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Abstract: The most commonly used tool for system analysis is the Fourier Transform,whichcan be applied to linear continuous 
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consider an extension of the Fourier transform that is applied basically to continuous nonlinear systems. By the use of the Associated 

Linear Equations that are parametric models of Volterra operators, the present workobtains the Short-Time Fourier Transform for 

continuous nonlinear systems. The Short-TimeHigher-Order Frequency Response Function is also defined 
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1. Introduction 
 

One of the most widely usedmethods for signal analysis is 

the Fourier Transform (FT). It has been used for both linear 

and nonlinear systems analysis, e.g., in agriculture [1], 

material structure detection [2], and [3] vision analysis [4]. 

The theory for nonlinear applications has been widely 

studied[5]. The mainlimitation oftheFT is that it cannot 

detect changes in time. For linear systems, this deficiency 

has been overcome by using the Short-Time Fourier 

Transform (STFT),of which many examples can be found in 

the literature, e.g.,[7] and [8]. 

 

The FTfornonlinear systems wasdeveloped based on the 

Volterra series [6]; the close relationshipbetween the FT and 

Volterra series has been madeevident in such works as [9], 

[10], and [11]. 

 

The appropriate version of the FT fortime-varying systems 

is the STFT,which introduces a wavelet(window) in the FT 

integral [12].  There are a variety of wavelets, from the 

simpleHaar[13] andDaubechies [14],to the flexible Mexican 

hat (the Ricker wavelet) [15],as well as many more, each 

with its strengths and limitations. The main criterion for 

selectinga wavelet isbased on the characteristics of the 

system response. To present general results, we will use a 

Mexican hat in this work, asit is easy to implement and is 

widely used. 

 

The use of the STFT is restricted to linear systems due to the 

complexity of the nonlineargeneration of harmonics, even in 

the simple case of Volterra systems. The identification and 

analysis of nonlinearsystems is simplyimpossible,as there is 

no clear relationship between the different harmonic 

components. The appropriate tool for the analysis of 

nonlinear systems is Associated Linear Equations (ALEs) 

[13]. Since ALEs are linear models, each one produces a 

particular order of Volterra operators. This kind of 

orthogonalization allows us to analyze in detail the 

generation of harmonics because of the effect of the window 

functions onnonlinear continuous systems.  

 

The objective of this work is to find an expression that 

allows us toanalyzethe frequency domain of a nonlinear 

system that is also time-varying. This expression is obtained 

by the unit impulse response of each ALE.The effect of the 

windowfunction on the output can then be easily visualized, 

and it is possible to findanexpression for a Short-Time 

Higher Order Fourier Transform (STHFT) and a Short-Time 

Higher-Order Frequency Response Function (STHFRF). 

 

The work is structured as follows. Section 2 states the 

basicdefinitions; section 3 analyses how to incorporate 

thewindow functions in the higher-order kernels; section 4 

develops the appropriate expression for the STHFRF and the 

STHFT; section 5 presents a simulated second-orderDuffing 

oscillator from which the STHFRF and the 

STHFTareobtained. The last section presents the 

conclusions. 

 

2. Background  
 

This section presents the basicdefinitions required for 

subsequent development of the expressions for the STHFRF 

and the STHFT. The output of a continuous nonlinear 

system may be obtained usingthe Volterra series, as follows, 

 

𝑦 𝑡 =   𝑦𝑛
∞
0                                (1) 

 

Each term of the Volterra series is the response of then-th 

order operator. 

 

The Associated Linear Equations (ALEs) [14] are a linear 

model of each operator. As a linear system, the output of any 

operator can be obtained from theunit impulse response 

functionh1(n)() through the following convolution [15], 
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𝑦𝑛 𝑡 =   ℎ1 𝑛  𝜏 𝑥𝑛 𝑡 − 𝜏  𝑑𝜏
∞

−∞
 (2) 

 

The subscript 1 means that h1(n)(t) is a linear operator; xn(t) is 

the corresponding n-th order input signal vector.  It is also 

possible to obtain yn(t) as, 

𝑦𝑛 𝜏1 , 𝜏2,…𝜏𝑛 =   ℎ𝑛 𝜏1 , 𝜏2 ,…𝜏𝑛 𝑥 𝑡1 − 𝜏1 𝑥 𝑡2 −
∞

−∞

𝜏2…𝑥𝑡𝑛−𝜏𝑛 𝑑𝜏1𝑑𝜏2…𝑑𝜏𝑛 (3) 
 

The variable ℎ𝑛 𝜏1 , 𝜏2,…𝜏𝑛  is known as the n-th 

order kernel; it is a multilinear impulse response. 

