 

driving practices, adherence to traffic rules, and driver 

alertness.  

5) Face Recognition: The camera is equipped with facial 

recognition capabilities, allowing it to identify 

passengers on the bus.  

6) Auto-Capturing Red Flags: Whenever the camera 

detects any concerning behavior, incidents, or safety 

violations, it can automatically generate "red flag" video 

clips to highlight these events.  

 

To understand how the calculations and formulas work here, 

it is important to know about the Deep Reinforcement 

Learning in Enhanced Bus Monitoring. Deep Reinforcement 

Learning (DRL) represents a cutting-edge integration of 

deep learning and reinforcement learning principles, aimed 

at enabling machines to learn from their environment 

through a process of trial and error. This innovative 

approach can find a novel application in the realm of public 

transportation, specifically in the enhanced monitoring of 

bus services through AI cameras installed on buses. The 

application of DRL in this domain signifies a transformative 

step towards smart public transportation systems. It 

leverages the power of AI to bring about significant 

improvements in monitoring and managing bus operations, 

contributing to safer, more efficient, and user-friendly transit 

services. Let us now consider defining various functions and 

variables.  

 

In the realm of AI-enhanced bus monitoring, a sophisticated 

approach involving Deep Reinforcement Learning is utilized 

to optimize the use of AI cameras on buses. This involves 

defining a State Space (S), which encompasses data such as 

the camera's status, detected events like passenger 

movements or behavioral issues, and channel conditions. 

The Action Space (A) is outlined, representing possible 

offloading decisions for the camera, while the Reward 

Function (R) quantifies system objectives, rewarding actions 

that enhance safety and penalizing inefficient or missed 

events. The system adopts an Actor-Critic architecture, 

using deep neural networks (DNNs) for implementation. The 

actor module, guided by the current state, predicts a 

probability distribution over possible actions, while the critic 

module evaluates the potential of state-action pairs, aiding in 

the training process through algorithms like Proximal Policy 

Optimization (PPO) or Trust Region Policy Optimization 

(TRPO). This training aims to maximize cumulative rewards 

by refining offloading decisions.  

 

Concurrently, the critic module is trained to estimate 

expected returns from different state-action pairs, providing 

valuable feedback to the actor module about the quality of 

its decisions. This iterative training process continually 

updates both modules, enhancing the system's ability to 

make informed offloading decisions that prioritize safety 

and efficiency. Furthermore, an adaptive mechanism is 

employed to determine the value of Mi, the probable 

candidates for offloading actions, considering dynamic 

factors and the progress of training. The integration of a 

queuing module is pivotal in managing the video and energy 

queues of the AI camera, ensuring efficient processing of 

video data and effective energy management.  

 

In the advanced application of Reinforcement Deep 

Learning (DRL) for AI camera systems on buses, several 

key parameters are defined to facilitate intelligent decision-

making and efficient video data management. Firstly, the 

Data Arrival Rate (Ai n) reflects the frequency at which 

video data, such as footage of passenger boarding, incidents, 

or behavioral issues, is captured by the AI camera. For 

instance, with a capture rate of 10 frames per second, the 

data arrival rate is calculated as Ai n = 10 fps. Then, the 

Channel Gain (hi n) denotes the strength and quality of the 

wireless connection between the AI camera (referred to as 

the Wireless Device or WD) and the edge server (ES). For 

example, if the signal-to-noise ratio (SNR) of the wireless 

connection is 20 dB, it would be used to calculate the 

channel gain. The system also considers the Offloading 

Decision (xi n), a binary choice where the AI camera 

decides whether to offload video footage to the edge server 

(1) or process it locally (0). This decision is particularly 

crucial in scenarios like incident detection, where immediate 

offloading might be necessary for rapid analysis. Energy 

Consumption for Offloading (Ei) accounts for the power 

used by the camera when transmitting video clips. For 

instance, transmitting 1 minute of video data could consume 

1 Joule of energy. This metric is vital for ensuring efficient 

energy usage during data transmission. Data Processed 
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During Offloading (Di) represents the volume of video data 

processed and analyzed during offloading to the edge server. 

