
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The Role of Observability in Modern Software

Development Lifecycle

Amreth Chandrasehar

Abstract: Observability, basically meaning “better monitoring” is fundamental for applications to perform optimally while deployed in

any environment. The modern applications use distributed architecture, which makes it complex for the developers, SRE and DevOps

engineers to debug, analyze, isolate and fix issues. Enabling Observability from development to production helps the better quality,

understand how systems behave in different scenarios, reliability, discoverability, controllability and performance of modern

applications. This paper focus on enabling Observability in software development lifecycle, compares statistics on developer and

operations productivity before and after enabling Observability in applications.

Keywords: Observability, SRE, Software Development, SDLC, Productivity

1. Introduction

Today’s systems are more and more complex, with

microservices being distributed over the network and scaling

dynamically, resulting in many more ways of failure, ways

we can’t always predict. Believing that the perfect

systemcan be built, will lead to a false sense of security.

Investing in observability gives the ability to ask questions

to the systems, things never thought about before. Some of

the tools that can be used for this are metrics, tracing,

structured and correlated logging. [1]

Observability is about data exposure and easy access to

information which is critical when you need a way to see

when communications fail, do not occur as expected or

occur when they shouldn’t. The way services interact with

each other at runtime needs to be monitored, managed and

controlled. This begins with observability and the ability to

understand the behavior of your microservice architecture.

[2]

Observability is the level of visibility that the system grants

to an outside observer. It’s a property of a system, just like

usability, availability, and scalability. Monitoring is for

operating software/systems Instrumentation is for writing

software Observability is for understanding systems

Investing in observability means to be prepared to spend the

time on instrumenting systems, cope for the unknowns that

come in production. It can be very simple at the start, such

as some basic health - checks. Withmetrics, tracing, logging,

correlations, structured logging, events; combined together it

just brings a really powerful solution. When things may go

wrong, Observability helps to react and recover faster.

2. Basics of Observability

Observability is based on three main pillars: logging,

metrics, and traces.

 Metrics: Metrics are quantitative measurements of the

state of a system and used to track CPU utilization,

memory usage, disk space usage, and response times.

 Logs: Logs are textual records of events that occur in a

system and used to troubleshoot problems, identify

performance bottlenecks, and audit system activity.

 Traces: Traces are records of the interactions between

different components of a system and used to identify

root cause of issues in distributed systems.

Figure [1]: Logs, Metrics and Traces – 3 Pillars of

Observability

Metrics are very efficient at aggregating data over low -

granularity dimensions, which makes them a good choice for

service level monitoring type of things. However, metrics

don’t scale well at high cardinality, which is what is needed

for debugging and exploration.

Good logs, especially structured logs, play a huge role in

increasing our understanding of how applications behave.

Logs provides sufficient context to understand how events

occurred. Correlation of logs is also one of the first things to

incorporate with Request Id following a request through the

entire system. Logs can be expensive, logging libraries have

often non - trivial overhead, it can be challenging to manage

the volume of data, and sampling at logs level is not easy.

Enabling correlations using Jager or Zipkin makes it easier

to navigate from logs to traces. [3]

Distributed tracing is great for debugging and understanding

application’s behavior. The key to making sense of all the

tracing data is being able to correlate spans from different

microservices which are related to a single client request. To

achieve this, all microservices in your application should

propagate tracing headers.

Paper ID: SR231030132216 DOI: https://dx.doi.org/10.21275/SR231030132216 1417

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Most failures in the microservices space occur during the

interactions between services, so a view into the transactions

will help teams better manage architectures to avoid failures.

Observability provided by a service mesh makes it much

easier to see what is happening when your services interact

with each other, making it easier to build a more efficient,

resilient and secure microservice architecture. To put

microservices monitoring and observability to a next level

and bring the era of the next APM tools, an open, vendor -

neutral instrumentation standard would be needed like

OpenTracing. This new standard needs to be applied by

APM vendors, service providers, and open - source library

maintainers as well.

3. Enabling Observability in software

applications

To enable Observability, the organization needs to create a

central team that is responsible to implement below tasks:

 SDK/ Frameworks to be embedded in the application

 Defining Logging Standards, each application team

needs to adhere to

 Enabling APM and Tracing on all services in applications

 Emit, ensure metrics are discoverable to becollected by

the agents or tools

 Correlate logs, metrics, traces and events with tags

 Enable Machine Learning models to predict and forecast

a problem to avoid an incident

 Continuously asses the implementation and automate

process

Some of the challenges organizations face while

implementing Observability are:

 Using multiple tools, which creates isolation of data

preventing correlation of different datasets. This causes

high MTTD, MTTR resulting to more and prolonged

incidents.

 Detecting outages manually or from customers – This

occurs when data collected is not useful or alerts are not

configured, or the on - call support team are

overwhelmed due to flood of alerts and lack of proper

System Operating Procedures (SOP).

