
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Optimizing AI Workflows with Infrastructure-as-

Code and Serverless Cloud Patterns

Phanish Lakkarasu

Principal Engineer

Email: phanishlakarasu[at]gmail.com

ORCID ID: 0009-0003-6095-7840

Abstract: Today, many applications exploit artificial intelligence and machine learning algorithms to perform various tasks. However,

creating a solution for tasks like image prediction or language translation generally takes significant effort by many teams. These effort-

intensive actions can potentially be shortened by creating fully serverless cloud pipelines that anyone can customize and employ. The

problem is that despite the numerous cloud services that support multiple AI ML frameworks, creating and fully cloud-dependent

execution will take considerable time. Many sectors are migrating to applying artificial intelligence and ML paradigms on their day-to-

day tasks. However, the internal logic and learning process need to be regulated and understood. Recent research shows that interest in

cloud usage is proliferating daily. Major cloud services may attract many customers if they make their services cost-effective and pleasant

to use. Tech-savvy people create off-the-shelf clever cloud services to perform daily tasks like object detection, classification, recognition,

classification, and image captioning without in-depth knowledge about the composition underlying knowledge. Despite web applications

that hold backend execution logic, training and executing this knowledge are costly and limited to leading technology companies. Such

reasons inspire using emerging technologies to create modular and fully serverless cloud capabilities. With the recent advent of serverless

cloud computing architecture, with low costs, management overheads, and serverless execution, many sectors and companies can create

cloud modules and put them online so everyone can exploit them. By making this solution extremely straightforward to use or even by

automating everything behind the scenes, people can easily capitalize on recent scientific developments.

Keywords: Serverless AI Pipelines, Automated ML Infrastructure, IaC for Machine Learning Workflows, Scalable Serverless

Architectures, Cloud-Native AI Deployment, CI/CD for AI Models, Terraform for AI Infrastructure, Event-Driven AI Processing, Serverless

Data Engineering, AI Workflow Automation, Dynamic Resource Provisioning for AI, Stateless AI Inference, DevOps for Machine Learning,

IaC-Driven Model Deployment

1. Introduction

With the recent advances in artificial intelligence and

machine learning, engineers build data processing and

training pipelines in the cloud using resources offered as-a-

Service. These products are useful for building machine

learning pipelines in the cloud. It is now possible to automate

the deployment of ML systems using Infrastructure-as-Code

tooling, as well as managing data location and costs through

intelligent operations and a job execution engine. These tools

and policies support various services, including data lakes,

queues, databases, batch jobs, Kubernetes clusters, and

serverless data processing pipelines. To optimize ML

inference pipelines in the cloud, consider how to take new ML

models, automatically reconfigure the pipeline as necessary,

and deploy it to the cloud. An SLO for latency might be

added, such that the new configuration is constantly

optimized to meet the latency target. The techniques used in

data processing, such as Infrastructure-as-Code, event

sourcing, distributed queues, or edge clouds, can inspire how

to automatically optimize ML inference pipelines at higher

levels of abstraction.

The answer lies in data-driven microservices as an

architecture: pipelines for versioned ML data—raw data

traces, training datasets, and model artifacts—are all precious

data assets that are constantly evolving. These usage-based

data lakes drive cloud economics by scaling data management

costs with actual data consumption. Ideally, data pipelines

would also be deployed as versioned data assets, but this

brings new challenges for lifecycle management and

migration of data artifacts. Full-fledged Infrastructure-as-

Code tooling and policies are emerging to automate the

management of data pipelines cost-effectively, but with less

support for natural language processing models. Not

surprisingly, there exist considerable differences in how

models are consumed, deployed, monitored, and scaled. This

makes it all the more crucial to come up with abstraction

patterns and generic workflows to bridge the gaps between

these conceptual models.

1.1 Background and Significance

The rapid democratization of artificial intelligence (AI) tools

has put advanced machine learning capabilities into the hands

of users from a diverse range of disciplines. For practitioners,

academics or developers, orchestrating the underlying tools to

build and deploy AI-enabled applications often becomes a

chaotic endeavor involving a disconnected landscape of

infrastructure, cloud providers, platforms and services. These

are complex ecosystems that mature quickly and exhibit a low

level of stability. Construction of models is typically

accomplished in notebooks and development environments

on local machines. Deployment involves a haphazardly

crafted collection of cloud services and ad-hoc infrastructure-

as-code (IaC) that require consistent repository-wide

configuration across projects which operate against different

data, environments and hierarchies. The amount of replicated

infrastructure knowledge is substantial, but the amounts

required are difficult to learn, and maintenance is labor

intensive.