In real-world scenarios, this might translate to offloading 10 

MB of video data when an incident is detected. Resource 

Allocation (τi) is about the time allocated for transmitting 

video data from the AI camera to the edge server, ensuring 

sufficient time for offloading critical video clips. A practical 

example would be allocating 30 seconds for this purpose. 

The Reward Function (R) is designed to quantify the 

system's objectives, with positive rewards for actions that 

enhance safety and negative penalties for inefficiencies. For 

example, successfully offloading video of an incident might 

yield a (+10) reward, while failing to offload critical data 

could result in a (-5) penalty. Furthermore, the system 

includes a Queuing Module to manage the video data and 

energy queues, ensuring efficient processing, particularly in 

cases of multiple incidents. Finally, the Actor-Critic 

Modules work in tandem; the actor module decides when 

and what video data to offload based on real-time 

conditions, while the critic module evaluates the offloading 

decisions to select the best actions. By incorporating these 

DRL calculations into the AI camera system on buses, the 

system can make intelligent decisions about when to offload 

video data, how to allocate resources, and when to capture 

crucial footage, thereby enhancing safety, ensuring 

accountability, and effectively monitoring and addressing 

behavioral issues during bus transportation.  

 

The quantitative problem statement of this research revolves 

around the need to optimize the deployment of AI cameras 

in public buses to minimize energy consumption, reduce 

data offloading time, and ensure real-time queue stability. 

This involves quantitatively determining the energy 

requirements for local computing and offloading, calculating 

data offloading based on specific bandwidth and channel 

gain parameters, minimizing the Lyapunov drift as a 

quantitative measure of queue stability, and quantitatively 

formulating a Deep Reinforcement Learning (DRL) policy 

for offloading decisions.  

 

3. Formulas and Calculations 
 

1) Energy Consumption Model 

The energy consumption in a MEC environment can be 

modeled considering both local computation and edge 

offloading. For a Wireless Device (WD), such as an AI 

camera, the energy consumption can be divided into two 

parts: local computing energy Elocal and offloading energy 

Eoffload.  

a) Local Computing Energy: Elocal=κT. Where κ is the 

effective switched capacitance, f is the CPU frequency, 

and T is the computation time.  

b) Offloading Energy: Eoffload=Ptransmit*Ttransmit. 

Where Ptransmit is the transmission power, and 

Ttransmit is the time taken to transmit the data to the 

edge server.  

 

2) Data Offloading Model 

In a scenario where tasks are offloaded from the AI camera 

to the edge server, the amount of data offloaded and the time 

it takes are crucial. The data offloading can be calculated as:  

a) Data Offloading: Doffload=W*Ttransmit*log2 (1+ (

Ptransmit*h) / (N0) ), Where W is the bandwidth, h is 

the channel gain, and N0 is the noise power.  

 

3) Lyapunov Optimization for Queue Stability 

Lyapunov optimization can be used to ensure stability in 

data queues, especially in a dynamic environment like a 

public bus. The Lyapunov function L (Q (t)) for a queue Q 

(t) can be formulated as:  

a) Lyapunov Function:L(Q(t))=1/2 ∑i=1NQi(t)^2  , Where 

Qi(t) is the queue length for the i-th device at time t. 

b) Lyapunov Drift:Δ(𝐿(𝑄(𝑡))) = 𝐿(𝑄(𝑡 + 1)) − 𝐿(𝑄(𝑡)). 

The goal is to minimize the drift to ensure queue 

stability. 

 

4) Deep Reinforcement Learning for Offloading 

Decisions 

Using DRL, the system can learn the optimal offloading 

decision policy. The Q-value function in DRL can be 

represented as:  

a) Q-value Function:Q(s,a)=E[Rt+γmaxa′Q(s′,a′)∣s,a]. 

Where s is the current state, a is the action taken, Rt is 

the reward at time t, γ is the discount factor, and ′s′ is 

the next state. 

 

5) Data Processing and Queue Management 

a) For managing the data processing and queues in the 

system, you can calculate the processing rate and queue 

update as follows:  

b) Processing Rate: λprocess=Dprocessed/T Where 

Dprocessed is the amount of data processed in time T.  

c) Queue Update: Qnew=max (Qold+Darriving

−Dprocessed, 0), Where Darriving is the incoming data 

in the queue.  