The Frequency Response Function of each ALE can be 

obtained from the following equation, 

𝐻1 𝑛   𝜔𝑛  =  
𝟏

𝝅
 ℎ𝑛 𝜏 𝑒

−𝑖  𝜔𝑛  𝜏  𝑑𝜏
∞

−∞
  (4) 

 

where the summation representsthe sum of n-th input 

frequenciesinthe system. 

 

The n-dimensional Fourier Transform is defined by [16], 

 
ℱ 𝑓 𝑡1 , 𝑡2,…𝑡𝑛 =

   𝑓 𝑡1, 𝑡2,…𝑡𝑛 
∞

−∞

∞

−∞
𝑒−𝑖𝜔1𝑡1𝑒−𝑖𝜔2𝑡2 …  𝑒−𝑖𝜔𝑛 𝑡𝑛𝑑𝑡1  𝑑𝑡2 …   𝑑𝑡𝑛

 (5) 
 

This equation allows one to obtain the Higher Frequency 

Response Function (HFRF) of order n as a function 

ofℎ𝑛 𝜏1, 𝜏2 ,…𝜏𝑛 , 
 

𝐻𝑛 𝜔1 ,𝜔2,…𝜔𝑛 =

   ℎ𝑛 𝜏1 , 𝜏2 ,…𝜏𝑛 
∞

−∞

∞

−∞
𝑒−𝑖𝜔1𝑡1𝑒−𝑖𝜔2𝑡2 …  𝑒−𝑖𝜔𝑛 𝑡𝑛𝑑𝑡1  𝑑𝑡2 …   𝑑𝑡𝑛

 (5) 

 

The relationship between h1(n)() and ℎ𝑛 𝜏1 , 𝜏2,…𝜏𝑛 is 

obtained from[15] (for the Duffing Oscillator), 

 

ℎ𝑛 𝜏1  , 𝜏2 , 𝜏3,… , 𝜏𝑛 =
𝑛 !

𝑟1 !𝑟2!…𝑟𝑛 !
 ℎ1 𝑛  𝜏     …

𝐹(
𝑛−𝑖−𝑗

𝑝−2
)

𝑖3=1
 ℎ𝑖1 𝜏1 − 𝜏, , 𝜏2 − 𝜏,…𝜏𝑖1 −
𝐹(

𝑛−𝑖−𝑗−..

2
)

𝑖𝑠=𝑖𝑠−1

𝐹(
𝑛−𝑖

𝑝−1
)

𝑖2=1

𝐹(
𝑛

𝑝
)

𝑖1=1
𝑝=𝑛         
𝑝=1

∞

−∞

𝜏ℎ𝑖2𝜏𝑖1+1−𝜏, ,𝜏𝑖1+2−𝜏,…𝜏𝑖2+𝑖1−𝜏ℎ𝑖3𝜏𝑖2+𝑖1+1−𝜏, ,𝜏𝑖2+𝑖1+2−𝜏,…𝜏𝑖1+𝑖2+𝑖3−𝜏…ℎ𝑛−𝑘=1𝑝−1𝑖𝑘 …,𝜏𝑛−𝜏)𝑑𝜏   (6) 

 

This is a simple convolution. 

 

The Short-time Fourier Transform (STFT) is obtained from, 

𝑊𝛹   𝑓 𝑡  =   𝑓 𝑡 
∞

−∞
𝛹𝑎 .𝑏 𝑡 𝑑𝑡                      (7) 

 

where 𝛹𝑎 .𝑏 is a function of two parameters; a and ba 

wavelet,  

𝛹𝑎 .𝑏 = ∅ 𝑎, 𝑡 − 𝑏 𝑒−𝑖𝜔𝑡                                    (8) 

 

The wavelet used in this work is known as the Mexican hat 

(Ricker wavelet), 

∅ 𝑎, 𝑏 =
2

 3𝑏𝜋
1
4

 1 −
 𝑥−𝑎 2

𝑏2  𝑒
−

(𝑥−𝑎2

2𝑏2                 (9) 

 

3. The Effect of Temporal Windows on 

Volterra Kernels  
 

Our objective is to study the effect of unit impulse responses 

ofALEs on the Volterra kernels when windows are 

introduced. Since the kernel itself is expected to vary in 

time, it is necessary to know how to detect the changes and 

how past states affect the present response of the system.  