Low-code or no-code solutions offer high-level abstractions

and ready-made components for visually orchestrating cloud

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1576

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

services. Implementations are needed to make their

composability compatible with existing cloud provider

services. Where deployed modern AI workflows are tightly

bound to cloud providers and services, potentially leaving

them with little control over how data or models are used, and

incurring financial foreclosures. Most existing AIOps

workflows are decomposition-focused and tailored to their

deployment environment, requiring local implementation

modifications to operate. Creating privacy-aware alternatives

that still offer the workflow capabilities and tracking of cloud

platforms remains an ongoing effort. Overall, agility is

currently lacking, and weak tracing and observability needs

to be augmented through observability scaffolding.

Figure 1: AI workflows with infrastructure-as-code and

serverless cloud patterns

2. Understanding AI Workflows

AI workflows often mix multiple processing units with

specialized architectures defining a complex data

management challenge. Applications with expensive

computational tasks that engage powerful computers can run

cheaper model training and inference on specialized GPUs.

Using heterogeneous systems opens up the possibility of

significant cost savings: 10× over optimized single-resource

applications for model inference and training in prior

examples. However, optimization exists into increasingly

fragmented execution environments as orchestration can rely

on a complex collection of systems. Scientific applications

using AI models are increasingly multi-resource. Both

specialized architecture, such as GPUs, FPGAs, and TPUs,

and portable code and reliable networks that enable

replication of environments across systems have aided this

growth. Early designs with a single computer and software

stack have evolved to horizontally scale up the use of

powerful architectures for larger problems or multi-stage

workflows. The latter can run some steps with expensive

computers and others with cheaper execution, like inference

and training for AI models. Unfortunately, this multi-resource

approach also compiles a part of complexity.

Deployments of modern workflow systems require services

on each resource that connect back to a workflow controller.

This architecture centralizes coordination, simplifies

management, and allows services to be added as featurized

components, but at a detriment of the user experience.

Development involves deployment across a multitude of

systems and languages while integrating with file systems and

managing secrets. These services can also introduce single

points of failure. Hybrid software-as-a-service approaches

mitigate many of these concerns by offering a cloud-hosted

coordination service. Instead of requiring users to deploy and

maintain code, the service ensures a persistent controller,

manages authentication and secrets, and grants access to

many resources across sites. In addition, effective service on

the cloud can provide monitoring, scaling, and other features.

However, the per-user cost of large cloud deployments makes

them impossible for many smaller groups. These groups have

often bought into a multi-resource deployment along with a

cloud coordination service. Most workflows transmit data via

the workflow controller or some common/distributed data

store. With computing costs approaching zero, it is up to data

transfer to mitigate costs.

2.1 Definition of AI Workflows

Though there is no universally accepted definition, workflows

generally refer to an orchestrated and repeatable sequence of

tasks or processes that transform a set of inputs into a defined

set of outputs. Scientific workflows, then, are those tasks or

processes that implement a scientific process, model,

methods, or analysis. Coupled HPC workflows are simply a

subset of scientific workflows that include at least one

flexible or loosely coupled (remote or closely colocated) pair

(s) of tasks. AI-coupled workflows are defined as those

workflows that use advanced AI methods, including ML,

statistics, probabilistic reasoning and knowledge

representation for decision-making, exploration, and

simulation or analysis. For scientific endeavors, workflows

range in size and scope from small and relatively simple to

very large, ultra-scale, and complex. For example, systems

such as the Sedimentary Basin Scenario (SBS) couple a

million time-stepped runs of a small simulation executed at

an exascale HPC system. As such, SBS is considered a

mountainous proof-of-concept example for best practice AI-

coupled HPC workflows. While this work describes AI-

coupled HPC rather than AI-coupled workflows in general,

the timely delivery of exascale-ready capabilities to take

advantage of new exascale architectures is modeled as an AI-

coupled workflow, and prediction and design capacities are

captured for very different domains and incasting time

horizons. For scientific workflows, many have been

described, drawn, and classically modeled as directed acyclic

graphs (DAGs). DAGs have discrete nodes, each of which

implements a processing step, including obtaining,

processing and storing data, while extended DAGs or Petri

nets can be used to describe state-ful [semi] continuous state

tasks. For the construction of workflows, task (executable)

and dataset libraries are needed, as well as a specification of

intended behavior for an entire execution of repeatable

workflow instance (s).

