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Abstract: Today, many applications exploit artificial intelligence and machine learning algorithms to perform various tasks. However, 

creating a solution for tasks like image prediction or language translation generally takes significant effort by many teams. These effort-

intensive actions can potentially be shortened by creating fully serverless cloud pipelines that anyone can customize and employ. The 

problem is that despite the numerous cloud services that support multiple AI ML frameworks, creating and fully cloud-dependent 

execution will take considerable time. Many sectors are migrating to applying artificial intelligence and ML paradigms on their day-to-

day tasks. However, the internal logic and learning process need to be regulated and understood. Recent research shows that interest in 

cloud usage is proliferating daily. Major cloud services may attract many customers if they make their services cost-effective and pleasant 

to use. Tech-savvy people create off-the-shelf clever cloud services to perform daily tasks like object detection, classification, recognition, 

classification, and image captioning without in-depth knowledge about the composition underlying knowledge. Despite web applications 

that hold backend execution logic, training and executing this knowledge are costly and limited to leading technology companies. Such 

reasons inspire using emerging technologies to create modular and fully serverless cloud capabilities. With the recent advent of serverless 

cloud computing architecture, with low costs, management overheads, and serverless execution, many sectors and companies can create 

cloud modules and put them online so everyone can exploit them. By making this solution extremely straightforward to use or even by 

automating everything behind the scenes, people can easily capitalize on recent scientific developments.  
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1. Introduction  
 

With the recent advances in artificial intelligence and 

machine learning, engineers build data processing and 

training pipelines in the cloud using resources offered as-a-

Service. These products are useful for building machine 

learning pipelines in the cloud. It is now possible to automate 

the deployment of ML systems using Infrastructure-as-Code 

tooling, as well as managing data location and costs through 

intelligent operations and a job execution engine. These tools 

and policies support various services, including data lakes, 

queues, databases, batch jobs, Kubernetes clusters, and 

serverless data processing pipelines. To optimize ML 

inference pipelines in the cloud, consider how to take new ML 

models, automatically reconfigure the pipeline as necessary, 

and deploy it to the cloud. An SLO for latency might be 

added, such that the new configuration is constantly 

optimized to meet the latency target. The techniques used in 

data processing, such as Infrastructure-as-Code, event 

sourcing, distributed queues, or edge clouds, can inspire how 

to automatically optimize ML inference pipelines at higher 

levels of abstraction.  

 

The answer lies in data-driven microservices as an 

architecture: pipelines for versioned ML data—raw data 

traces, training datasets, and model artifacts—are all precious 

data assets that are constantly evolving. These usage-based 

data lakes drive cloud economics by scaling data management 

costs with actual data consumption. Ideally, data pipelines 

would also be deployed as versioned data assets, but this 

brings new challenges for lifecycle management and 

migration of data artifacts. Full-fledged Infrastructure-as-

Code tooling and policies are emerging to automate the 

management of data pipelines cost-effectively, but with less 

support for natural language processing models. Not 

surprisingly, there exist considerable differences in how 

models are consumed, deployed, monitored, and scaled. This 

makes it all the more crucial to come up with abstraction 

patterns and generic workflows to bridge the gaps between 

these conceptual models.  

 

1.1 Background and Significance  

 

The rapid democratization of artificial intelligence (AI) tools 

has put advanced machine learning capabilities into the hands 

of users from a diverse range of disciplines. For practitioners, 

academics or developers, orchestrating the underlying tools to 

build and deploy AI-enabled applications often becomes a 

chaotic endeavor involving a disconnected landscape of 

infrastructure, cloud providers, platforms and services. These 

are complex ecosystems that mature quickly and exhibit a low 

level of stability. Construction of models is typically 

accomplished in notebooks and development environments 

on local machines. Deployment involves a haphazardly 

crafted collection of cloud services and ad-hoc infrastructure-

as-code (IaC) that require consistent repository-wide 

configuration across projects which operate against different 

data, environments and hierarchies. The amount of replicated 

infrastructure knowledge is substantial, but the amounts 

required are difficult to learn, and maintenance is labor 

intensive. 

  

Low-code or no-code solutions offer high-level abstractions 

and ready-made components for visually orchestrating cloud 
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services. Implementations are needed to make their 

composability compatible with existing cloud provider 

services. Where deployed modern AI workflows are tightly 

bound to cloud providers and services, potentially leaving 

them with little control over how data or models are used, and 

incurring financial foreclosures. Most existing AIOps 

workflows are decomposition-focused and tailored to their 

deployment environment, requiring local implementation 

modifications to operate. Creating privacy-aware alternatives 

that still offer the workflow capabilities and tracking of cloud 

platforms remains an ongoing effort. Overall, agility is 

currently lacking, and weak tracing and observability needs 

to be augmented through observability scaffolding.  

 
Figure 1: AI workflows with infrastructure-as-code and 

serverless cloud patterns 

 

2. Understanding AI Workflows 
 

AI workflows often mix multiple processing units with 

specialized architectures defining a complex data 

management challenge. Applications with expensive 

computational tasks that engage powerful computers can run 

cheaper model training and inference on specialized GPUs. 

Using heterogeneous systems opens up the possibility of 

significant cost savings: 10× over optimized single-resource 

applications for model inference and training in prior 

examples. However, optimization exists into increasingly 

fragmented execution environments as orchestration can rely 

on a complex collection of systems. Scientific applications 

using AI models are increasingly multi-resource. Both 

specialized architecture, such as GPUs, FPGAs, and TPUs, 

and portable code and reliable networks that enable 

replication of environments across systems have aided this 

growth. Early designs with a single computer and software 

stack have evolved to horizontally scale up the use of 

powerful architectures for larger problems or multi-stage 

workflows. The latter can run some steps with expensive 

computers and others with cheaper execution, like inference 

and training for AI models. Unfortunately, this multi-resource 

approach also compiles a part of complexity.  

 

Deployments of modern workflow systems require services 

on each resource that connect back to a workflow controller. 

This architecture centralizes coordination, simplifies 

management, and allows services to be added as featurized 

components, but at a detriment of the user experience. 

Development involves deployment across a multitude of 

systems and languages while integrating with file systems and 

managing secrets. These services can also introduce single 

points of failure. Hybrid software-as-a-service approaches 

mitigate many of these concerns by offering a cloud-hosted 

coordination service. Instead of requiring users to deploy and 

maintain code, the service ensures a persistent controller, 

manages authentication and secrets, and grants access to 

many resources across sites. In addition, effective service on 

the cloud can provide monitoring, scaling, and other features. 

However, the per-user cost of large cloud deployments makes 

them impossible for many smaller groups. These groups have 

often bought into a multi-resource deployment along with a 

cloud coordination service. Most workflows transmit data via 

the workflow controller or some common/distributed data 

store. With computing costs approaching zero, it is up to data 

transfer to mitigate costs.  