 

To analyze the response of the second-order (harmonic) 

Volterra operatorof a second-order second Duffing 

Oscillator, we consideredthe following model, 

 

𝑦 𝑡  + 𝐴1𝑦 𝑡  + 𝐴2𝑦 𝑡 + 𝐴3𝑦
2 𝑡 = 𝐵𝑥 𝑡      (10) 

 

The second order Associated Linear Equation (ALE) is (see 

[14]), 

 

𝑦 2 𝑡 + 𝐴1𝑦2 𝑡  + 𝐴2𝑦2 𝑡 = −𝐴3𝑦1
2 𝑡        (11) 

 

Still from [14], the second-order kernel is obtained fromthe 

following unit impulse response function: 

 

ℎ2 𝜏1 , 𝜏2 =   ℎ1(2) 𝜏 ℎ1 𝜏1 − 𝑡 ℎ1 𝜏2 −  𝜏 𝑑𝜏 
∞

−∞
   (12) 

 

If one assumes that the Duffing oscillator varies with time, 

equation (10) may be expressed as 

 

𝑦 𝑡  + 𝐴1 𝑡 𝑦  𝑡 + 𝐴2 𝑡 𝑦 𝑡 + 𝐴3 𝑡 𝑦
2 𝑡 = 𝐵 𝑡 𝑥 𝑡   (13) 

 

Let’s assume that there is a small tfor which the 

coefficients of the systems show negligible variation. Then 

there is a window function thin enough to capturethe 

response with negligible distortion. Aunit impulse response 

functionn1can be defined as 

 

𝜂1 𝑎, 𝑏, 𝑡 − 𝜏 = ℎ1 𝑡 − 𝜏 ∅ 𝑎, 𝑡 − 𝑏          (14) 

 

This unit impulse response function can be handled as if it 

weretime-invariant. Referring to equation (12), the argument 

of the second-order kernel are two different unit impulse 

response functions, and the integration is over the entire 

time domain. Sinceunit impulse responseschange with time, 

it is necessary to know to which state of the impulse 

response is the second-order kernel responding. As the 

integration is over the entire time domain, the twoimpulses 

may indicate two different states. This problem is solved by 

using a window for each impulse response,whichcan be 

equal or different to each other. The convolution is now 

 ℎ1 2  𝜏 ℎ1 𝜏1 − 𝑡 ∅ 𝑎1 , 𝑡 − 𝑏1 ℎ1 𝜏2 −  𝜏 ∅ 𝑎2, 𝑡
∞

∞

− 𝑏2 𝑑𝜏 

 

As the system is time-variant, the second order impulse 

response also changes;therefore, equation (12) has to include 

an additional window, 

 

𝜂2 𝑎1 , 𝑎2 , 𝑎3 , 𝑏1, 𝑏2 , 𝑏3, 𝜏1 , 𝜏2,  =  ℎ1 2  𝜏 ∅ 𝑎3, 𝑡 −
∞

∞

𝑏3ℎ1𝜏1−𝑡∅𝑎1,𝑡−𝑏1ℎ1𝜏2− 𝜏 ∅𝑎2,𝑡−𝑏2𝑑𝜏  (15) 
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Equation (3) reproduces an output signal that is not only a 

function of two times, but also of three different windows, 

𝜂2 𝑎1, 𝑎2 ,𝑎3 , 𝑏1, 𝑏2 , 𝑏3, 𝜏1 , 𝜏2 =

 𝜂1 2  𝑎3, 𝑏3 , 𝜏 𝜂1 𝑎1 ,𝑏1 , 𝜏−𝜏1 𝜂1 𝑎2, 𝑏2, 𝜏−𝜏2 𝑑𝜏
∞

−∞
              (16) 

 

Forthe nth order response, the number of windows increases 

according to the number of components of the input signal. 