Equ 1: Total Deployment Time with IaC.

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1577

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.2 Components of AI Workflows

AI workflows are often combinations of well-defined

compute and data-center resources that are composed into a

larger workflow. Airflow, directed acyclic graphs, or a chain

of script processes are common patterns to organize workflow

execution as a whole, while the specification and

management of individual compute and data resources are

often heterogeneous amongst infrastructure providers,

versions, and vertical integration. The properties of AI

workflows lead to a clear separation of concerns between the

workflow orchestration and the actual execution of individual

compute and data processes. This is analogous to

Infrastructure-as-Code for regular workflows, and sufficient

abstraction and package management are available. However,

serverless infrastructure introduces new modes of computing

that change the properties of how and when this division of

labor should occur, what abstractions and editing methods are

appropriate, and what access control and deployment

challenges arise, especially when composing them with

traditional infrastructure. This review aims to cover

suggestions for abstracting and implementing AI workflows

accordingly, do’s and don’ts from experience operating multi-

cloud training and retraining workflows, and open questions

to engage in, especially in the context of sustainable AI.

AI workflow patterns enable accessible experimentation and

deployment of complex AI systems through individual cloud

vendors’ managed data and compute services. The abstraction

of a cloud training workflow consists of pre/post processing

services and a core training cloud function with UUID

input/output specifiers defining its data access. Refactoring a

cloud training workflow into a serverless cloud function often

allows extra optimizations to be made, but at the cost of

debuggability due to concerns over execution context and

data access, as well as potential vendor lock-in. The workflow

patterns covered here aim to alleviate the need for abstraction

beyond the compute logic. Cloud function dependency

scheduling is particularly important for both cost and MLOps,

but outside of existing vendors’ systems, complicated

handling is required to scale or debug cloud functions on local

development environments.

2.3 Challenges in AI Workflows

AI is rapidly finding uses in reevaluating past scientific

outputs and creating future discoveries. A plethora of ML and

AI techniques are becoming available for scientists to

incorporate into their workflows. Resources empowered by

these techniques often rely on affordable services, so

performance and efficiency should be paramount.

Meanwhile, many scientists who need such resources can’t

spend weeks learning about serverless cloud deployments or

data privacy considerations. Here, we’ll assert a proposal—

given the right tools and practices, scientists can train on the

tools instead. The desired outcomes of AI-enhanced resources

probably could be met with an initial investment of ten to

twenty person-hours of tutorial-style documentation teaching

scientists how to illuminate these abstracts themselves. Then,

repeat themselves later or make something new.

While the autodidactic nature of these abstractions means that

it may come with hidden complexity and excessive input on

the part of the user, they also constitute a resilient and long-

term solution. Given use cases to be written, the right arena

(modeling languages), target hardware (cloud shape or

domains), and associated policies (cost, performance,

security) could come together in many unexpected and

delightful ways. But the right tools need to be built, framed,

and packaged up for multi-modal analysis—and it is not a

small task.

Teams of scientists, engineers, cloud architects, and software

developers need a holistic understanding of the requirements

for modern AI-enhanced workloads. Resources will often

require multiple heterogeneous computing capabilities. The

performance of a workflow that handles simulation and AI

tasks on separate services hinges on how best to deploy

actions across these resources. Their costs are equally

important as a user might desire expensive AI tasks to run

remotely on another host. But this design requires securing

private endpoints, high bandwidth paths, access to multiple

platforms, and new connections, credentials, or service aliases

on every run.

3. Infrastructure-as-Code (IaC)

Infrastructure-as-Code (IaC) is a powerful and efficient

paradigm for managing and provisioning on-premises and

cloud-based infrastructure resources. Automation of

infrastructure management tasks enables a more reliable,

traceable, stable, and repeatable infrastructure, with less

human error. With the rise of cloud computing, IaC has

matured into a strong and well-documented ecosystem of

tools and libraries.