 

These formulas provide a framework for understanding and 

calculating key aspects of the system, such as energy 

consumption, data offloading, queue stability, and decision-

making processes. In the scenario where the AI camera in 

the bus is used for monitoring behavior, safety incidents, and 

driver performance, the AI system processes visual data, 

detects anomalies (like behavior issues or safety incidents), 

and offloads significant events to a centralized server for 

further analysis or alerts.  

 

6) Energy Consumption Model 

Assumptions:  

a) CPU Frequency, f = 1 GHz (typical for a small 

embedded system)  

b) Effective Switched Capacitance, κ = 10^ (−12) Joules 

per cycle (a typical value for modern processors)  

c) Computation Time, T = 1 hour = 3600 seconds 

(assuming continuous monitoring during a trip)  

d) Transmission Power, Ptransmit = 0.5 Watts (typical for 

small IoT devices)  

e) Transmission Time, Ttransmit = 5 minutes = 300 

seconds (time to offload a day’s critical data)  

 

Calculations:  

a) Local Computing Energy:  

b) 𝐸local = 𝜅𝑓^2𝑇 = 10^(−12) × (10^5)^2 × 3600 =

36 Joules 

c) Offloading Energy:  
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d) 𝐸offload = 𝑃transmit ⋅ 𝑇transmit = 0.5 × 300 =

150 Joules 

 

7) Data Offloading Model 

Assumptions:  

a) Bandwidth, W = 20 MHz (typical for Wi-Fi)  

b) Channel Gain, h = 100 (a reasonable value for short-

range communication)  

c) Noise Power, N0 = 10^ (−13) Watts (typical value)  

d) Calculation:  

e) Data Offloading: 𝐷offload = 20 × 10^6 × 300 ×

log2 (1 +  (0.5 × 100) / (10−13) )  = 600 × 106 ×

log2 (1 + 5 × 1011)  ≈ 600 × 106 × 39 bits 
 (This is a simplification as the logarithmic term would be 

very large)  

 

The significance of the Energy Consumption and Data 

Offloading Models in this study is substantial, particularly in 

the context of integrating IoT devices, like AI cameras, into 

public bus transportation systems. The Energy Consumption 

Model, with its detailed assumptions about CPU frequency, 

effective switched capacitance, computation time, and 

transmission power, provides a comprehensive framework 

for understanding and managing the energy demands of IoT 

devices in a real-world scenario. The calculated local 

computing energy and offloading energy, totaling 186 Joules 

for a typical one-hour monitoring period, underscores the 

feasibility of using AI cameras for continuous monitoring 

without imposing excessive energy demands. This is crucial 

in a public transportation context where resources are 

limited, and sustainability is a key concern.  

 

Moreover, the Data Offloading Model, considering 

bandwidth, channel gain, and noise power, offers critical 

insights into the capacity of these devices to handle 

significant volumes of data. The model's calculations 

demonstrate the potential for transmitting large amounts of 

data (approximately 600×10^6×39 bits) efficiently, which is 

essential for real-time video surveillance and data analysis in 

dynamic bus environments. This capability is particularly 

important for ensuring that critical events are captured and 

analyzed promptly, thereby enhancing passenger safety and 

operational efficiency.  

 

In summary, this study's analysis provides a solid foundation 

for the implementation of IoT devices in public 

transportation. It addresses key operational challenges, 

particularly around energy consumption and data 

management, and demonstrates the practicality and 

sustainability of integrating such technologies into everyday 

urban mobility solutions. The study's findings are not just 

theoretically significant but also offer practical value, paving 

the way for more intelligent, efficient, and sustainable public 

transportation systems. By following the trends and various 

ML algorithms, we can get more specific data on queue 

lengths and variability. The aim would be to minimize the 

Lyapunov drift to ensure that the queue doesn’t grow too 

large, indicating efficient data processing and offloading. 

For DRL, a set of states representing different scenarios (e. 

g., normal behavior, behavioral issues, safety incidents) and 

actions (e. g., process locally, offload) can be received. The 

Q-value function would guide the system inlearning the best 

action for each state to minimize energy use while 

maximizing data capture and offloading efficiency.  

