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Abstract: Among brain tumors, gliomas are the most common primary brain malignancies and they are very aggressive, thus leading 

to a very short life expectancy in their highest grade. Therefore, accurate and robust tumor segmentation is key stage for diagnosis, 

treatment planning and risk factor identification.  Magnetic resonance imaging (MRI) is a widely used imaging technique to assess 

these tumors, but the large amount of MR images generated in clinical routine makes it difficult for manual segmentation. In addition, 

manual segmentation is time consuming, subjective and depends on the level of individual’s experience.Therefore, automatic and 

reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic 

segmentation a challenging problem. In this paper, we propose a novel automatic segmentation method based on Convolutional Neural 

Networks (CNN). Our method is a combination of U-net and Inception modules. Experiments with BraTS 2020 training set, our 

proposed method achieved average Dice scores of 0.902,0.797, 0.855 for whole tumor, enhancing tumor core and tumor core 

respectively. In this work we show that segmentation results can be improved by adding Inception modules to the U-net. 
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1. Introduction 
 

Cancer can be defined as the uncontrolled, unnatural growth 

and division of the cells in the body. Brain tumors are the 

consequence of abnormal growths and uncontrolled cells 

division in the brain. Depending on their initial origin, brain 

tumors can be considered as either primary brain tumors or 

metastatic brain tumors. In primary ones, the origin of the 

cells are brain tissue cells, where in metastatic, cells become 

cancerous at any other part of the body and spread into the 

brain. 

 

Glioblastoma is one of the most aggressive human brain 

tumors[1] (Bleeker et al., 2012). The term glioma is a 

general term that is used to describe different types of 

gliomas ranging from low-grade gliomas (LGG) like 

astrocytomas and oligodendrogliomas to the high grade 

(grade IV) glioblastoma multiform (GBM), which is the 

most aggressive and the most common primary malignant 

brain tumor[2] . Surgery, chemotherapy and radiotherapy are 

the techniques used, usually in combination, to treat gliomas 

[3]. 

 

Magnetic resonance imaging (MRI) has the characteristics 

of significant soft tissue contrast and it can provide abundant 

physiological tissue information. In the clinical treatment of 

gliomas, MRI is commonly used method in radiology for 

analyzing phenotype (appearance and shape) and intrinsic 

heterogeneity of gliomas, since multimodal MRI scans, as 

shown in Figure 1 such as T1-weighted, contrast enhanced 

T1-weighted (T1Gd), T2-weighted, and Fluid Attenuation 

Inversion Recovery (FLAIR) images, provide 

complementary profiles for different sub-regions of gliomas. 

The general FLAIR sequence is suitable for observing 

edema tissues, T1 images are used for distinguishing healthy 

tissues and the T1Gd sequence is suitable for observing the 

active components of the tumor core, whereas T2 images are 

used to delineate the edema region which produces bright 

signal on the image.  
 

 
Figure 1: Multimodal MRI scans of glioma (a) FLAIR (b) 

T1 weighted (c) post contrast T1 weighted (d) T2 weighted. 

 

Glioma segmentation is considered as the first step in the 

MRI analysis of glioma patients. Manual segmentation of 

glioma regions requires a lot of time and manpower. In 

addition, manual segmentation is often based on the 

brightness of the image, which is easily affected by the 

quality of the image generated and the individual’s 

experience, thus leads to erroneous segmentation and 

segmentation of redundant areas. Therefore, in clinical 

practice, a fully automatic segmentation method with good 

segmentation accuracy for gliomas is needed. In recent 

years, deep learning has become the method of choice for 

complex medical image segmentation due to its high 

accuracy. Convolutional Neural Networks (CNNs) are 

artificial neural networks with multiple hidden convolutional 

layers between the input and output layers. Because of their  

non-linear properties they are capable of extracting higher 

level representative features [4](Gu et al., 2018). In this 

paper, we present a novel deep learning-based framework 

for segmentation of a brain tumor and its subregions from 

multimodal MRI scans using 2020 BraTS data set. Our 

results show that adding inception net increase the 

segmentation accuracy.  
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2. Related Works 
 

Automated segmentation of brain tumor from MR images is 

a necessary step in medical image analysis. This section 

highlights some important works on brain tumor 

segmentation from multimodal MR images based on CNN. 

Li Sun et.al [5] used ensembles of three different 3D CNN 

architectures for tumor segmentation. They used this method 

to reduce model bias and to boost the performance. For 

survival prediction, they extract 4,524 radiomic features 

from segmented tumor regions, then, a decision tree and 

cross validation are used to select potent features. Finally, a 

random forest model is trained to predict the overall survival 

of patients. 

 

Daniel E Cahall et.al [6] propose an end-to-end brain tumor 

segmentation framework which utilizes a modified U-Net 

architecture with Inception modules to accomplish multi-

scale feature extraction. They used Dice Similarity 

coefficient as loss function.  

