Notes on Freshwater Diatoms from Sawai Madhopur-II, Rajasthan, India

Lakhpat Meena
Assistant Professor, S.C.R.S. Government College Sawai madhopur-322001, Rajasthan, India
Email-lmeenak[at]gmail.com

Abstract: The diatoms are major part of freshwater algae and major contributors of oxygen evolving organisms. Therefore, enlisting of diatoms not only contributed as data but also future hope for scientific community for further research. The research is carried out in Sawai madhopur of Rajasthan and found great diversity of this small group. The great diversity of diatoms is found in all aquatic habitats (stagnant as well as running). This is first attempt for enlisting diatoms from western part of Rajasthan. Eighteen diatoms species of two genus Fragillaria and Synendra have been described in present paper.

Keywords: Algae, Fragillaria, Synendra, frustules

1. Introduction

The fresh water algae are found in all habitats with great diversity. Diatoms are part of photo-assimilate microalgae with vide diversity. The research project is carried out in the Sawai madhopur district of Rajasthan. The district is situated in the western part of the Rajasthan and the rainfall is moderate. It cover area 5042.99 sq km and situated in between North longitudinal 25°-45’ to 26°-41 and in between 75°-59’ to 77°-0 East longitude. The temperature ranges from 4° to 45°c with average rainfall 873.40 mm. The district has rolling hills of Aravalli and Vindhyas ranges. The town founded in 1765 AD was named after its founder Sawai Madho Singh-1 of Jaipur. Today Sawai Madhopur is known for Ranthambhor, a Wildlife reserve and a place of historical importance. In recent years a number of workers attempted to study the algae of different parts of Rajasthan, [16, 17] but the study of diatoms has been has been neglected aspect since long type.

2. Materials and Methods

The samples were collected from various stations during 2015-2016 for the taxonomic enumeration of diatoms. At each stations the planktons was collected with no. 25 mesh plankton or directly with other objects by scraping of rocks, from aquatic submerged objects like plant twig and every site as well as possible. The various samples were oxidized by using concentrated HCl for five minutes and then repeatedly washing and decanted. Repeat it with concentrated H2SO4 and if oxidation was incomplete few drops of perchloric acid were employed to facilitate this process. Samples were repeatedly washing and decanted at each steps. Then samples was spread on slide and mount with high refractive index medium Nephrax for microscopic investigations. Cleaned frustules were examined for their morphological investigations.

The numbers of transapical raphe (Pennate diatoms) were counted from middle of the valve towards the apex. Much carefulness was taken during the drawing of scaled diagram by using camera Lucida.

Study area

3. Study Area

The study is carried out in the Sawai madhopur district of Rajasthan. The district is situated in the western part of the Rajasthan and the rainfall is moderate. It cover area 5042.99 sq km and situated in between North longitudinal 25°-45’ to 26°-41 and in between 75°-59’ to 77°-0 East longitude. The temperature ranges from 4° to 45°c with average rainfall 873.40 mm. The district has rolling hills of Aravalli and Vindhyas ranges. Sawai Madhopur is known for Ranthambhor, a Wildlife reserve and a place of historical importance. The district is divided in to eight tehsils namely1. Sawai madhopur 2. Khandar, 3. Chauth ka Barwara 4. Gangapur City. 5. Bonli; 6. Bamanwas;7. Vazirpur; 8 Malarna Dungar. The area has many freshwater ponds, Dams and lakes. The perennial river Chambal in the Khandar tehsil is natural boundary between Rajasthan and Madhyapradesh. The samples were collected from all possible sites of sawai madhopur district as shown in figure.
Taxonomic enumerations

In present systematic diatoms taxa classification of Hustedt, 1930, 1930-1962, has as far as possible been used. The halobian and pH spectra are as per works of Neils Foged (N.F.), Boye Petersen (B.P.), Max Muller (M.M.), Ruth Patrick (R.P.) and Nygaard. The pH relation divided in to three categories acidophilous (5.5-6.5), circumneutral (6.5-7.5), and Alkaliphilous (7.6-8.9). The identification was done by works of Neils Foged (1959, 64, 66, 71, 73, 75, 77, 78, 79), Sreenivasan and Duthie (1973), Hendey (1964), Gandhi (1959, 61, 62, 67.). In present abbreviations were used as below Hust. for Hustedt, Parag for H.&M. Perallago (1897-1908), AS for A. Schmidt’s Atlas (1874-1959). Foged for Neils Foged. Ab. For Average. L-Length; W-width; S-longitudinal striae; Sr. radial striae; Pl- Plate; F- figure or figures; P^I_H = Acidophilous; P^{II}_H= Circumneutral; P^{III}_H=Alkaliphilous; P^{IV}_H = not recorded.