For the general second-order response,one has, 

 

𝑦2 𝑡1, 𝑡2, 𝑎1 , 𝑎2, 𝑎3 , 𝑏1, 𝑏2 , 𝑏3 =

  𝜂2 𝑎1 , 𝑎2, 𝑎3 , 𝑏1 , 𝑏2, 𝑏3 , 𝜏1, 𝜏2 𝑥 𝑡1 − 𝜏1 𝑥 𝑡2 −
∞

−∞

𝜏2 𝑑𝜏1𝑑𝜏2 (17) 

The output of the second-order operator, whent1=t2,must be  

 

𝑦2 𝑡 =     𝑦2 𝑎𝑗 , 𝑎𝑘 , 𝑎𝑖 , 𝑏𝑗 , 𝑏𝑘 , 𝑏𝑖 , 𝑡, 𝑡 𝑛
𝑖

𝑛
𝑘

𝑛
𝑗     (17) 

 

Analogous to equation (6), the nth-order Volterra kernel 

fortime-variant nonlinear systemsis 

 

𝜂𝑛 𝑎1, 𝑎2 ,… . . , 𝑎𝑛+1, 𝑏1 , 𝑏2,… . . 𝑏𝑛+1, 𝜏1, 𝜏2 ,… . . 𝜏𝑛 =
𝑛!

𝑟1! 𝑟2!…𝑟𝑛 !
 𝜂1 𝑛  𝑎𝑛+1, 𝑏𝑛+1, 𝜏     …

𝐹 
𝑛−𝑖−𝑗

𝑝−2
 

𝑖3=1

𝐹 
𝑛−𝑖

𝑝−1
 

𝑖2=1

𝐹 
𝑛

𝑝
 

𝑖1=1

𝑝=𝑛         

𝑝=1

∞

−∞

 

 𝜂𝑖1 𝑎1, 𝑎2 ,… . . , 𝑎𝑖1+1, 𝑏1 , 𝑏2,… . . 𝑏𝑖1+1, 𝜏−𝜏1, 𝜏−𝜏2 ,… . . 𝜏𝑖1+1 

𝐹 
𝑛−𝑖−𝑗−..

2
 

𝑖𝑠=𝑖𝑠−1

 

𝜂𝑖2 𝑎1 , 𝑎2 ,… . . , 𝑎𝑖2+1, 𝑏1, 𝑏2 ,… . . 𝑏𝑖2+1, 𝜏1−,… . . 𝜏𝑖2+𝑖1 − 𝜏−𝜏𝑖1  

ℎ𝑖3 𝜏 − 𝜏𝑖2+𝑖1+1
, , 𝜏 − 𝜏𝑖2+𝑖1+2,…𝜏 − 𝜏𝑖1+𝑖2+𝑖3 … 

𝜂
𝑛− 𝑖𝑘

𝑝−1
𝑘=1

 𝑎1 , 𝑎2 ,… . . , 𝑎𝑛+1, 𝑏1 , 𝑏2,… . . 𝑏𝑛+1 , 𝜏 −  𝜏1 ,−𝜏,… . . 𝜏 − 𝜏𝑛 𝑑𝜏(18) 

And the output of the n-th order operator is then 

𝑦𝑛 𝑡 =    …  𝑦𝑛 𝑎𝑗 , 𝑎𝑘 , 𝑎𝑖 ,…… . 𝑎𝑚 . 𝑏𝑗 , 𝑏𝑘 , 𝑏𝑖 ,… . . 𝑏𝑚 , 𝑡, 𝑡,…𝑡 𝑛
𝑚=1

𝑛
𝑖

𝑛
𝑘=1

𝑛
𝑗=1                                             

𝑛+1 summations

                                   (17) 

 

4. The short time higher order frequency 

response function and the short time higher 

order fourier transform 
 

After the previous section, we have now all thatis needed to 

develop the expressions for the Short Time Higher-Order 

Frequency Response Function (STHFR) and the Short time 

HigherOrder Fourier Transform (STHFT). 

 

We need to reconsiderthe Duffing oscillator and its second-

order operator. From the definition given in equation (14), a 

second-order kernel is obtained fromequation (16). 

 

From equation (5), the bilinear Fourier transform (FT) is,  

 

ℱ 𝑓 𝑡1 , 𝑡2 =   ( 𝑓 𝑡1 , 𝑡2 
∞

−∞

∞

−∞
𝑒−𝑖𝜔1𝑡1  𝑑𝑡1) 𝑒−𝑖𝜔2𝑡2  𝑑𝑡2 (18) 

 

Let’s divide the transform in two independent integrals, i.e. 

two linear FT. If the function is now the second-order 

kernel, one has, 

 