 

2.1 Definition of AI Workflows  

 

Though there is no universally accepted definition, workflows 

generally refer to an orchestrated and repeatable sequence of 

tasks or processes that transform a set of inputs into a defined 

set of outputs. Scientific workflows, then, are those tasks or 

processes that implement a scientific process, model, 

methods, or analysis. Coupled HPC workflows are simply a 

subset of scientific workflows that include at least one 

flexible or loosely coupled (remote or closely colocated) pair 

(s) of tasks. AI-coupled workflows are defined as those 

workflows that use advanced AI methods, including ML, 

statistics, probabilistic reasoning and knowledge 

representation for decision-making, exploration, and 

simulation or analysis. For scientific endeavors, workflows 

range in size and scope from small and relatively simple to 

very large, ultra-scale, and complex. For example, systems 

such as the Sedimentary Basin Scenario (SBS) couple a 

million time-stepped runs of a small simulation executed at 

an exascale HPC system. As such, SBS is considered a 

mountainous proof-of-concept example for best practice AI-

coupled HPC workflows. While this work describes AI-

coupled HPC rather than AI-coupled workflows in general, 

the timely delivery of exascale-ready capabilities to take 

advantage of new exascale architectures is modeled as an AI-

coupled workflow, and prediction and design capacities are 

captured for very different domains and incasting time 

horizons. For scientific workflows, many have been 

described, drawn, and classically modeled as directed acyclic 

graphs (DAGs). DAGs have discrete nodes, each of which 

implements a processing step, including obtaining, 

processing and storing data, while extended DAGs or Petri 

nets can be used to describe state-ful [semi] continuous state 

tasks. For the construction of workflows, task (executable) 

and dataset libraries are needed, as well as a specification of 

intended behavior for an entire execution of repeatable 

workflow instance (s).  

 

Equ 1: Total Deployment Time with IaC.  

 

 
 

 

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1577 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 12, December 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 

2.2 Components of AI Workflows  

 

AI workflows are often combinations of well-defined 

compute and data-center resources that are composed into a 

larger workflow. Airflow, directed acyclic graphs, or a chain 

of script processes are common patterns to organize workflow 

execution as a whole, while the specification and 

management of individual compute and data resources are 

often heterogeneous amongst infrastructure providers, 

versions, and vertical integration. The properties of AI 

workflows lead to a clear separation of concerns between the 

workflow orchestration and the actual execution of individual 

compute and data processes. This is analogous to 

Infrastructure-as-Code for regular workflows, and sufficient 

abstraction and package management are available. However, 

serverless infrastructure introduces new modes of computing 

that change the properties of how and when this division of 

labor should occur, what abstractions and editing methods are 

appropriate, and what access control and deployment 

challenges arise, especially when composing them with 

traditional infrastructure. This review aims to cover 

suggestions for abstracting and implementing AI workflows 

accordingly, do’s and don’ts from experience operating multi-

cloud training and retraining workflows, and open questions 

to engage in, especially in the context of sustainable AI.  

 

AI workflow patterns enable accessible experimentation and 

deployment of complex AI systems through individual cloud 

vendors’ managed data and compute services. The abstraction 

of a cloud training workflow consists of pre/post processing 

services and a core training cloud function with UUID 

input/output specifiers defining its data access. Refactoring a 

cloud training workflow into a serverless cloud function often 

allows extra optimizations to be made, but at the cost of 

debuggability due to concerns over execution context and 

data access, as well as potential vendor lock-in. The workflow 

patterns covered here aim to alleviate the need for abstraction 

beyond the compute logic. Cloud function dependency 

scheduling is particularly important for both cost and MLOps, 

but outside of existing vendors’ systems, complicated 

handling is required to scale or debug cloud functions on local 

development environments.  

 

2.3 Challenges in AI Workflows  

 

AI is rapidly finding uses in reevaluating past scientific 

outputs and creating future discoveries. A plethora of ML and 

AI techniques are becoming available for scientists to 

incorporate into their workflows. Resources empowered by 

these techniques often rely on affordable services, so 

performance and efficiency should be paramount. 

Meanwhile, many scientists who need such resources can’t 

spend weeks learning about serverless cloud deployments or 

data privacy considerations. Here, we’ll assert a proposal—

given the right tools and practices, scientists can train on the 

tools instead. The desired outcomes of AI-enhanced resources 

probably could be met with an initial investment of ten to 

twenty person-hours of tutorial-style documentation teaching 

scientists how to illuminate these abstracts themselves. Then, 

repeat themselves later or make something new.  

 

While the autodidactic nature of these abstractions means that 

it may come with hidden complexity and excessive input on 

the part of the user, they also constitute a resilient and long-

term solution. Given use cases to be written, the right arena 

(modeling languages), target hardware (cloud shape or 

domains), and associated policies (cost, performance, 

security) could come together in many unexpected and 

delightful ways. But the right tools need to be built, framed, 

and packaged up for multi-modal analysis—and it is not a 

small task.  

 

Teams of scientists, engineers, cloud architects, and software 

developers need a holistic understanding of the requirements 

for modern AI-enhanced workloads. Resources will often 

require multiple heterogeneous computing capabilities. The 

performance of a workflow that handles simulation and AI 

tasks on separate services hinges on how best to deploy 

actions across these resources. Their costs are equally 

important as a user might desire expensive AI tasks to run 

remotely on another host. But this design requires securing 

private endpoints, high bandwidth paths, access to multiple 

platforms, and new connections, credentials, or service aliases 

on every run.  

 

3. Infrastructure-as-Code (IaC)  
 

Infrastructure-as-Code (IaC) is a powerful and efficient 

paradigm for managing and provisioning on-premises and 

cloud-based infrastructure resources. Automation of 

infrastructure management tasks enables a more reliable, 

traceable, stable, and repeatable infrastructure, with less 

human error. With the rise of cloud computing, IaC has 

matured into a strong and well-documented ecosystem of 

tools and libraries.  

 

Many cloud providers allow customers to create and manage 

arbitrary infrastructure resources in a cloud environment via 

an API, automating tasks that had to be performed manually 

before. This set of operations is part of cloud automation. 

Among these operations, provisioning new resources in a 

cloud environment is the most common, and sometimes the 

only operation. It either creates a new instance of a resource 

or recreates a resource of the same type as the previous one. 

This is defined as resource automation. Definitions of 

automation, cloud automation, and resource automation differ 

in the level of granularity, but the terms ‘automation’ and 

‘cloud automation’ are often derived from the word ‘resource’ 

[7]. The automation of infrastructure management tasks such 

as provisioning, resourcing, and measuring is encouraged. 

Particularly, it enables a more reliable, traceable, stable, and 

continuous state of the managed infrastructure with less 

human costs and human error.  