Many cloud providers allow customers to create and manage

arbitrary infrastructure resources in a cloud environment via

an API, automating tasks that had to be performed manually

before. This set of operations is part of cloud automation.

Among these operations, provisioning new resources in a

cloud environment is the most common, and sometimes the

only operation. It either creates a new instance of a resource

or recreates a resource of the same type as the previous one.

This is defined as resource automation. Definitions of

automation, cloud automation, and resource automation differ

in the level of granularity, but the terms ‘automation’ and

‘cloud automation’ are often derived from the word ‘resource’

[7]. The automation of infrastructure management tasks such

as provisioning, resourcing, and measuring is encouraged.

Particularly, it enables a more reliable, traceable, stable, and

continuous state of the managed infrastructure with less

human costs and human error.

Similar to application code, IaC is a text document that

defines the desired state of an infrastructure, together with a

set of operations for achieving that state. Infrastructure is

defined by structure declarations and constraints, while

operations are defined by mutable operations, which change

the target document/output state and provide control flow

mechanisms for integrating with programming languages. It

is possible to define infrastructure in various text-based

formats/services, including CloudFormation, Terraform, and

Ansible. A common chart format, ‘YAML’, is used to

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1578

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

parameterize a document’s desired material in a text file. A

YAML document can represent one or many charts of the

same or different formats. The charts are to be deployed on

the Kubernetes platform using Helm.

Figure 2: Infrastructure-as-Code (IaC).

3.1 Overview of Infrastructure-as-Code

Infrastructure-as-Code (IaC) primarily refers to the use of

code to facilitate the definition and management of IT

infrastructure. Specifically, it is the use of code to automate

infrastructure provisioning and management, and the

functioning of an original infrastructure in computer

hardware, software devices, virtual machines (VMs), and

networks through the coding definition of configuration files

in a system. IaC is an essential component of software

DevOps technique, allowing the emergence of modern cloud

computing platforms and application. IaC enables defining,

provisioning, and deploying cloud deployments through

codes, allowing organizations to operate a cloud environment

of any size when the cloud services consumed are

appropriately utilized.

On-demand provisioning of traditional cloud deployments as

well as the in-person involvement of operators has become

obsolete through leveraging IaC tools. As the cloud

computing market expanded beyond hyper-scalers, this

approach has now adopted by tier-two cloud vendors such as

DigitalOcean, Vultr, and Linode, as well as many countries’

home-grown cloud providers (notably Alibaba, NTT, and

OVH) whose availability zones can only be deployed through

their web UIs.

At the basic level, IaC provision virtual machines, VPCs, and

security groups through a code that is themselves interpreted

and executed against cloud vendor’s APIs. However, vendors

differ widely concerning deployment options, such as OS

images types and hypervisors [6]. To address this, multi-cloud

IaC tools such as Terraform emerged, which define high-level

codes and natively support backends in the APIs of many

major cloud vendors. Using IaC tools far simplifies the

process of provisioning cloud deployments mentioned above,

as existing tooling can provision complex VMs on a cloud

provider’s APIs through relatively simple code.

3.2 Benefits of IaC in AI Workflows

In addition to their benefits for reproducibility, IaC

abstractions can provide software engineering value to AI

systems, particularly in terms of the extraction of standard

functionality that can be shared across multiple AI

workflows. Modern cloud infrastructure allows developers to

provision their AI workflow infrastructure as code. This

allows abstraction of all AI workflow infrastructure in a

portable manner that can be reused across AI projects and by

project collaborators. Furthermore, infrastructure defined as

code can also be treated as software, so investment can be

made in code reviews, and tests for its correctness, and ANY

required runtime environments can simply be added there.

The notion of reusable abstractions for standard pieces of

infrastructure is well-known in software engineering. Apply

function abstractions can be created in software tools and then

those software tools can be composed out of standard pieces

of functionality. In cloud infrastructure, common examples of

reusable and composable abstractions include VPCs, subnets,

cloud functions, queues, virtual machines, etc. Once the

abstraction is created, it may be more difficult to modify and

extend custom use cases but its standardized usage greatly

simplifies onboarding new team members and allows for

more eyes on the code. Standardization across a team of AI

practitioners then leads to better reproducibility as the

infrastructure with any pronounced operational needs stays

consonant across studies. This effect compounds when

similarly resource-consuming pieces of infrastructure can be

packaged as reusable abstractions that easily slot into new

workflows.