ℱ 𝑦2 𝑎1 , 𝑎2, 𝑎3 , 𝑏1, 𝑏2 , 𝑏3, 𝑡1, 𝑡2 

=    𝜂2 𝑎1 , 𝑎2 , 𝑎3, 𝑏1 , 𝑏2, 𝑏3 , 𝜏1, 𝜏2 𝛿 𝑡1 −  𝜏1 𝛿 𝑡2

∞

−∞

∞

−∞

− 𝜏2 𝑒
−𝑖𝜔1𝑡1  𝑑𝑡1 𝑒

−𝑖𝜔2𝑡2  𝑑𝑡2 

Developing the internal integral for the bidimensional unit 

impulse response, 

ℱ 𝑦2 𝑎1, 𝑎2 , 𝑎3 , 𝑏1, 𝑏2 , 𝑏3, 𝑡1, 𝑡2 =

   𝑁2 𝑎1 , 𝑎2 , 𝑎3, 𝑏1 , 𝑏2, 𝑏3 ,𝜔1 , 𝜏2 
∞

−∞
𝑒𝑖𝜔1𝑡1𝛿 𝑡2 −

∞

−∞

𝜏2𝑒−𝑖𝜔2𝑡2 𝑑𝑡2        (19) 

 

The second unit impulseresponse𝛿 𝑡2 − 𝜏2   is a constant 

resulting from the integral. Integrating again (4.22), 

ℱ 𝑦2 𝑎1, 𝑎2 , 𝑎3 , 𝑏1, 𝑏2 , 𝑏3, 𝑡1, 𝑡2 =
𝑁2 𝑎1 , 𝑎2, 𝑎3 , 𝑏1 , 𝑏2, 𝑏3,𝜔1 ,𝜔2 𝑒

𝑖𝜔1𝑡1𝑒𝑖𝜔2𝑡2                     (20) 

 

it reproduces the well-known result that is the base of the 

harmonic probing technique. The FT of the n-impulse 

response is the response in time of the input of nphasors; 

both time parameters must be equal to obtain a non-zero 

result, 

 

𝑦2 𝑎1 , 𝑎2, 𝑎3 , 𝑏1 , 𝑏2, 𝑏3, 𝑡  = 

𝑁2 𝑎1 , 𝑎2, 𝑎3 , 𝑏1 , 𝑏2, 𝑏3 ,𝜔1 ,𝜔2 𝑒
−𝑖(𝜔1+ 𝜔2)𝑡            (21) 

This isthe response of the system under the effect of three 

different windows. 

 

Here, 𝑁2 𝑎1 , 𝑎2 , 𝑎3 ,𝑏1 , 𝑏2 , 𝑏3,𝜔1 ,𝜔2 is the Short Time 

Higher Order Frequency Response Function (STFRF) of 

second order. 

 

Because of equation (16), the STHFRF may be obtained by 

transforming, 
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𝑁𝑎 𝑎1 , 𝑎2, 𝑎3 , 𝑏1 , 𝑏2, 𝑏3 ,𝜔1,𝜔2 =

  𝜂1(2) (
∞

−∞
𝑎3, 𝑏3 , 𝜏)𝜂1 𝑎1 , 𝑏1, 𝜏 − 𝜏2 𝜂1 𝑎2 , 𝑏2 , 𝜏 −

𝜏1𝑒−𝑖𝜔1𝜏1𝑒−𝑖𝜔2𝜏2  𝑑𝜏1 𝑑𝜏2 𝑑𝜏  (22) 

 

Substitutingthe following parameters  

𝜏𝑎 =  𝜏2 −  𝜏 

y 

𝜏𝑏 =  𝜏1 −  𝜏 

 

one has 

𝑁𝑎 𝑎1 , 𝑎2, 𝑎3 , 𝑏1 , 𝑏2, 𝑏3,𝜔1 ,𝜔2 =   𝜂1(2) (

∞

−∞

𝑎3, 𝑏3 , 𝜏)𝜂1 𝑎1 , 𝑏1 , 𝜏𝑎 𝜂1 𝑎2 , 𝑏2, 𝜏𝑏 𝑒
−𝑖𝜔1(𝜏𝑏+𝜏)𝑒−𝑖𝜔2(𝜏𝑏+ 𝜏)   𝑑𝜏 𝑑𝜏𝑎  𝑑𝜏𝑏  

This allows us to separate the integral as follows; 

𝑁𝑎 𝑎1 , 𝑎2, 𝑎3 , 𝑏1 , 𝑏2, 𝑏3 ,𝜔1,𝜔2 =   𝜂1(2)
∞

−∞
(𝑎3 , 𝑏3 , 𝜏)𝑒−𝑖(𝜔1 + 𝜔2)𝜏  𝜂1 𝑎1 , 𝑏1 , 𝜏𝑎 

∞

−∞
𝑒−𝑖𝜔1𝜏𝑎  𝜂1 𝑎2 , 𝑏2, 𝜏𝑏 

∞

−∞
𝑒−𝑖𝜔2𝜏𝑏  (23) 