 

Similar to application code, IaC is a text document that 

defines the desired state of an infrastructure, together with a 

set of operations for achieving that state. Infrastructure is 

defined by structure declarations and constraints, while 

operations are defined by mutable operations, which change 

the target document/output state and provide control flow 

mechanisms for integrating with programming languages. It 

is possible to define infrastructure in various text-based 

formats/services, including CloudFormation, Terraform, and 

Ansible. A common chart format, ‘YAML’, is used to 
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parameterize a document’s desired material in a text file. A 

YAML document can represent one or many charts of the 

same or different formats. The charts are to be deployed on 

the Kubernetes platform using Helm.  

 

 
Figure 2: Infrastructure-as-Code (IaC). 

 

3.1 Overview of Infrastructure-as-Code  

 

Infrastructure-as-Code (IaC) primarily refers to the use of 

code to facilitate the definition and management of IT 

infrastructure. Specifically, it is the use of code to automate 

infrastructure provisioning and management, and the 

functioning of an original infrastructure in computer 

hardware, software devices, virtual machines (VMs), and 

networks through the coding definition of configuration files 

in a system. IaC is an essential component of software 

DevOps technique, allowing the emergence of modern cloud 

computing platforms and application. IaC enables defining, 

provisioning, and deploying cloud deployments through 

codes, allowing organizations to operate a cloud environment 

of any size when the cloud services consumed are 

appropriately utilized.  

 

On-demand provisioning of traditional cloud deployments as 

well as the in-person involvement of operators has become 

obsolete through leveraging IaC tools. As the cloud 

computing market expanded beyond hyper-scalers, this 

approach has now adopted by tier-two cloud vendors such as 

DigitalOcean, Vultr, and Linode, as well as many countries’ 

home-grown cloud providers (notably Alibaba, NTT, and 

OVH) whose availability zones can only be deployed through 

their web UIs.  

 

At the basic level, IaC provision virtual machines, VPCs, and 

security groups through a code that is themselves interpreted 

and executed against cloud vendor’s APIs. However, vendors 

differ widely concerning deployment options, such as OS 

images types and hypervisors [6]. To address this, multi-cloud 

IaC tools such as Terraform emerged, which define high-level 

codes and natively support backends in the APIs of many 

major cloud vendors. Using IaC tools far simplifies the 

process of provisioning cloud deployments mentioned above, 

as existing tooling can provision complex VMs on a cloud 

provider’s APIs through relatively simple code.  

 

3.2 Benefits of IaC in AI Workflows  

 

In addition to their benefits for reproducibility, IaC 

abstractions can provide software engineering value to AI 

systems, particularly in terms of the extraction of standard 

functionality that can be shared across multiple AI 

workflows. Modern cloud infrastructure allows developers to 

provision their AI workflow infrastructure as code. This 

allows abstraction of all AI workflow infrastructure in a 

portable manner that can be reused across AI projects and by 

project collaborators. Furthermore, infrastructure defined as 

code can also be treated as software, so investment can be 

made in code reviews, and tests for its correctness, and ANY 

required runtime environments can simply be added there.  

 

The notion of reusable abstractions for standard pieces of 

infrastructure is well-known in software engineering. Apply 

function abstractions can be created in software tools and then 

those software tools can be composed out of standard pieces 

of functionality. In cloud infrastructure, common examples of 

reusable and composable abstractions include VPCs, subnets, 

cloud functions, queues, virtual machines, etc. Once the 

abstraction is created, it may be more difficult to modify and 

extend custom use cases but its standardized usage greatly 

simplifies onboarding new team members and allows for 

more eyes on the code. Standardization across a team of AI 

practitioners then leads to better reproducibility as the 

infrastructure with any pronounced operational needs stays 

consonant across studies. This effect compounds when 

similarly resource-consuming pieces of infrastructure can be 

packaged as reusable abstractions that easily slot into new 

workflows.  

 

3.3 Popular IaC Tools and Frameworks  

 

Over the years, there have been numerous attempts to include 

the idea of Infrastructure as Code (IaC) in the DevOps 

movement and the use of cloud resources, and these 

fundamental ideas have been widely implemented in different 

tools and cloud providers. Cloud service providers (CSP) now 

offer their own tools that often allow higher exploitativeness 

but at the same time tightly link users to the vendor’s 

ecosystem. CSPs often also offer services that go beyond 

setup-as-code at the level of single components, meaning the 

integration of several pieces of hardware or software to offer 

a unified interface. This might be used as an additional 

possibility for scaling up pipelines but comes at the cost of 

closing the pipelines to vendor-specific setups, in many cases 

rendering them unportable and acting against the devops 

principles.  

 

Terraform, for example, allows plug-ins for cloud formations 

that can be transported across cloud providers. It needs to be 

mentioned the challenges of inputting new or larger cloud 

resources, as these assumptions affect the flexibility of the 

approach. Cloud users often suffer from the high-cost 

variation of their pipelines across cloud providers. According 

to the design goals, the following aspects might be relevant to 

defining the relevant parameters of an IaC: user had 

components or orchestrations, components’ invocation and 

configuration; and cloud provider options. After initializing a 

project, a high level library API could be used to specify a 

pipeline. The resulting IaC resource would typically comply 

with the functional and performance requirements.  

 

4. Serverless Computing 
 

Serverless computing is an emerging model of cloud 

computing in which the cloud provider runs a server or 

servers and dynamically manages the allocation of resources. 

The term is somewhat misleading, as serverless services are 
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not running with no servers, but the provisioning and 

management of servers is completely hidden from the user. 

The servers potentially as part of FaaS (Function as a Service) 

or CaaS (Container as a Service) serve stateless applications. 

In such services an application service can be easily scaled, 

for example if it is triggered by an incoming HTTP request, a 

message in a queuing system or an event in the object storage. 

After a predefined period of inactivity the service is 

automatically put to sleep, suspended and its resources 

released.  

 

The challenges of serverless and event-based computing in 

general are mainly in state management. Such applications 

typically have to deal with the problem of sharing, persisting 

and recovering state between stateless tenants over the highly 

dynamic execution environments. While some serverless 

frameworks developed for scientific applications use the 

stateful services, other designs either follow the distributed 

model or provide such capability in the framework itself. The 

former approach uses cloud queuing systems or object storage 

for state management, whereas the latter introduces additional 

logging and recovery mechanisms. The success of social 

media applications and modern cloud computing opened a 

path to on-demand processing of enormous quantities of data 

captured in real-time.  

 

One of the early examples of higher-level serverless APIs is 

AWS Lambda. This service allows processing of streams of 

input data using JavaScript, Python or Java code, which is 

later executed from the cloud with little information about the 

underlying infrastructure. Specified FaaS functions are 

triggered by input data typically placed in the cloud object 

storage, data streamed by the message queuing system or 

HTTP calls to the API gateway. In such applications cloud 

object storage serves as an input buffer. During the processing 

each FaaS invocation is called with the event parameter that 

includes the object key of the event triggering the code. The 

input object is expected to be a single batch of images, which 

will be again uploaded to cloud object storage after 

processing. A predefined model file is always fetched from 

object storage before inference. Therefore, the FaaS function 

is stateless with the side effect of calls to the cloud object 

storage.  