 

Guotia wang et. al.[7]show the use of cascade of CNNs for 

sequential segmentation of brain tumor and the subregions 

from multi-modal MRI, which decomposes the complex task 

of multi-class segmentation into three simpler binary 

segmentation tasks they also proposed 2.5D network 

structures with anisotropic convolution for the segmentation 

task.  

 

Wentao Wu et. al [8], trained a deep convolutional neural 

network fusion support vector machine algorithm (DCNN-F-

SVM). Their segmentation model was mainly divided into 

three stages. In the first stage, a deep convolutional neural 

network is trained to learn the mapping from image space to 

tumor marker space. In the second stage, the predicted labels 

obtained from the deep convolutional neural network 

training are input into the integrated support vector machine 

classifier together with the test images. In the third stage, a 

deep convolutional neural network and an integrated support 

vector machine are connected in series to train a deep 

classifier.  

 
Havaei et al. (2016) [9] combined local and global 2D 

features extracted by a CNN for brain tumor segmentation. 

Although it outperformed the conventional discriminative 

methods, the 2D CNN only uses 2D features without 

considering the volumetric context. To incorporate 3D 

features, applying the 2D networks in axial, sagittal and 

coronal views and fusing their results has been proposed  

(McKinley et al., 2016; Li and Shen, 2017; Hu et al., 2018) 

[10]. However, the features employed by such a method are 

from cross-planes rather than entire 3D space. 

 

DeepMedic (Kamnitsas et al., 2017b) [11]  used a 3D CNN 

to exploit multi-scale volumetric features and further 

encoded spatial information with a fully connected 

Conditional Random Field (CRF). It achieved better 

segmentation performance than using 2D CNNs but has a 

relatively low inference efficiency due to the multi-scale 

image patch-based analysis 

 

 

3. Materials and Methods 
 

3.1 Data Gathering 

 

We have used the BraTS 2020 dataset [12-16] to train our 

methods. The training set contained images from 369 

patients, including 293 High-Grade Glioma (HGG) and 76 

Low-Grade Glioma (LGG). Each patient's MRI data 

contained four MRI sequences: T2-weighted (T2), T1-

weighted, T1 with gadolinium enhancing contrast (T1C), 

and Fluid-Attenuated Inversion Recovery (FLAIR) images. 

All the images were skull-striped and re-sampled to an 

isotropic 1mm
3
 resolution, and the four sequences of the 

same patient had been co-registered. The ground truth of 

segmentation mask was obtained by manual segmentation 

results given by experts. Annotations comprise the 

enhancing tumor (ET — label 4), the peritumoral edema 

(ED — label2), and the necrotic and non-enhancing tumor 

core (NCR/NET — label 1).  

 

3.2 Data Preprocessing 

 

We applied data augmentation by randomly rotating ± 15° 

with respect to X, Y, Z axes and translating along X and Y 

directions. All the original images were resized to a 

128x128x128 matrix, while maintaining the aspect ratio. 

Intensity values are then normalized to zero mean and unit 

standard deviation.  

 

3.3 Model Architecture 

 

We propose a new architecture based on the 3D U-Net and 

convolution Inception module [17-18] in [19] author 

explored the combination of U-net and Res-Net. An 

inception module is added after each convolutional layer in 

the encoder part of the U-Net. Inception module has 

concatenated connection of three CNN blocks with kernel 

size of 1x1, 3x3 and 5x5 respectively. One of the important 

criteria of Inception architecture is their adaption of 

"Network in Network" approach as shown by Lin et. al [20] 

which increased the representational power of the neural 

networks. This had additionally saved them for 

computational bottlenecks by dimension reduction to 1×1 

convolution. The purpose of Inception architecture was to 

reduce computational resource usage in highly accurate 

image classification using deep learning [21].  They had 

focused on finding an optimized position between the 

traditional way of increasing performance, which is to 

increase size and depth, and using sparsity in the layers 

based on the theoretical grounds given by Arora et. al 

[22]They focused on the approach to generate a correlation 

statistical analysis to generate groups of higher correlation to 

feed forward to the next layer. And they took the idea of 

multiscale analysis of visual information in their 1×1, 3×3 

and 5×5 convolution layers. All of these layers then go 

through dimension reduction to end up in 1×1 convolutions 

[21].  

 

Each layer on the contracting path of U-net, the height and 

width of the feature maps are halved and the depth is 

doubled until reaching the bottleneck i.e., the center of the 

"U." Conversely, on the expanding path, the height and 

width of the feature maps are doubled and the depth is 
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halved at each layer until reaching the output. Furthermore, 

each set of feature maps generated on the contracting path 

are concatenated to the corresponding feature maps on the 

expanding path. In the proposed architecture output 

convolution layer has 3 filters which are nothing but 3 tumor 

subtypes. Figure 2 shows the network architecture of our 

proposed method. A 3D resized volume is used as input. 