3.3 Popular IaC Tools and Frameworks

Over the years, there have been numerous attempts to include

the idea of Infrastructure as Code (IaC) in the DevOps

movement and the use of cloud resources, and these

fundamental ideas have been widely implemented in different

tools and cloud providers. Cloud service providers (CSP) now

offer their own tools that often allow higher exploitativeness

but at the same time tightly link users to the vendor’s

ecosystem. CSPs often also offer services that go beyond

setup-as-code at the level of single components, meaning the

integration of several pieces of hardware or software to offer

a unified interface. This might be used as an additional

possibility for scaling up pipelines but comes at the cost of

closing the pipelines to vendor-specific setups, in many cases

rendering them unportable and acting against the devops

principles.

Terraform, for example, allows plug-ins for cloud formations

that can be transported across cloud providers. It needs to be

mentioned the challenges of inputting new or larger cloud

resources, as these assumptions affect the flexibility of the

approach. Cloud users often suffer from the high-cost

variation of their pipelines across cloud providers. According

to the design goals, the following aspects might be relevant to

defining the relevant parameters of an IaC: user had

components or orchestrations, components’ invocation and

configuration; and cloud provider options. After initializing a

project, a high level library API could be used to specify a

pipeline. The resulting IaC resource would typically comply

with the functional and performance requirements.

4. Serverless Computing

Serverless computing is an emerging model of cloud

computing in which the cloud provider runs a server or

servers and dynamically manages the allocation of resources.

The term is somewhat misleading, as serverless services are

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1579

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

not running with no servers, but the provisioning and

management of servers is completely hidden from the user.

The servers potentially as part of FaaS (Function as a Service)

or CaaS (Container as a Service) serve stateless applications.

In such services an application service can be easily scaled,

for example if it is triggered by an incoming HTTP request, a

message in a queuing system or an event in the object storage.

After a predefined period of inactivity the service is

automatically put to sleep, suspended and its resources

released.

The challenges of serverless and event-based computing in

general are mainly in state management. Such applications

typically have to deal with the problem of sharing, persisting

and recovering state between stateless tenants over the highly

dynamic execution environments. While some serverless

frameworks developed for scientific applications use the

stateful services, other designs either follow the distributed

model or provide such capability in the framework itself. The

former approach uses cloud queuing systems or object storage

for state management, whereas the latter introduces additional

logging and recovery mechanisms. The success of social

media applications and modern cloud computing opened a

path to on-demand processing of enormous quantities of data

captured in real-time.

One of the early examples of higher-level serverless APIs is

AWS Lambda. This service allows processing of streams of

input data using JavaScript, Python or Java code, which is

later executed from the cloud with little information about the

underlying infrastructure. Specified FaaS functions are

triggered by input data typically placed in the cloud object

storage, data streamed by the message queuing system or

HTTP calls to the API gateway. In such applications cloud

object storage serves as an input buffer. During the processing

each FaaS invocation is called with the event parameter that

includes the object key of the event triggering the code. The

input object is expected to be a single batch of images, which

will be again uploaded to cloud object storage after

processing. A predefined model file is always fetched from

object storage before inference. Therefore, the FaaS function

is stateless with the side effect of calls to the cloud object

storage.

The serverless ecosystem is still in its early development but

having recently studied a few examples of serverless

scientific applications, we can observe the emergence of a

layered architecture of the ecosystem. From the bottom up,

we have the basic layer of cloud storage and communication.

This includes cloud object storage, queue systems or caches.

This layer provides state management for the stateless

FaaS/CaaS layer. Next come various processing models

relevant for scientific users and software engineers, such as

task execution models, streaming data processing, interactive

work, batch processing or container orchestration. Finally, the

top layer includes ready to use frameworks for scientific

applications that typically provide high-level APIs or user

interfaces. Most of such frameworks consist of similar

components, some of which are related to the serverless

services offered by the cloud providers. The framework

usually provides the basic services and deploys computing

resources on the cloud.

Equ 2: Serverless Cost Function.