 

Developing the integrals, 

 

𝑁𝑎 𝑎1 , 𝑎2, 𝑎3 , 𝑏1 , 𝑏2, 𝑏3 ,𝜔1,𝜔2 = 𝑁1 2 (𝑎3 , 𝑏3 ,𝜔1 +

𝜔2) 𝑁1(𝑎1 , 𝑏1 ,𝜔1) 𝑁1(𝑎2, 𝑏2 ,𝜔2)   (24) 

 

The FT of equation (14) gives   

𝑁1 𝑎, 𝑏,𝜔 =   ℎ1 𝑡 − 𝜏 ∅ 𝑎, 𝑡 − 𝑏 𝑒−𝑖𝜔𝑡 𝑑𝑡 
 (25) 

 

Sinceb is a constant, this equation represents the FT of a 

convolution; then, 

Donde 

𝑁1 𝑎, 𝑏,𝜔 =  𝐻1 𝜔 ∅ 𝑎, 𝑏,𝜔      (26) 

 

∅ 𝑎, 𝑏,𝜔 is the FT of the wavelet function. Substituting in 

(24) one has 

𝑁2 𝑎1 , 𝑎2 , 𝑎3, 𝑏1 , 𝑏2, 𝑏3 ,𝜔1 ,𝜔2 
= 𝐻1 2  𝜔1 + 𝜔2 ∅(𝑎3 , 𝑏3 ,𝜔1

+ 𝜔2) 𝐻1 𝜔1 ∅(𝑎1 ,𝑏1 ,𝜔1) 𝐻1 𝜔2 ∅(𝑎2, 𝑏2 ,𝜔2) 

 

which can be rearranged as 

𝑁2 𝑎1 , 𝑎2, 𝑎3 , 𝑏1 , 𝑏2, 𝑏3,𝜔1 ,𝜔2 =
𝐻1 2  𝜔1 + 𝜔2 𝐻1 𝜔1 𝐻1 𝜔2 ∅(𝑎3 , 𝑏3,𝜔1 +

𝜔2)∅ 𝑎1 , 𝑏1 ,𝜔1 ∅ 𝑎2 , 𝑏2,𝜔2        (27) 

 

or as a function of the second-order kernel, 

𝑁2 𝑎1 , 𝑎2, 𝑎3 , 𝑏1 , 𝑏2, 𝑏3,𝜔1 ,𝜔2 =
𝐻2 𝜔1,𝜔2 ∅(𝑎3, 𝑏3 ,𝜔1 +

𝜔2)∅ 𝑎1 , 𝑏1 ,𝜔1 ∅ 𝑎2 , 𝑏2,𝜔2             (28) 

 

This is the relationship between the second-order FRF and 

the second-order STHFRF; for any order, one has 

𝑁𝑛 𝑎1 , 𝑏1, 𝑎2 , 𝑏2 ,…𝑎𝑛+1, 𝑏𝑛+1,𝜔1 ,𝜔2 …𝜔𝑛 =
𝐻𝑛 𝜔1 ,𝜔2 …𝜔𝑛 ∅(𝑎𝑛+1 , 𝑏𝑛+1,𝜔1 + 𝜔2 + ⋯+

𝜔𝑛) 𝑖=1
𝑛 ∅(𝑎𝑖 ,𝑏𝑖 ,𝜔𝑖)    (29) 

 

It is well known that 𝐻𝑛 𝜔1,𝜔2 …𝜔𝑛  is the FT of the 

kernel of the same order (equation (5)). The STHFRF can be 

obtained as 

𝑁𝑛 𝑎1 ,𝑏1 , 𝑎2 , 𝑏2,…𝑎𝑛+1 , 𝑏𝑛+1,𝜔1 ,𝜔2 …𝜔𝑛 

=   ℎ𝑛 𝜏1, 𝜏2 ,…𝜏𝑛 

∞

−∞

∞

−∞

𝑒−𝑖𝜔1𝑡1𝑒−𝑖𝜔2𝑡2 …  𝑒−𝑖𝜔𝑛 𝑡𝑛𝑑𝑡1  𝑑𝑡2 …   𝑑𝑡𝑛∅(𝑎𝑛+1, 𝑏𝑛+1,𝜔1 + 𝜔2 + ⋯

+ 𝜔𝑛) 𝑖=1
𝑛 ∅(𝑎𝑖 , 𝑏𝑖 ,𝜔𝑖) 