 

The serverless ecosystem is still in its early development but 

having recently studied a few examples of serverless 

scientific applications, we can observe the emergence of a 

layered architecture of the ecosystem. From the bottom up, 

we have the basic layer of cloud storage and communication. 

This includes cloud object storage, queue systems or caches. 

This layer provides state management for the stateless 

FaaS/CaaS layer. Next come various processing models 

relevant for scientific users and software engineers, such as 

task execution models, streaming data processing, interactive 

work, batch processing or container orchestration. Finally, the 

top layer includes ready to use frameworks for scientific 

applications that typically provide high-level APIs or user 

interfaces. Most of such frameworks consist of similar 

components, some of which are related to the serverless 

services offered by the cloud providers. The framework 

usually provides the basic services and deploys computing 

resources on the cloud.  

 

Equ 2: Serverless Cost Function.  

 

 
 

4.1 Introduction to Serverless Architecture  

 

A new paradigm has emerged in cloud computing known as 

serverless computing. Historically, in the client-server based 

model of computing, a client with limited computational 

capability offloaded tasks to a powerful server. Handling such 

offloaded tasks required significant effort on the part of the 

server. Maintenance, upgrades, and other such operational 

tasks consumed excessive resources. Serverless computing 

endeavors to free a user/application from exactly such 

burdens. Developers are provided with an event-driven 

framework for implementing functionalities that they are only 

charged for when executed. All functional and operational 

concerns are delegated to a cloud service provider, and client 

implementations consist of trivial REST API calls to 

functions hosted on the cloud. These functions, known as 

Lambdas, are stateless and short-lived self-contained code 

with both a triggering event type and a pair of triggering event 

values. Triggering events can be of various types but they 

share the commonality that they are events on which the 

function is based. They are generated by an external service 

checking for the definition of an English word.  

 

When a triggering event of type T and value V occurs and 

there exists at least one Lambda s such that s was deployed 

with event type T/Event value V, then physical resources are 

provisioned to execute the function s. Lambda functions, 

programmed in one of the supported languages, only process 

event-triggered requests. Programmers write code to process 

triggering events but do not concern themselves with 

scheduling policy or any other operational mechanism. 

Serverless computing has several characteristics that 

differentiate it from conventional types of cloud computing. 

One advantage is flexibly scaling, where resources relevant to 

demand are allocated automatically and/or deallocated when 

not needed. These powers of elasticity extend to deploying 

infrastructure. Serverless orchestration platforms address this 

type of infrastructure using configuration files.  

 

A serverless architecture integrates software and hardware 

components on a cloud provider that enable 

users/programmers to access effortless functionalities. In this 

architecture, there is no resource management to execute user 

tasks. Users obtain the output of their tasks after some 

application-dependent duration, but they are charged only for 

resources used in executing tasks. Anything that does not 

support application functionality is disguised from 
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programmers by cloud providers. For cloud providers, 

serverless computing gives rise to another profitable business, 

architecture-as-a-product. 

 

 
Figure 3: Serverless Computing: Architecture 

 

4.2 Advantages of Serverless for AI  

 

Recent advances in deep learning (DL) have spurred research 

in training large models over hundreds of GPUs. In light of 

this rapid growth, organizations are discovering that adapting 

the current infrastructure does not provide a cost-effective 

solution. Instead, greater needs for flexibility and elasticity in 

ML workloads lead to new infrastructure requirements. Since 

early 2014, several cloud vendors have introduced serverless 

options for both compute and ML. Leveraging the existing 

serverless platforms to build ML workflows is a novel and 

feasible direction. Serverless has the following key 

advantages for AI workloads:  

• Cost-effective on-demand pricing model. Serverless 

clouds offer cost savings over running workloads on 

Reserved Instances, On-Demand, and Spot VMs. First, 

the serverless pricing model usually adopts the cost-per-

invocation + cost-per-execution-duration scheme, 

charging based on number of requests and execution 

time. This makes the costs more fine-grained. Secondly, 

with a malfunctioning subprocess, debugging could take 

some iterations. An IaaS timing measurement requires 

stopping the VM, while a serverless measurement costs 

only the current function invocation. Thus serverless can 

effectively help in the pre-release testing phase.  

• Automatic capacity provisioning and scaling. With the 

rapid growth of enterprises, having on-premise 

infrastructure and resizing it according to your needs 

becomes a hard task. Serverless programming abstracts 

the underlying layer at an extreme degree. A function can 

be deployed with just a few clicks and manage as many 

requests at once. Thus coding just needs to care about the 

algorithm and input/output data. Serverless clouds would 

allocate sufficient resources and service to all 

invocations.  

• Highly concurrent execution scheduling. Serverless 

programming has partially taken over managing the ML 

backend. Users just need to write the business logic. In 

many cases, there are similar requests that can benefit 

from efficient batching. Serverless clouds are able to 

aggregate an exceptionally large number of requests and 

utilize parallel execution, yielding a higher throughput. 

A highly concurrent execution can reduce the warm-up 

times, since it is less likely to starve the cold-start 

functions.  

• High survival time. Some companies choose non-

renewable configurations to avoid excessive costs. In 

traditional IaaS architectures, an expiring VM needs to 

be stopped at once, and all the in-process requests, 

including training jobs and inference ones, would fail. 

Serverless primarily handles time-limited functions, and 

execution time could typically go up to many hours. 

While some requests may fail, a lot of requests could be 

wrapped up.  

 

4.3 Common Serverless Platforms  

 

Often referred to as Function-as-a-Service (FaaS), serverless 

computing is a cloud computing model where in the Ideal 

Case a third party serverless vendor or cloud provider allows 

developers to run applications without provisioning servers. 

While reverting hosting responsibilities is common in PAAS, 

IaaS, and its underlying virtualization-based cloud 

infrastructure, it rapidly emerged a new generation of 

Platform-as-a-Service offerings by major cloud providers. 

The first service offered in this category was Lambda, which 

experienced significant adoption in mid to late 2016. All the 

major cloud service providers now offer similar services.  

 

Serverless computing is based on an event-driven 

architecture. It works on the premise that developers build 

compute units within the cloud called functions. These 

functions are responsible for responding to specific triggers, 

which may take the form of events, messages, or requests 

from clients. After deployment, a cloud provider takes full 

ownership of these functions. The provider then collects 

client requests, invokes the responsible functions as per their 

triggers, and returns the results of execution back to the 

clients. The provider performs task scheduling and operates 

monitoring workloads on a serverlessly provisioned cluster. 

