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Abstract: in the article is considered a question of how to identify the number of components to keep when using principal components 

analysis technique for dimension reduction. In paper is presented the impact of incorrectly chosen number on the quality of regression 

model; reasons why the number can be identified incorrectly using principal components analysis. The summary proposes the method 

for identification the number of components to keep which can be used together with principal components analysis technique for 

dimension reduction. 
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1. Introduction 
 

Principal component analysis (PCA) is the main technique 

in unsupervised machine learning that is used to reduce 

dimensions so that the low-dimensional representation 

retains some meaningful properties of the original data [1]. 

 

PCA can be performed in Python by calling function PCA 

from library sklearn.decomposition [2], however, the 

number of principal components is required as an input 

parameter – it defines the number of components to keep. 

 

The impact of choosing incorrect number is obvious and can 

be illustrated with the standard diabetes dataset embedded in 

Python library sklearn.datasets through the following steps: 

1) call PCA function with number of components to keep 

equal to 1; 2) transform training and test data into principal 

components; 3) build linear regression model; 4) evaluate r-

squared score of built model. 5) repeat steps 1)-4) with 

number from 2 till 10. 
 

Table 1: R2 score of regression model of diabetes dataset 
number of components to keep R2 

1 0.33 

2 0.35 

3 0.36 

4 0.48 

5 0.48 

6 0.46 

7 0.47 

8 0.47 

9 0.47 

10 0.47 

 

From Table1 can be concluded the only call of PCA with 

number of components to keep equals to 4 gives the best r-

squared score; the call of PCA with any other number causes 

less r-squared score of the built model. 

 

Therefore, in order to build high quality regression model it 

is important to select the proper number of components to 

keep. 

2. Goal 
 

To propose the method for identification the number of 

components to keep which can be used with PCA technique 

for dimension reduction to ensure the high r-squared score 

for regression model. 
 

3. Main part 

 

Three most common methods for selecting the number of 

principal components are: 1. Kaiser rule; 2. Scree plot; 3. 

Proportion of variance explained.  

 

Kaiser rule identifies the number of components to keep to 

be equal to the number of eigenvalues which are bigger or 

equal to 1 [5]. Scree plot method calculates the number to be 

equal to the number of eigenvalues which are above the 

“elbow” [4]. The proportion of variance explained specifies 

to select the component to be kept when the proportion of its 

explained variance is higher a certain threshold, e.g. 70% or 

90% and the proportion of variation explained for the i  - th 

component is defined to be the eigenvalue for that 

component divided by the sum of the eigenvalues. 

 

So all the mentioned methods are based on eigenvalues 

analysis which makes eigenvalues’ calculation approach are 

critical for correct identification of the number of 

components to keep. 

 

The eigenvalues   in PCA technique are calculated by 

solving equation 0cov  IA  , where covA  is a covariance 

matrix of transposed centered matrix of independent features 

Ac . 

 

Dimension reduction can also be performed using Singular 

Value Decomposition (SVD) technique by solving equation 

0'  IAAc  , where A  is a matrix of independent 

features and 'Ac  - transposed centered matrix of A  [3]. 
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Kaiser rule; scree plot and proportion of variance explained 

methods can be applied on eigenvalues received either from 

PCA or SVD techniques and should show identical results.  

 

To verify the assumption, we perform eigenvalues’ 

calculation using PCA and SVD methods first on a small 

dataset and then repeat the calculation on dataset of the 

bigger size. 

 

Example 1.1. Apply SVD technique to identify the number 

of components to keep of the 32  matrix 
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Identify the eigenvalues of AcAc '  matrix by resolving 

equation 
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Obtain zeros in 2
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nd
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Therefore, the sorted eigenvalues are 131  ; 032  . 

Applying Kaiser’s rule, we receive the number of 

components to keep is equal to 1. 

 

Example 1.2. Apply PCA technique to identify the number 

of principle components of the 32  matrix A from example 

1.1 

 

Identify covariation matrix for transposed centered matrix 
'Ac  
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The covariation matrix covA  is equal to product matrix 

AcAc '  received in example 1.1 so eigenvalues are also equal 

and Kaiser’s rule will show the same result as obtained in 

example 1.1. 

 

Now we repeat the calculation from examples 1.1 for 

standard diabetes dataset from python library 

sklearn.datasets. When we load data then we received 

10224  matrix with independent features. Appling SVD 

technique we received eigenvalues, sorted in decreasing 

order:
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and according to Kaiser’s rule - the number of components 

to keep is equal to 4 which corresponds to best r-squared 

scope from Table1. 

 

Repeating the calculation from example 1.2 for diabetes 

dataset –we received covariation matrix which shows almost 

no correlation between features (figure 1).  

 

 
Figure 1: Covariation matrix of diabetes dataset 

 

Solving equation 0cov  IA   for covariance matrix from 

figure1 gives almost all eigenvalues are closed to zero: 

0;01.0 10987654321   . 

 

According to Kaiser’s rule the number of components to 

keep is equal to 0 – which mean no principal components 

exist in dataset and contradicts with the results obtained 

applying SVD techniques and results from Table 1. 

 

4. Conclusion 
 

Applying PCA technique for dataset with low covariation 

between independent features result that eigenvalues are 

closed to zeros and number of components to keep 

according to Kaiser’s rule is zero which is not correct. 

 

To identify correct number of components to keep when 

using PCA technique it is required first to calculate 

eigenvalues of matrix AcAc '  then apply one of the rules 1-3 

to identify the number of components to keep. Dataset 

transformed in that number of principal components will be 

well prepared for high quality regression model to be built. 
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