4. Result and Discussions

The halobian and pH spectra are as per works of Neils Foged (N.F.), Boye Petersen (B.P.), Max Muller (M.M.), Ruth Patrick (R.P.) and Nygaard. The pH relation divided in to three categories acidophilous (5.5-6.5) circumneutral (6.5-7.5), and Alkaliphilous (7.6-8.9). The identification was done by works of Neils Foged (1959, 64, 66, 71, 73, 75, 77, 78, 79), Sreenivasan and Duthie (1973), Hendey (1964), Gandhi (1959, 61, 62, 67.) M.D. Guiry 2017. In present abbreviations were used as below Hust. for Hustedt, Parag for H.&M. Perallago (1897-1908), AS for A. Schmidt’s Atlas (1874-1959). Foged for Neils Foged. Ab. For Average. L-Length; W-width; S-longitudinal striae; Sr. radial striae; F- figure or figures; P^I_H = Acidophilous; P^{II}_H= Circumneutral; P^{III}_H=Alkaliphilous; P^{IV}_H = not recorded.

Fragilaria brevistriata Grun. (Hust. 1930-66, II, p. 168, fig. 676 a-e. AS 307 : 10-14)

L. 14.0-18.0; W. 3.0; S. 11-12; F. 7, 8; P^{I}_H – III

Fragilaria capucina Desm. (Desmaziers, 1825, No. 453; Kützing, 1844, p. 45, pl. 16, fig. 3; Wm Smith, 1856 p. 22, pl. 35, fig. 296. Hust. 1930-66, II, p. 144, fig. 659 a-e. AS 298 : 14, 17-22, 29, 30. Foged 1978, p. 62)

L. 25.0-75.0; W. 3.0-4.0; F. $1,9$; P^{I}_H – III

Fragilaria construens var. gracilis (Str.) A. Cleve (A. Cleve, in K.V.A. Handl. 4:1, p. 46, fig. 3571 m.)

L. 65.0; W. 5.0; F. 2; P^{I}_H – III

Fragilaria crotonensis kitton. (Hust. 1930-66, II, p. 143, fig. 670 h-m. AS 296: 30-33, 47. Foged 1978, p. 63)

L. 5.0-6.0; W. 2.0-2.5; F. 3; P^{I}_H – III

Fragilaria crotonensis var. ventar (Ehr.) Grun. (Hust. 1930-66, II, p. 158, fig. 670 h-m. AS 296: 30-33, 47. Foged 1978, p. 63)

L. 5.0-6.0; W. 2.0-2.5; F. 3; P^{I}_H – III

Fragilaria pinnata Ehr. (Hust. 1930-66, II, p. 160, fig. 674 a-i. AS 297 : 47-50, 52-58, 65-72; 298 : 47-74, Foged 1978, p. 64; 8:7). L. 4.0-6.0; W. 2.0; **F.4, 5**; pH – III.

Oligohalobolous (indifferent); Alkaliphilous (N.F). Cosmopolitan.

Fragilaria ungeriana Grun. (AS 298 : 1-8. Foged 1978, p. 64; 8 : 8-10) L. 40.0-65.0; W.5.0- 8.0; S. 10; **F.12-13**; pH – III

Halophilous, Alkaliphilous, recorded from Africa, Australia, India.

Fragilaria vaucheriae (Kütz.) Peterson. (J. B. Peterson 1938, p. 167, fig.1. Foged 1978, p. 64; 8 : 5) L. 10.0-25.0; W.4.0- 5.0; S. 13-15; **F.14,15**; pH – III

Synedra tabulata (Ag.) Kütz. (Kützing, 1844, p. 68, pl. 15, fig. 6; Wm Smith, 1853, p. 73, pl. 12, fig. 97; Boyer, 1927, p. 205; Hendey, 1951, p. 35; Hust 1930-66, II AS 304: 6-12. Foged 1978, p. 132; 9: 5) Syn. *Diatoma tabulatum* Agardh 1830-32, p. 50 (1832) L. 80.0-85.0; W.4.0-5.0; S. 9-10; **F.24**; pH – IV.

The *Fragillaria* species are found very common in study area and many valves are joining to each other to form large yellowish mats in stagnant water bodies while *Synendra* species valve are usually found separately. The *Fragillaria* and *Synendra* species are also indicate less polluted water bodies. In the month of Sept-October *Fragillaria* is dominant diatoms in stagnant freshwater bodies.

References

Mr. Lakhpat Meena B.Sc. from MDSU AJMER, Rajasthan, M.Sc. and ph.D. Plant Science from M.L.S.U. Udaipur in 2000, 2003, 2009. He was working as Assistant professor from 2007 to 2009 at Department of Botany VISHVA-BHARATI Santiniketan, West Bengal. He is currently working as Assistant Professor in Department of Botany, Government College, Sawaimadhopur, Rajasthan under Rajasthan Government since 2009. He is life member of Indian Botanical Society (2006) and Phycological Society of India (2006). He has published more than 20 research articles in reputed national and international research Journal. He also completed one research project funded by UGC. His main research work focuses on Algal Diversity and biofuel. He has 13 years research and teaching experience.