                                                                                                                                                                                                 (30) 

 

Equation (30) containsn+1 integrals, i.e. n+1FTs. Thiscan be 

manipulated to form a single argument for all the integrals, 

as follows, 

 

𝑁𝑛 𝑎1 , 𝑏1, 𝑎2 , 𝑏2 ,…𝑎𝑛+1, 𝑏𝑛+1,𝜔1 ,𝜔2 …𝜔𝑛 =

  … . ∅ 𝑎𝑛+1, 𝜏1 − 𝑏𝑛+1, 𝜏2 − 𝑏𝑛+1,… . 𝜏𝑛 −
∞

−∞

∞

−∞

𝑏𝑛+1ℎ𝑛𝜏1,𝜏2,…𝜏𝑛∅𝑎1,𝜏1−𝑏1𝑒−𝑖𝜔1𝜏1∅𝑎2,𝜏2−𝑏2𝑒−𝑖𝜔2
𝜏2…….∅𝑎𝑛,𝜏𝑛−𝑏𝑛𝑒−𝑖𝜔2𝜏𝑛𝑑𝜏1𝑑𝜏2…. 𝑑𝜏𝑛       (31) 

 

As any function can be the argument, the Short Time Higher 

Order Fourier Transform STHFRF can be defined as 

 
ℱ𝑛 𝑎1 , 𝑎2,……𝑎𝑛+1, 𝑏1 , 𝑏2,……𝑏𝑛+1,𝜔1 ,𝜔2 ,……𝜔𝑛 =

  … . ∅ 𝑎𝑛+1, 𝑡1 − 𝑏𝑛+1, 𝑡2 − 𝑏𝑛+1,… . 𝑡𝑛 −
∞

−∞

∞

−∞

𝑏𝑛+1 𝑓2 𝑡1, 𝑡2,… . 𝑡𝑛 ∅ 𝑎1 , 𝑡1 − 𝑏1 𝑒
−𝑖𝜔1 𝑡1− 𝜏1 ∅ 𝑎2 , 𝑡2 −

𝑏2 𝑒
−𝑖𝜔2 𝑡2− 𝜏2 …… .∅ 𝑎𝑛 , 𝑡𝑛 −

𝑏𝑛 𝑒
−𝑖𝜔2 𝑡𝑛− 𝜏𝑛  𝑑𝑡1 𝑑𝑡2 … .𝑑𝑡𝑛  (32) 

 

5. A Second Order Signal 
 

In this section, a simulated Duffing oscillator of the second 

degree is used to obtain a second-order signal, then the Short 

Time Higher-order Frequency Response Function 

(STHFRF) and the Short Time Higher Fourier Transform 

(STHFT) of the second harmonic order output is obtained. 

The model is,  

 

𝑦 +  𝐴 𝑡 𝑦  𝑡 + 𝐵 𝑡 𝑦 𝑡 +  𝐶 𝑡 𝑦 𝑡 2 =  𝐷 𝑡 𝑥 𝑡  (33) 

 

Observe that the system parameters time-varying. This 

system is simulated and the response is obtained by the 

addition of the exact solution of each Volterra operator, 

 

𝑦𝑛 𝑡 =   𝐻1 𝑛   𝜔𝑛𝑡ℎ−𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠  𝑒−𝑖  𝜔𝑛𝑡 ℎ−𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠  𝑡𝑑𝑡
∞

−∞𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑡𝑎𝑘𝑒𝑛  𝑛  𝑖𝑛  𝑛

 (34) 
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The first four operators were found significant. The 

corresponding Associated Linear Equations (ALEs) are, 

 

𝑦1 +  𝐴 𝑡 𝑦 1 𝑡 + 𝐵 𝑡 𝑦1 𝑡 =  𝐷 𝑡 𝑥 𝑡  (34) 

 

𝑦2 +  𝐴 𝑡 𝑦 2 𝑡 + 𝐵 𝑡 𝑦2 𝑡 =  𝐶 𝑡 𝑦1
2 𝑡  (35) 

 

𝑦3 +  𝐴 𝑡 𝑦 3 𝑡 + 𝐵 𝑡 𝑦3 𝑡 =  2𝐶 𝑡 𝑦2 𝑡 𝑦1  𝑡  (36) 

 
𝑦4 +  𝐴 𝑡 𝑦 4 𝑡 + 𝐵 𝑡 𝑦4 𝑡 =  𝐶 𝑡 𝑦2

2 𝑡 +

𝐶 𝑡 𝑦3 𝑡 𝑦1  𝑡  (37) 

 

 

The coefficients of equation (33) vary as a function of the 

system natural frequencies (500, 750, 1000 y 300rd/sec), 

though damping ratio can be handled also, changing natural 

frequencies is easier to detect time changes. 