 No central Observability team managing the

implementations, leading multiple nonstandard, extreme

troubleshooting, siloed data storage, siloed technologies,

leading to higher incidents.

 Lack of staffing and skills

 Lack of operations and security process

While challenges exist, the implementers can use below

opportunities and tips toimplement observability:

 Collect telemetry data from all the components in the

system such as applications, infrastructure, managed

services, developer platforms

 Choose an observability platform that supports the

telemetry data generated by the applications

 Configure the observability platform to collect and store

telemetry data efficiently

 Develop dashboards and alerts to visualize and analyze

the collected data.

 Provide training to teams on how to use the observability

platform.

 Collect Mean - time metrics, these are the MTTx metrics.

 Implement single, consolidated Observability platform

Observability of a system is not an after - thought after the

deployment is done. If not designed, at that level of the

deployment lifecycle, successful observability will be by

accident, if it’s achievable at all. Without proper

observability, enforcing process based, codified desired state

is accidental at best. What enables successful observability

for a given system are a collection of what already existing

different practices encompass. These include monitoring,

tracing, log aggregation, and alerting that produce various

metrics that provides a view into server performance, service

availability, and capacity consumption. Well designed and

holistic approach to managing these insights results in an

observable system with no blind spots.

4. Collection and storage of Observability data

Once observability has been implemented, data needs to be

collected from various sources and stored in a central

database or data lake for the data to be accessible to query,

building dashboards and creating alerts. Below is the high -

level architecture of implementing end to end Observability

platform in an organization.

The observability agents need to be deployed on Virtual

Machines, Containers, Databases, Managed Services,

Vendors, etc and sent to a streaming service (example

Kafka). A streaming service helps to collect, store

Observability data before the data is pulled by the platform

for further analysis. The Observability platform helps to

create queries to debug issues, create dashboards and also to

apply Machine learning models to predict and forecast

issues. Alerts are also created in the platform before being

sent to on - call service platforms.

Paper ID: SR231030132216 DOI: https://dx.doi.org/10.21275/SR231030132216 1418

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure [2]: End to end Observability Platform

5. Using Observability data in Software

development lifecycle

Enterprises adopt Observability to avoid downtimes,

innovate, increase agility and confidence in organizations

and for reliable and faster development.

Reducing manual changes and automating as much as

possible is a good practice. Observability as code can be

achieved using any templates, SDKs, frameworks of tools

that helps to automate the configuration and management of

Observability assets such as dashboards, alerts, resources,

upgrade, platform changes.

Observability - driven development (ODD) adds another

layer to software development by encouraging the

development team to think about the application availability

and uptime throughout the development process and like

unit - testing development, wrap the code with more verbose

logging, metrics and KPIs. This gives the IT operations team

more data on the application and improves overall

observability, allowing an organization to detect predictable

and unpredictable permutations of failures that may occur in

the future. ODD observes the behavior of a system

throughout the entire development cycle in order to learn

what behavior is normal and abnormal, and to detect

potential weaknesses. [7]

Observability provides everything with a real - time status of

a product–this includes software developers, DevOps and

any other department that requires it. Each role has different

needs. Software developers need to know why a certain

feature must be added or developed in order to understand

its business value and prioritize it over other features or

updates. If a certain feature is likely to require many future

updates, this also needs to be taken into consideration in the

development phase so that the code can be adjusted easily

without negatively affecting DevOps teams when they test

and deploy the feature. These are just examples of things

that must be taken into consideration during the

development process. Organizations must be able to create

transparency and effective communication between the

different departments and roles. [7]

A strong proactive observability platform can predict and

address issues before they occur, thus increasing

effectiveness and speed when it comes to updating and

tracking changes, as well as releasing new features. It

simplifies complexities and management and allows to

automate operations so that organizations can maximize

efficiency.

Benefits of ODD include:

 Common goals.

 Shared metrics.

 Execute on goals and recognize results.

 Performance guidelines.

 Application governance strategy.

 Alignment between IT and business perspectives.

Employing ODD when developing cloud applications is

critical. This is due to the highly distributed nature of cloud

architectures, increasing the chances of a failure

exponentially compared to traditional systems. As a result,

developers should be educated to think and implement

observability to create highly available and resilient

To get started with ODD, OpenTelemetry is a complete

solution that solves the problem of collecting telemetry

metrics. Its mission is to develop an open, industry - wide

standard for telemetry data, and to provide reference

implementations with universal tools that support metrics,

tracing, and logs. OpenTelemetry currently supports Python,

Golang, JavaScript, Erlang, Java,. NET, PHP, Rust, C++,

Ruby, and Swift.