Developers need to only write the code processing client 

requests. Functions are generally stateless, and need to access 

state from persistently store sources, such as relational 

databases or NoSQL stores.  

 

When a function is executed for the first time or has not been 

executed for a while, the cloud provider may need additional 

time to start a new container that runs the function. This delay 

is referred to as a "cold start. " Cold starts occur when the 

service is unable to operate on already provisioned compute 

nodes because of idle time. It is either because a function has 

not been executed for a long time or, it is a brand new function 

not installed in the provider's cluster. Functions are sized with 

memory. Depending upon the memory size, a fixed number 

of vCPU or any combination of vCPU with different clock 

speed gets assigned to it from the underlying node.  

 

5. Integrating IaC with Serverless Patterns 
 

With recent advances in Machine Learning (ML), it is rapidly 

transforming industry verticals, from healthcare to robotics 

and finance. Cloud providers offer many platforms for 

running ML training jobs at scale. These platforms involve 

configuring a large number of hyper-parameters, supplying 

datasets, model configurations, and infrastructure to deploy 

ML workloads. These tasks can quickly become complex, and 

industrial best practices have emerged for deploying ML 

workloads. A unified infrastructure service for 

operationalizing AI applications and minimizing 

development time is available.  
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Infrastructure-as-Code (IaC) has emerged as a popular 

technique to build cloud resources. Development teams can 

manage and provision cloud infrastructure using 

configuration files. This shifts the infra-coding burden from 

teams dedicated to building cloud resources to developers, 

and thus drastically reduces complexity. Popular tools are 

used to provision infrastructures as code. IaC 

implementations can be flexible and provide capabilities such 

as common components for reusable modules and testing. 

This flexibility can empower users to build complex setups; 

the question remains how best to use them.  

 

Configuration files to specify the cloud infrastructure are 

slowly being developed as scripts to build very complex 

workflows. State machines rapidly become quite complex and 

coupled buildings, similar to a monolithic setup in a 

programming language, becomes common. This state 

machine is the orchestration implementation for the AiML 

workflow, but it should not be committed to code for various 

reasons. Most importantly, the orchestration tools are not built 

in most IaC, and an orchestration tool needs to connect 

different building blocks that come from different vendors. 

There is a need for lightweight tools that ease the 

orchestration burden of distributed AI/ML workflow 

supporters.  

 

5.1 Designing Serverless AI Solutions  

 

Illustrate how to build an end-to-end serverless AI solution. 

Following the Common Workflow for Data Mining approach, 

the solution consists of data preparation, data analysis, results 

presentation, and deployment, as depicted in Building data 

preparation and data analysis components on cloud services 

is relatively straightforward; however, it necessitates the use 

of several closely coupled cloud functions in the cloud 

function deployment model. For the best overall latency, a 

cloud function must be executed close to data ingestion. After 

calling a few cloud services and executing other functions, 

depending on intermediate results, it must invoke the cloud 

function that runs the machine learning model. Still, no cloud 

function is small enough to fit into a single execution. As 

cloud functions must be coordinated carefully, debugging and 

failure recovery can become challenging. In case of function 

failure, potentially 10 cloud functions must be re-executed in 

order to process all required data tuples. As a result, 

developing a data analysis module is less straightforward.  

 

Building a data preparation and a data analysis module using 

cloud services is straightforward. For ease of viewing, the 

building of a data preparation module is discussed first. 

Similar thoughts also apply to a data analysis module. When 

data is ingested, several cloud services are set up, including 

Google Cloud Storage, an object storage service, Google 

Cloud PubSub, a messaging service, and Google Cloud 

BigQuery, a cloud-hosted data warehouse. Data is ingested 

from online and offline data sources to PubSub, which writes 

data to transient storage, and then consumed by a cloud 

function that validates and aggregates data, and written back 

to durable storage. Data is further processed using Google 

Cloud Dataflow, a fully managed data analysis service. A 

Dataflow template consumes data from a cloud storage bucket 

and calls a model. Since a piping file is used, this is the only 

step needed to set up and schedule the job.  

 
Figure 4: Serverless AI Solutions 

 

5.2 Best Practices for IaC and Serverless Integration  

 

Infrastructure-as-code (IaC), a paradigm that defines 

infrastructure as code to manage assets, has become a 

dominant method for automating and securing the cloud. 

Thanks to its declarative nature, maintaining the current state 

of a cloud provider while applying changes is straightforward. 

Moreover, various cloud providers now offer tools for 

performant implementations, making it easy to include IaC in 

CI/CD pipelines or easily adapt existing setups. This reduces 

the entry point for organizations to own and maintain their 

own machine learning (ML) infrastructure and thus offers 

new scripting and support opportunities. A drawback is the 

lack of strict paradigms to prevent undue complexity of IaC 

files, which rise to the point of becoming immobile and 

written in a roundabout way. Escalating code size may even 

be unmanageable for smaller organizations.  

 

Although, by design, IaC provides good reproducibility of a 

cloud provider’s resources, it is more difficult to achieve 

reproducibility during a watertight and auditable ML pipeline. 

It is common for small scripts to slip in and out of CI/CD 

pipelines or prototyping stages. For example, some data 

preprocessing steps may be skipped in a cloud environment, 

leading to bad model performance, while other steps are too 

complex for IaC tooling to manage. In addition to compliance 

requirements, there is also a chance that these scripts exhaust 

cloud resources or fail to be cleared up. Any pipeline should 

be composed only from serverless steps, and a prevention 

mechanism that enforces this should be common for all 

projects.  

 

Although less mature than IaC, serverless orchestration 

tooling is available by both major cloud providers, but little 

work has been done detecting risks in such code. Several steps 

in a workflow should be defined as serverless functions, such 

as simple implementations that may call other AI tooling. The 

optimization of serverless functions sharing occurred only 

recently and is more complex than other approaches, often 

introducing new risks and corner cases and requiring 

additional consideration within the tooling.  
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5.3 Case Studies of Successful Integrations  

 

This section presents two case studies of cloud adoption for 

multi-model AI workloads in a telco and a retailer. Case 

Study 1 focuses on the research done in telco cloud adoption 

and optimally deploying existing AI workloads and pipeline 

with serverless and IaC. Case Study 2 focuses on the cloud 

adoption in a retailer that needs to optimize the service 

infrastructure of existing AI models deployed in the cloud.  

 

Research technologies are developed in parallel with the 

adoption of user applications. This section first delineates a 

use case from Telecom Sector where the user has a large 

number of pre-trained AI model pipelines for network event 

prediction, fraud detection, user opinion mining, etc. Those 

models and pipelines are instantiated with ML frameworks. 

Pre-trained models in these ML frameworks need to adopt 

cloud infrastructures for usage since those models are 

currently hosted either on local data center machines or on 

clouds. Some research topics include but are not limited to the 

user requirements for platform design, and deployment 

pipeline generation techniques relying on machine learning 

and formal reasoning, etc.  