4.1 Introduction to Serverless Architecture

A new paradigm has emerged in cloud computing known as

serverless computing. Historically, in the client-server based

model of computing, a client with limited computational

capability offloaded tasks to a powerful server. Handling such

offloaded tasks required significant effort on the part of the

server. Maintenance, upgrades, and other such operational

tasks consumed excessive resources. Serverless computing

endeavors to free a user/application from exactly such

burdens. Developers are provided with an event-driven

framework for implementing functionalities that they are only

charged for when executed. All functional and operational

concerns are delegated to a cloud service provider, and client

implementations consist of trivial REST API calls to

functions hosted on the cloud. These functions, known as

Lambdas, are stateless and short-lived self-contained code

with both a triggering event type and a pair of triggering event

values. Triggering events can be of various types but they

share the commonality that they are events on which the

function is based. They are generated by an external service

checking for the definition of an English word.

When a triggering event of type T and value V occurs and

there exists at least one Lambda s such that s was deployed

with event type T/Event value V, then physical resources are

provisioned to execute the function s. Lambda functions,

programmed in one of the supported languages, only process

event-triggered requests. Programmers write code to process

triggering events but do not concern themselves with

scheduling policy or any other operational mechanism.

Serverless computing has several characteristics that

differentiate it from conventional types of cloud computing.

One advantage is flexibly scaling, where resources relevant to

demand are allocated automatically and/or deallocated when

not needed. These powers of elasticity extend to deploying

infrastructure. Serverless orchestration platforms address this

type of infrastructure using configuration files.

A serverless architecture integrates software and hardware

components on a cloud provider that enable

users/programmers to access effortless functionalities. In this

architecture, there is no resource management to execute user

tasks. Users obtain the output of their tasks after some

application-dependent duration, but they are charged only for

resources used in executing tasks. Anything that does not

support application functionality is disguised from

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1580

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

programmers by cloud providers. For cloud providers,

serverless computing gives rise to another profitable business,

architecture-as-a-product.

Figure 3: Serverless Computing: Architecture

4.2 Advantages of Serverless for AI

Recent advances in deep learning (DL) have spurred research

in training large models over hundreds of GPUs. In light of

this rapid growth, organizations are discovering that adapting

the current infrastructure does not provide a cost-effective

solution. Instead, greater needs for flexibility and elasticity in

ML workloads lead to new infrastructure requirements. Since

early 2014, several cloud vendors have introduced serverless

options for both compute and ML. Leveraging the existing

serverless platforms to build ML workflows is a novel and

feasible direction. Serverless has the following key

advantages for AI workloads:

• Cost-effective on-demand pricing model. Serverless

clouds offer cost savings over running workloads on

Reserved Instances, On-Demand, and Spot VMs. First,

the serverless pricing model usually adopts the cost-per-

invocation + cost-per-execution-duration scheme,

charging based on number of requests and execution

time. This makes the costs more fine-grained. Secondly,

with a malfunctioning subprocess, debugging could take

some iterations. An IaaS timing measurement requires

stopping the VM, while a serverless measurement costs

only the current function invocation. Thus serverless can

effectively help in the pre-release testing phase.

• Automatic capacity provisioning and scaling. With the

rapid growth of enterprises, having on-premise

infrastructure and resizing it according to your needs

becomes a hard task. Serverless programming abstracts

the underlying layer at an extreme degree. A function can

be deployed with just a few clicks and manage as many

requests at once. Thus coding just needs to care about the

algorithm and input/output data. Serverless clouds would

allocate sufficient resources and service to all

invocations.

• Highly concurrent execution scheduling. Serverless

programming has partially taken over managing the ML

backend. Users just need to write the business logic. In

many cases, there are similar requests that can benefit

from efficient batching. Serverless clouds are able to

aggregate an exceptionally large number of requests and

utilize parallel execution, yielding a higher throughput.

A highly concurrent execution can reduce the warm-up

times, since it is less likely to starve the cold-start

functions.

• High survival time. Some companies choose non-

renewable configurations to avoid excessive costs. In

traditional IaaS architectures, an expiring VM needs to

be stopped at once, and all the in-process requests,

including training jobs and inference ones, would fail.

Serverless primarily handles time-limited functions, and

execution time could typically go up to many hours.

While some requests may fail, a lot of requests could be

wrapped up.