Paper ID: SR231030132216 DOI: https://dx.doi.org/10.21275/SR231030132216 1419

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure [3]: Open Telemetry SDK, API and Collector architecture

The OpenTelemetry specification demands an API and a

SDK for its metrics architecture. The API defines how to

capture metric data, while the SDK processes, queries, and

exports it. A user can inject our API elements into their

application with no compilation issues; however, the API on

its own will not be able to generate any useful metric data.

After a user installs the SDK, the library aggregates, filters,

and distributes API - captured data to any number of

visualization backend services. [6]

The API consists of three major components: metric

instruments, meter, and meter provider classes. Metric

instruments are what a user injects into their code at strategic

locations to capture data of interest. The meter is responsible

for creating these instruments and managing them in an

internal registry. The meter also provides a single endpoint

for collecting data from all operational metric instruments.

Finally, the meter provider creates a global meter instance

and allows users to specify certain aspects of the pipeline.

[6]

Figure [4]: Instrumenting code and capturing labeled data

6. Measuring impact with and without

Observability in Software Development

Implementing Observability helps to reduce outages, faster

MTTD, faster MTTR and cost savings from incidents and

customer complaints.

Below are the metrics that can help track the impacts. The

data is collected over 3 - year period from incidents in

organizations. All the data given are an average of incidents

with and without Observability.

S. No Metric Without Observability With Observability Impact

1 MTTR 5 hours 33 minutes 42 minutes 87.4% reduction

2 Total Number of incidents 234 121 48.3 % reduction

3 Customer reported or manually detected incidents 77 12 84.4 $ reduction

4 Number of incidents resolved without customer impact or downtime 133 53 40%

5 MTTD 56 minutes 6 minutes 89.3%

6 Uptime/ Service availability 99.9% 99.95% 0.05%

7 Incident Response Speed 5 minutes 4 minutes 20%

7. Future Work

Observability helps in many aspects in an organization.

More analysis needs to be done to capture Customer

Satisfaction and Reduction in Churn metrics, false positives

in alerts and the 5 pillars of data observability.

Paper ID: SR231030132216 DOI: https://dx.doi.org/10.21275/SR231030132216 1420

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

8. Conclusion

Observability is key to a successful operation of

applications. It enables customers and developers of

applications to get more insights into usage patterns,

debugging data and maintain higher SLAs. With modern

software development becoming more complex with

distributed systems, applications hosted in different clouds

and regions, it should be mandatory to incorporate

Observability from the initial stages of development and

take it to Production.

References

[1] https: //www.infoq. com/news/2018/06/observable -

distributed - systems/

[2] https: //medium. com/[at]chamilad/a - primer - on -

observability - for - dynamic - organizations - part - 1 -

43c577ded1d3

[3] https: //www.infoq. com/news/2018/06/observable -

distributed - systems/

[4] https: //www.riverbed. com/blogs/it - performance -

management - observability/

[5] https: //www.honeycomb. io/blog/forrester - tei -

benefits - observability - roi - 2021

[6] https: //aws. amazon. com/blogs/opensource/aws - adds

- observability - metrics - to - the - opentelemetry - c -

library/

[7] https: //devops. com/observability - driven -

development - from - software - development - to -

devops - and - beyond/

Paper ID: SR231030132216 DOI: https://dx.doi.org/10.21275/SR231030132216 1421

https://www.infoq.com/news/2018/06/observable-distributed-systems/
https://www.infoq.com/news/2018/06/observable-distributed-systems/
https://medium.com/@chamilad/a-primer-on-observability-for-dynamic-organizations-part-1-43c577ded1d3
https://medium.com/@chamilad/a-primer-on-observability-for-dynamic-organizations-part-1-43c577ded1d3
https://medium.com/@chamilad/a-primer-on-observability-for-dynamic-organizations-part-1-43c577ded1d3
https://www.infoq.com/news/2018/06/observable-distributed-systems/
https://www.infoq.com/news/2018/06/observable-distributed-systems/
https://www.riverbed.com/blogs/it-performance-management-observability/
https://www.riverbed.com/blogs/it-performance-management-observability/
https://www.honeycomb.io/blog/forrester-tei-benefits-observability-roi-2021
https://www.honeycomb.io/blog/forrester-tei-benefits-observability-roi-2021
https://aws.amazon.com/blogs/opensource/aws-adds-observability-metrics-to-the-opentelemetry-c-library/
https://aws.amazon.com/blogs/opensource/aws-adds-observability-metrics-to-the-opentelemetry-c-library/
https://aws.amazon.com/blogs/opensource/aws-adds-observability-metrics-to-the-opentelemetry-c-library/
https://devops.com/observability-driven-development-from-software-development-to-devops-and-beyond/
https://devops.com/observability-driven-development-from-software-development-to-devops-and-beyond/
https://devops.com/observability-driven-development-from-software-development-to-devops-and-beyond/