 

A scenario for deploying ML models on cloud infrastructure 

is depicted. It can be divided into three sub-nodes, including 

resource generation, resource allocation, and resource 

deployment. The first step is to load model files, 

preprocessing and post-processing functions, and training and 

inference task configuration files. Then the correct 

infrastructure representation will be generated based on the 

prior knowledge of infrastructure templates. Infrastructure 

generation outcome samples are included. Auxiliary tools 

include the utilization of common APIs to estimate resource 

scale and to monitor ongoing workloads. The first two 

components generate templates in template language and 

provide scenarios for potential images to choose. Given 

traditional deployment languages, either a proprietary parser 

or a template-to-template conversion needs to be researched 

on.  

 

Due to the complex dependencies among a large number of 

AI workloads in a retailer, the optimization of cloud service 

infrastructure is also a hard problem. It also includes 

input/output and last-minute pipeline-generation techniques 

for complying with these scenarios. Inputs are AI services 

involved in the optimization process, AI frameworks used 

underneath these AI services, provider designated resources, 

and cost budget constraints. Outputs are proposed serverless 

APIs online service denoting the same input/output format as 

existing AI services.  

 

6. Performance Optimization Techniques 
 

Serverless computing and Infrastructure-as-Code are two 

modern cloud computing paradigms gaining traction among 

developers due to their low entry cost and operational 

overhead. In serverless computing, users can easily deploy 

Functions-as-a-Service (FaaS) to serverless platforms for 

automatic scaling and management of execution 

environments. Infrastructure-as-Code automates the 

provisioning of cloud resources needed to deploy applications 

with a set of template files detailing resources provisioned in 

a domain-specific language (DSL). Modern programming 

languages also allow using libraries to write Infrastructure-as-

Code more flexibly.  

 

As both paradigms decouple the development and 

management of cloud resources, cloud users take control of 

their cloud architectures to exploit platform optimization 

techniques to avoid overspending and performance 

degradation. However, like cloud providers, a challenging 

problem is developing general optimization techniques that 

consider many important aspects of one scope (e. g., system, 

algorithm, and usage) and optimize their respective 

parameters. A more relaxed problem is developing a library 

of modular optimization components for a specific aspect that 

takes the current architecture as input and proposes 

adjustments to improve performance, but composing these 

independent components into an optimization framework also 

requires a fixed cloud architecture.  

 

This paper proposes a modularizable optimization library 

optimization through an infrastructure-as-code approach and 

applies it to a serverless computing environment. As a proof-

of-concept demonstration, a library of design patterns for 

AWS Lambda is developed, covering the function placement 

and sizing problems, functions fusion, and events spreading 

techniques. Using both real-world and synthetic workflows, it 

demonstrates how to use the proposed library to guide 

composable optimizations. This library serves as a library of 

functions applying optimization techniques developed to a 

serverless computing environment. Using a serverless 

architecture manifests easy composition of proposed patterns 

and global optimizations based on local ones.  

 

Equ 3: Workflow Execution Time in Serverless Pipelines.  

 

 
 

6.1 Monitoring and Logging  

 

Monitoring and logging are essential for understanding what 

is happening inside the AI models and the cloud 

infrastructure. Among other things, monitoring and logging 

can provide business insights into how the AI models affect 

business KPIs and how cost-and performance-effective the 

deployed cloud infrastructure is. Monitoring is performed by 

automatedly collecting metrics from the above components 

using monitoring tools. It detects anomalies for alarms and 

insight reports. On the other hand, logging is used to explain 

anomalies in more detail. Logging events give finer-grained 

information to describe what is happening at specific 

moments. Usually logging events are stored in specialized 
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data stores and processed later on by engineers and data 

scientists.  

 

The collected raw data and engineered metrics for monitoring 

and logging purposes costs a lot of cloud resources to store, 

transfer, and process. It is essential to apply different data 

preprocessing techniques so that the most relevant data is 

collected and stored. This includes data sampling, selection, 

engineering, etc. Furthermore, the monitoring dashboards and 

logging event collector need to be properly configured. A 

representative subset of metrics should be visualized and the 

notifications should be configured properly. In this case, it 

may take time for additional data scientists/engineers to 

prepare monitoring dashboards and logging strategies. 

Though it is a reasonable price to pay, some industry partners 

still prefer better monitoring systems that come with existing 

cloud-native components or bring from existing open-source 

solutions with minimal manual effort.  

 

Providing initial monitoring and logging systems as models 

that can be translated together with the deployment templates 

is beneficial because it gives engineers and data scientists the 

choice of choosing an appropriate monitoring strategy that fits 

their purpose. This approach would hide a lot of complexities 

when manually collecting metrics from different models, 

devices, or cloud services. Although framework-or layer-

agnostic solutions are provided that monitor and log almost 

everything, some AI engineers still prefer finer-grained 

control and configuration over the monitoring process. For 

instance, a logging event with a detailed payload can be added 

if an anomaly is detected in a model metric.  

 

6.2 Cost Management Strategies  

 

AI models are increasingly deployed in serverless computing 

platforms. Serverless computing abstracts cluster 

management, enabling users to deploy AI models with ease. 

However, this ease cannot come at the expense of efficiency. 

AI models need to be properly resized and deployed to cloud 

functions in such a way that the SLO requirements are met 

while minimizing costs. Currently, deploying AI models 

running on serverless computing is akin to deploying 

applications on VMs; users need to estimate the correct 

resources manually, often resulting in over-provisioning and 

redundant costs. However, if current serverless function 

development paradigms do not change, the raw operational 

costs of serverless computing are expected to double every 

1.7 years. More importantly, the share of serverless costs to 

the overall cloud bill is anticipated to increase from 43% in 

early 2023 to over 75% by 2025.  

 

With quotes from leading serverless vendors, recent 

comparisons of serverless cloud patterns with IaaS VMs 

emphasized how the IWOC platform is different. Serverless 

computing is a new paradigm for cloud computing. However, 

workloads running on serverless computing need to be 

profiled with high accuracy in order to make fair comparisons 

with infrastructure-as-code cloud patterns. This requires 

performance modeling methods, and a different way to 

deploy workloads than with VM-based cloud patterns. This 

research discussed how to overcome this hurdle by 

implementing serverless function profiling in a serverless 

way, how to use it for accurate performance modeling, and 

how to map serverless workflows to the cloud using a 

serverless FaaS workflow deployment pattern. With these 

contributions and a case study, the IWOC platform, which 

consists of architecture, design and implementation of cloud 

patterns, addressing cloud-scale workload deployment and 

optimization in serverless computing environments.  

 

6.3 Scaling Serverless Applications  

 

Geographically distributed application deployment is 

essential for low-latency applications. It minimizes the time 

for meeting user requests with geographically distributed 

application deployments. Placement of user applications in 

edge regions nearer to end users is essential to reduce latency. 