 

The input is a band-limited white noise (Figure (1)). The 

output in Figure (2) shows the system changes along the 

time.  

 

 
Figure 1: Duffing oscillator input system 

 

 
Figure 2: System response showing its change in time 

 

Small input power allows detecting the first-order signal in 

the response.  The Mexican hat wavelet that is used for this 

work is shown in Figure 3.  

 

 

 
Figure 3: The time wavelet distribution 

 

The Short-Time Fourier Transform of the first-order signal 

shows the clear four región of four different frequencies. 

Figure 4.  

 

 
Figure 4: The STFT of the first-order signal 

 

The first order Frequency Response Function (FRF) is 

shown if Figure 5. 

 

 

 
Figure 5: First-order FRF 
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The input into the second-order ALE is according with 

equation (36), 

𝑥2 =  𝑦1
2 

 

The second-order input x2 and output y2 can be seen in figure 

6. A linear FRF (H1(2)) can be obtained for this second-order 

ALE, and it is displayed in Figure 7. 

 

 
Figure 6: Second-order ALEs signals 

 

Just as in the case of the FRF, the STFRF of second-order 

depends on a sum of two frequencies that are the vertical 

axis of the surface graph shown in Figure 8.  

 

 

 
Figure 7: The absolute value of the second-order FRF H1(2) 
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Figura 8: The STFRF de el ALE de Segundo orden 

 

The changes in the natural frequency are easily observed. 

 

The graphics for the Short Time Higher-order Frequency 

Response Functions STHFRFis more complex than 

theseSTFRF of the second-order ALE as it depends on 

several windows. The input into the second ALE is a 

product of first-order signals affected by two different 

windows. This signal goes through the second-order ALE 

that is also affected by a third window. The response beside 

to be a function of two frequency and time, it is also a 

function of the windows that affect the signal. 

 

Figure 9, for example, shows the graphic corresponding to 

the signal obtained from the first-order Volterra operator 

affected by the sixth and fifth window on the first-order part 

and the sixth window in the second-order signal H2665. 

Some examples are shown in this Figure.  

 

 
v 

Figure 9: The STHFRF of second-order 
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6. Conclusions 
 

In this work, the Short-time Fourier Transform (STFT) is 

adapted for the analysis of nonlinear continuous time-

varying systemsby the use of the Associated Linear 

Equations (ALEs). Two expressions are obtained, one is the 

Short Time Higher order Fourier Transform (STHFT) that is 

a formal definition, and the Short Time Higher-order 

Frequency response Function (STHFRF) that allow us to see 

how the frequency domain response change in the time of a 

nonlinear continuous system.  

 

The main problem to deal with this kind of analysis is that 

the STHFT and the STHFRF are of more dimensions than 

its harmonic order. Visualizing the continuous nonlinear 

system under the point of view of the Volterra series, if the 

system has as feedback powers of the output signal, the 

input into the higher-order ALEs is a product of lower-order 

signals that comes out from operators that change over time, 

this changes are isolated by the use of windows 

(windowing). Several signals of the same order of different 

windows interact as products of themselves and between 

them, producing the input into an operator of order “n” that 

also varies in time. Therefore, several different windows are 

acting together giving the result of combinations of at least 

“n” deferent system conditions related to the same numbers 

of tp’s (central pints of the windows). This ends in a 

parameter that depends on 2n+1 dimensions at least.  

 

Here, is also presented a simulation of a Duffing oscillator 

system of the second degree. Its second-order response is 

then analyzed in the frequency domain. The second-order 

signal is the output of the second-order ALE, The input into 

this ALE is the product of two lineal signals producing that 

the input depends on two different tp’s. As the second-order 

operator also varies along the time, there are three different 

times (tp’s) involved plus two frequencies. This means that 

the second-order STHFRF depends on 5 independent 

variables.  

 

To be able to produce a graphic display of the frequency 

domain behavior it is necessary to specify which windows or 

times tp’s are involved in the input and the window for the 

nth order transform. Therefore, a lot of different graphs can 

be produced for each combination of the system states.  
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