Each conv block performs a 3D convolution followed by 

batch normalization and leakyReLU activation with negative 

slope alpha value 0.3. We used Xavier normal initializer for 

weights. The network is implemented using Keras with a 

TensorFlow backend on a DGX-1 with 2, 16GB Tesla V1 

GPU, batch size = 2, and learning rate = 10-4. The Dice 

coefficient between the network output and target mask was 

used as loss function. The network was trained for 200 

epochs. 

 
Figure 2: 3D U-net with Inception modules architecture 

considering a 128x128x128 volume as input. The number 

shown below each Inception module indicate total number 

of filters used. Last layer is having 3 filters with sigmoid 

activation and adam optimizer for back propagation. 

 

3.4 Loss Function 

 

Dice coefficient (DSC) is a F1- oriented statistic used to 

gauge the similarity of two sets. Given two sets A and B, the 

dice coefficient between them is given as follows [18]:  

Dice coefficient = 
2|𝐴ᴒ𝐵|

 𝐴 +|𝐵|
 

 

In our case, A is the set that contains of all positive 

examples predicted by a model, and B is the set of all golden 

positive examples in the dataset. 

Dice coefficient = 
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
 = F1 

 

Where TP is True Positive, FN is False Negative and FP is 

False Positive 

 

4. Results 
 

We performed our experiments on BraTS 2020 dataset [12-

16] which has images from 369 patients. 80% of the data is 

used for training, 10% is used for validation and 10% is used 

for testing.  We evaluated the segmentation performance 

using the mean dice scores which is computed by treating 

the actual tumor labels as foreground and everything else as 

background.  

 
For qualitative analysis, we present a sample of 

segmentation results in Figure 3 and in Figure 4. In both 

figures, for simplicity of visualization, only the FLAIR 

image is shown. The green, red and yellow colors show the 

peritumoral edema, necrotic and non-enhancing tumor core 

and enhancing tumor respectively. Figure 3 shows glioma 

subregions in axial, coronal and sagittal view and Figure 4 

shows intra-tumoral structures. 

 
Table 1 presents quantitative evaluations with the BraTS 

2020 local test set. This method achieves average Dice 

scores of 0.902,0.797 and 0.856 for whole tumor, enhancing 

tumor and tumor core respectively. In Figure 5 we provide 

box plot of dice, sensitivity and specificity for each tumor 

type.    

  

 
Figure 3: Example segmentation results on the local test 

subset of BraTS 2020 with ground truth and predicted labels 

overlaid over FLAIR MRI image in axial, sagittal and 

coronal slices. The whole tumor (WT) class includes all 

visible labels (a union of green, yellow and red labels), the 

tumor core (TC) class is a union of red and yellow, and the 

enhancing tumor core (ET) class is shown in yellow. 

 
Figure 4: Intra-tumoral structure of same patients shown 

Figure 3. FLAIR overlaid with ground truth (GT) intra-

tumoral structure is shown on the left in both sub-figures for 

easy visual analysis. Top row shows the GT segments for 

each intra-tumoral structure (abbreviations used are: ED, 

peritumoral edema; NET, necrotic and non-enhancing tumor 

core; ET, enhancing tumor). On the bottom row, the 

predicted (Pred) segments for each intra-tumoral structure 

are shown. The last image in each row is the combined 

predicted segments (i.e., ED, NET and ET) overlaid on 

FLAIR image. 
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Figure 5: Box plot displaying the results for DSC, 

sensitivity and specificity. The x-axis is the glioma sub-

region. The median value is denoted by the horizontal red 

line, and the mean is denoted by the green triangle. 

Abbreviations used are WT, Whole Tumor; TC, Tumor 

Core; and ET, Enhancing Tumor. 

 

Table 1: Mean dice, sensitivity and specificity values of 

proposed model 
 Whole Tumor Enhancing tumor core Tumor core 

DSC 0.902 0.797 0.855 

Sensitivity 0.841 0.701 0.831 

Specificity 0.999 0.999 0.999 

 

5. Discussion  
 

In this work we introduced a novel method using the 

combination of U-Net architecture and Inception modules. 

Our results show that adding Inception modules in the 

encoder part of U-Net helps to achieve better score in 

segmenting tumor sub-region. We observed that the 

improvement in the segmentation accuracy is linked to 

multiple convolutional filters of different sizes employed in 

each Inception module. These filters with different kernel 

size can capture the contextual information at multiple scales 

during the learning process and can retain them. 

 

We evaluate the performance of our proposed model using 

DSC and our results also demonstrate that introducing 

inception blocks in U-net encoder sections improves the 

intra-tumoral structures of glioma. 

 

6. Conclusion 
 

The model can be improved by adding more training data 

and with different augmenting methods like applying elastic 

deformation.  In the future, we will explore different 

network architectures and training strategies to further 

improve our result.  
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