Multi-layer model for application deployment considers user 

request latency, data latency, and operation latency metrics in 

placement. Optimization techniques available under different 

mathematical programming approaches distribute the 

application deployments for reduced latency. Flexible 

placement of serverless applications across multiple cloud 

providers improves performance and minimizes cost. 

Directed Graph approach estimates the performance of 

serverless application deployments across multiple, 

heterogeneous clouds. Optimizing it using an Integer Linear 

Programming model finds the best placement. Migrating a 

portion of workloads across clouds to alleviate the task 

processing delay is important for task processing efficiency. 

The problem is modeled as a Mixed Integer Programming 

model with funding and budget constraints. A hybrid of 

answering multi-query reinforcement learning and the dual-

primal algorithm leverages cloud providers’ spare resources 

for cost-effective batch submission of tasks.  

 

Serverless computing is an emerging paradigm for creating, 

deploying and using applications where the application 

provider only pays when user requested imminent processing 

is completed. Serverless computing atop Function-as-a-

Service is being widely adopted owing to the rapid 

provisioning of computing resources and the ability of user 

applications to scale. Serverless cloud providers 

automatically scale function resources to meet application 

needs while maintaining quality-of-service.  

 

7. Security Considerations 
 

As with any solution that incorporates cloud-based services, 

care must be taken to ensure that sensitive data, systems, and 

user identities are properly protected. The cloud components 

used in the patterns should be properly managed and secured. 

Security management and compliance processes will need to 

be updated to address the emerging cloud technologies and 

how they’re used. It will be necessary to monitor cloud usage, 

ensure that any data storage complies with applicable 

standards and regulations, provide the ability to identify 

violations of security policies or compliance standards, and 

make sure classification and protection mechanisms are 

applied appropriately. Provider-level capabilities such as 

logging can help with this monitoring; and if needed, third-

party security monitoring and governance tools may also be 

employed to help manage compliance in the cloud. Execution 

of the serverless components of the patterns bypasses the 

organization’s security perimeter, so any potentially sensitive 

data must be protected with the mechanisms appropriate for 
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cloud services (and validated with monitors). Cloud provider 

security capabilities can help meet these needs to some 

degree. Cloud resource shape (smaller costs) must also be 

configured in patterns. Security restrictions must be 

adequately tested with monitors. Engineers need security 

training as tracking tools, cloud service monitoring, 

protection design, and testing methods change following 

transition to cloud services. Security management is both 

more decentralized and more rapid after cloud transition, so 

this management must be reviewed and potentially revamped 

to retain effectiveness. Where cloud services are available 

where the organization operates, cost-effective patterns 

become possible. As these methodologies broaden, cloud 

terms of service must be interpreted, models must be adapted 

to determine appropriate costs and cost savings, and 

organizational education must close the gaps in existing 

organization capabilities.  

 

7.1 Security Challenges in Serverless Architectures  

 

Security vulnerabilities have profoundly affected the 

adoption of serverless cloud services, leading to attacks 

against serverless applications and the extraction of sensitive 

information from functions and their environments. The 

diversity of event triggers and policies available in serverless 

cloud services can further expand the attack surface and 

increase complexity. The support of functions for restricted 

programming languages leads to specific implementation 

problems, such as exposing serverless function environments 

where untrusted code can succeed.  

 

Although serverless architectures leverage some new 

capabilities in cloud platforms that can limit the surface of 

attacks, the added complexity raises two fundamental 

challenges for security: security reasoning and the definition 

of secure architectures. Client-side security policies worry 

about what attacks will be attempted against an architecture 

and what application security aspect can be compromised. 

Such policies rely on knowledge about the coding and 

deployment processes, thus raising issues on their 

completeness and trustworthiness. No classical security 

policy is available for serverless architectures because end-

users cannot play an explicit role in the coding and 

deployment processes. Such architectures indeed benefit from 

the designer's main goal of turning policies into virtual private 

cloud artifacts storing and redirecting sensitive data.  

 

Rich information manipulation facilities at scale produce 

differential access on a large number of cloud resources. 

Hence, the decoration of security-oriented task-relevant 

features is essential for the continuous assessment of security 

policies throughout the whole cloud service lifetime. Higher-

level security policies, such as those that govern the 

deployment and execution of new application functions and 

limit data exposure to a chosen functional context, can play 

crucial roles in maintaining a trusted cloud service in the 

presence of severe architectural assumptions.  

 

 
Figure 5: Serverless Security 

 

7.2 Implementing Security Best Practices  

 

Every application exposes an entry point to the outside world 

by which it listens for incoming requests (APIs, files, etc.). It 

also closes sockets, files, and other resources opened to 

process requests, either gracefully by returning resources to 

the operating system, or abruptly, by terminating the 

computation. Ideally, any errors along the way should be 

handled properly and logged somewhere for later inclusion in 

system logs. This is expected from any software deployment. 

With infrastructure-as-code deployments, cloud 

infrastructure is programmed in a manner similar to 

application source code, requiring its own audit trail. On 

deploys to run arbitrary source code, cloud providers usually 

restrict tolerated procedures and resources. Any missteps in 

source code can result in infinite costs. Serverless computing 

functions have the same start/stop request boundaries, and 

uncivilized behavior of functions remains fairly similar across 

IaaS and FaaS cloud offerings.  

When using the FaaS programming model, limited run time 

and memory means that the resource handling logic becomes 

more focused. Logging, for example, might just send logged 

strings to a permanent file or output redirect, as opposed to a 

dedicated server. As with IaaS, logic should sanitize and 

escape user input to avoid abuse and injection attacks. Avoid 

long-running calculations. The run time maximum is 

generally generous, but can scale down and may require re-

architecting of some workloads. Cloud functions candidates 

may run as a batch, or require native HTTP (S) endpoints. 

Any logic should be callable via a function, and often such 

integrations can be forgotten as the rest of the operations 

become cumbersome. Authorizations and authoring software 

can drift apart, which allows for privilege escalation. 

Repeated invocation or scandals can cause flooding and incur 

a high penalty. Logging can be segmented by workloads to 

ease the analysis, and automatically sanitized to avoid 

confusion.  
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8. Future Trends in AI and Cloud Computing 
 

As the Artificial Intelligence (AI) technology system 

continues to mature, new models, techniques, tools, and 

systems for using AI are emerging every day. A few specific 

trends that will massively impact the AI community and a 

broad base of AI clients are reviewed from four different 

angles of AI models, infrastructure, services, and 

applications. It can interact with users in a natural way, 

answer sophisticated questions, generate creative multimedia 

content, and provide human-like tutoring services. As more 

recent models emerge, they are exposed to various dynamic 

scenarios for application. However, further efforts are needed 

to implement corresponding integration and evaluation 

systems in the AI service community to allow for easy 

integration, quality assessment, and control. Generative AI 

services will profoundly complement people’s work and 

improve end-customers’ interactions with and productivity of 

various enterprise applications and insights.  