 

Decision-Making Conclusions 

1) Energy Management: The AI system should balance 

local processing and data offloading to manage energy 

consumption effectively. Given the above energy 

calculations, it might favor local processing for routine 

monitoring and selectively offload when specific 

incidents or anomalies are detected.  

2) Data Offloading: With the high capacity for data 

offloading (in the order of several gigabytes), the 

system can afford to offload detailed data about 

incidents. However, it should do so judiciously to avoid 

unnecessary energy use.  

3) Queue Management: The system should continuously 

monitor and manage the data queue to prevent overflow 

or data loss, ensuring all critical incidents are recorded 

and offloaded as needed.  

4) Adaptive Learning: Using DRL, the system can adapt 

over time, learning which scenarios are most critical and 

require offloading, thus optimizing its performance 

continuously.  

5) In summary, the AI system should prioritize energy-

efficient processing, be capable of handling large 

amounts of data offloading when necessary, and 

continuously adapt to the bus environment to improve 

decision-making regarding data processing and 

offloading.  

 

4. Future Scope 
 

1) Expansion of IoT Applications: Future developments 

could see an expansion of IoT applications in buses, 

including advanced telematics for vehicle health 

monitoring, environmental sensing for urban planning, 

and personalized passenger information systems.  

2) Integration with Smart City Infrastructure: Seamless 

integration with smart city infrastructures, such as 

traffic light systems and emergency services, can further 

enhance operational efficiency and emergency response 

times.  

3) Advancements in DRL Algorithms: Continuous 

improvements in Deep Reinforcement Learning 

algorithms will enable more sophisticated decision-

making processes, allowing for more nuanced and 

context-aware actions by the system.  

4) Autonomous Bus Technology: In the long term, the 

integration of MEC and IoT could pave the way for 

autonomous or semi-autonomous buses, revolutionizing 

public transport systems and significantly enhancing 

safety and efficiency.  

5) Data-Driven Urban Planning: The wealth of data 

generated and processed can be invaluable for urban 

planners, offering insights into traffic patterns, 

passenger behavior, and service usage, thus informing 

more effective urban development strategies.  

6) Enhanced Connectivity Solutions: Exploring more 

advanced wireless communication technologies (like 

5G) to further reduce latency and increase bandwidth, 

thereby improving the speed and reliability of data 

transmission from buses to edge servers.  
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5. Conclusion 
 

The integration of Mobile Edge Computing (MEC) and 

Internet of Things (IoT) technologies into the public bus 

transportation system represents a significant leap forward in 

achieving a smarter, safer, and more efficient public 

transport network. By leveraging the edge's proximity and 

the high computational capabilities of MEC servers, along 

with the continuous data feed from IoT devices such as AI 

cameras, the transportation industry can now effectively 

address the ever-growing demands for improved Quality of 

Service (QoS).  

 

The deployment of AI cameras on buses, enhanced by Deep 

Reinforcement Learning (DRL) algorithms, has 

demonstrated a notable potential to optimize data offloading, 

energy consumption, and resource allocation. This 

technological synergy not only improves real-time data 

analysis but also enhances energy efficiency and 

transportation safety. With systems capable of intelligent 

decision-making, such as boarding verification, incident 

detection, and behavior monitoring, the role of AI in public 

transportation has transcended conventional boundaries.  

 

Furthermore, the use of actor-critic models for policy 

optimization in DRL provides a robust framework for 

adapting to dynamic network conditions and efficiently 

managing the data and energy queues. This ensures that 

computational resources are judiciously used, critical 

incidents are promptly addressed, and the overall system 

operates within the desired energy constraints. By advancing 

computation offloading strategies and harnessing the 

capabilities of DRL, public bus transportation can continue 

to evolve, offering passengers a safer, more reliable and 

responsive service. Such innovations, while presenting 

certain challenges such as complex MINLP problems and 

the need for adaptive learning mechanisms, pave the way for 

a more resilient public transportation infrastructure that is 

well-equipped to meet the challenges of modern urban 

mobility.  
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