 

Another common trend is the fast-moving progress and 

increased accessibility to the infrastructure side of AI. In the 

past few years, significant weights and models have been 

developed on some private clusters with millions of expensive 

GPUs. As more specialized models are developed, options 

around proprietary runtimes, model efficiencies, and costs 

grow. Open sourcing can help democratize innovation but 

needs proper perception and curation of risks. As this turmoil 

continues and the possibility of self-hosting potentially 

powerful models rises, more smaller-scale models become 

available. However, substantial initial investments in 

infrastructure, expertise, and operations are a barrier to 

smaller companies with promising applications who want to 

leverage generative AI. Tools, platforms, and expert teams 

from larger vendors render easy access to the newest model 

family to a broader set of clients. There is a focus on how 

these platform-building companies are leveraging existing 

cloud capabilities and workflows to pre-integrate the latest 

models within their services and thus lower the barrier to 

access.  

 

8.1 Emerging Technologies  

 

Pressures to optimize the cost of AI workloads have 

motivated research into the deployment of AI workloads as 

serverless applications using Function-as-a-Service offerings. 

Such applications can greatly minimize the operational 

burden required to run AI workloads, as cloud providers 

manage provisioning, scaling, and operating the underlying 

infrastructure on the user’s behalf. Deploying AI workloads 

as FaaS applications typically leads to reduced operational 

expenditure compared to standard cloud services such as 

Virtual Machines. This is due to how FaaS pricing structures 

are aligned with the deployment of workloads with bursty 

time profiles (e. g., workloads with many periods of little to 

no activity separated by short periods of high utilization). 

Crucially, the FaaS pricing model is particularly well-suited 

to AI workloads, which frequently suffer from bursty time 

profiles due to the overhead of data preparation and model 

averaging/load balancing.  

 

To this end, it is necessary to understand the challenges and 

implications of deploying AI workloads as FaaS applications 

on cloud providers. Such applications can comprise many 

functions composed into unit-serving workflows. The 

challenges of deploying cost-effective FaaS applications 

using function composition strategies and transformations are 

discussed (including workload scheduling, function 

placement, and function merging). Cost modeling heuristics 

at the infrastructure and application levels are introduced, and 

a framework that scales to the number of functions and 

computes cost-efficient deployments for diverse workloads 

and architectures is proposed. The focus is on using the 

serverless stack APIs and services, and the unit-serving basis 

on which these technologies are designed to build scalable 

serverless applications.  

 

 
Figure 6: Optimizing AI workflows with infrastructure-as-

code and serverless cloud patterns. 

 

8.2 The Role of AI in Cloud Optimization  

 

An important approach in cloud optimization is to find 

suitable machine learning (ML) techniques to improve the 

accuracy and speed of the optimization. A complex cloud 

service contains a multitude of components and hyper-

parameters that work together to connect the ingestion, 

ingestion processing, serving, and serving scaling stages of a 

cloud data service. To reduce the operational effort on tuning 

these components, users can specify targets on metrics, run 

monitor jobs, and upload raw data for the past periods to a 

cloud data service. Then, MLSweep, an optimization service 

that automates and speeds up the tuning jobs for cloud hosting 

data services, is designed to produce hyper-parameter 

candidates for tuning each component. For a complex cloud 

service, it is impractical to create a massive optimization 

problem that at once optimizes all components. Ongoing 

efforts continue to jointly optimize a selection of components 

while synchronizing the deployment of changes of the 

involved components. With this approach, it is possible to 

focus on optimizing related components working together; 

thus, the joint optimization of these focused components can 

often improve the overall system performance in a way that 

optimizing the components independently cannot. A basic 

technique for diagnosing how go wrong is to filter the 

problematic cases by a specified granularity and to run a few 

rounds of joint tuning. Components returning suspicious 

candidates of their hyper-parameters are grouped into one 

cluster and tuned with the relevant data. Naturally, there are 

concerns about the risks posed by AI. With the growing 

complexity of machine learning models, cloud services 

leveraged by AI are becoming more expensive to maintain 
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and develop; therefore, one of the main tasks is to help keep 

this performance and spending at acceptable levels. 

Intuitively, tricking the cloud vendor by making them spend 

extremely may lead to a loss with intolerable budget overruns. 

Introduced guardrails to protect customers from impossible or 

expensive solutions by checking candidate decisions with 

several in-house, cloud independent scoring functions of 

complexity and sanity. For example, a huge number of 

training data points would be needed for a complex model; 

however, the amount of training data cannot be obtained 

instantly, which gives at least a chance to spot the suspicious 

kinds of optimal decisions early on. Another type of guardrail 

enables checking the performance of the model output using 

a small test set from the cloud vendor to detect regression.  

 

9. Conclusion 
 

AI workloads are not only critical workloads. They are 

challenging workloads. The key challenges can be 

summarized as: (1) AI workloads must expand rapidly to 

become billion-trillion param workloads to assist Giga-Byte, 

Tera-Byte, and even Petabyte data scale, while having 

tougher batch times for training due to larger Λ, larger cost of 

iterating Mini-batch times, suboptimal scaling, fidelity, and 

floorplan compared to cost when growing SuperComputer 

like Continent-Scale Exascale clusters. In this new era of AI, 

the performance of training AI workloads and their routines 

is bottlenecked not only due to new computer technology but 

also new architecture in the last mile. Large dominance of 

Tera-Byte and Petabyte data in Giga-Bolt data scale increases 

batch size from K lower-$$ to G higher-$$. The contention of 

upper-level addresses in Tera-Byte GPU chips and above, 

lower-level addresses in M이나 LCache + Migrate chips, and 

flow-control in the ASIC-DPU laden W-DL with 

CPI>TgSpeed worsens the train-testing time, and why b-

size=G & M on-chip/pipeline-only for NewDS should 

accelerate both training and testing simultaneously is 

discussed. (2) AI workloads must be more sustainable for 

lower-E and less-MT$ despite more costly innovation, 

training, and inference stage. E$ are also introduced to gauge 

companies/teams in designing new chips. For instance, new 

Centre-Scale AI training chips like DPU+ASIC should be 

cooled to T<50C for energy savings by pipeline ON-OFF 

oscillation, and fine-grained background task-miss 

contending light device activation might increase 20x E$ for 

1% QoS$ o$ controllable latency $ extless$4$T_{test}$. E$ 

would be higher and more challenging in AI inference 

workloads with wider-but shallower stage width and Turing 

stage ratio, including non-trivial hardware pipelines. 

However almost all EEISM worth $1T_{trillion/annum}$ is 

spent on all kinds of training and tests to make sense of 

natural/scientific phenomena, which nonetheless amounts to 

not even 5$ ext%$ of the ML output through SlowOS.  
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