4.3 Common Serverless Platforms

Often referred to as Function-as-a-Service (FaaS), serverless

computing is a cloud computing model where in the Ideal

Case a third party serverless vendor or cloud provider allows

developers to run applications without provisioning servers.

While reverting hosting responsibilities is common in PAAS,

IaaS, and its underlying virtualization-based cloud

infrastructure, it rapidly emerged a new generation of

Platform-as-a-Service offerings by major cloud providers.

The first service offered in this category was Lambda, which

experienced significant adoption in mid to late 2016. All the

major cloud service providers now offer similar services.

Serverless computing is based on an event-driven

architecture. It works on the premise that developers build

compute units within the cloud called functions. These

functions are responsible for responding to specific triggers,

which may take the form of events, messages, or requests

from clients. After deployment, a cloud provider takes full

ownership of these functions. The provider then collects

client requests, invokes the responsible functions as per their

triggers, and returns the results of execution back to the

clients. The provider performs task scheduling and operates

monitoring workloads on a serverlessly provisioned cluster.

Developers need to only write the code processing client

requests. Functions are generally stateless, and need to access

state from persistently store sources, such as relational

databases or NoSQL stores.

When a function is executed for the first time or has not been

executed for a while, the cloud provider may need additional

time to start a new container that runs the function. This delay

is referred to as a "cold start. " Cold starts occur when the

service is unable to operate on already provisioned compute

nodes because of idle time. It is either because a function has

not been executed for a long time or, it is a brand new function

not installed in the provider's cluster. Functions are sized with

memory. Depending upon the memory size, a fixed number

of vCPU or any combination of vCPU with different clock

speed gets assigned to it from the underlying node.

5. Integrating IaC with Serverless Patterns

With recent advances in Machine Learning (ML), it is rapidly

transforming industry verticals, from healthcare to robotics

and finance. Cloud providers offer many platforms for

running ML training jobs at scale. These platforms involve

configuring a large number of hyper-parameters, supplying

datasets, model configurations, and infrastructure to deploy

ML workloads. These tasks can quickly become complex, and

industrial best practices have emerged for deploying ML

workloads. A unified infrastructure service for

operationalizing AI applications and minimizing

development time is available.

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1581

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.apriorit.com/dev-blog/551-serverless-computing

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Infrastructure-as-Code (IaC) has emerged as a popular

technique to build cloud resources. Development teams can

manage and provision cloud infrastructure using

configuration files. This shifts the infra-coding burden from

teams dedicated to building cloud resources to developers,

and thus drastically reduces complexity. Popular tools are

used to provision infrastructures as code. IaC

implementations can be flexible and provide capabilities such

as common components for reusable modules and testing.

This flexibility can empower users to build complex setups;

the question remains how best to use them.

Configuration files to specify the cloud infrastructure are

slowly being developed as scripts to build very complex

workflows. State machines rapidly become quite complex and

coupled buildings, similar to a monolithic setup in a

programming language, becomes common. This state

machine is the orchestration implementation for the AiML

workflow, but it should not be committed to code for various

reasons. Most importantly, the orchestration tools are not built

in most IaC, and an orchestration tool needs to connect

different building blocks that come from different vendors.

There is a need for lightweight tools that ease the

orchestration burden of distributed AI/ML workflow

supporters.

5.1 Designing Serverless AI Solutions

Illustrate how to build an end-to-end serverless AI solution.

Following the Common Workflow for Data Mining approach,

the solution consists of data preparation, data analysis, results

presentation, and deployment, as depicted in Building data

preparation and data analysis components on cloud services

is relatively straightforward; however, it necessitates the use

of several closely coupled cloud functions in the cloud

function deployment model. For the best overall latency, a

cloud function must be executed close to data ingestion. After

calling a few cloud services and executing other functions,

depending on intermediate results, it must invoke the cloud

function that runs the machine learning model. Still, no cloud

function is small enough to fit into a single execution. As

cloud functions must be coordinated carefully, debugging and

failure recovery can become challenging. In case of function

failure, potentially 10 cloud functions must be re-executed in

order to process all required data tuples. As a result,

developing a data analysis module is less straightforward.

Building a data preparation and a data analysis module using

cloud services is straightforward. For ease of viewing, the

building of a data preparation module is discussed first.

Similar thoughts also apply to a data analysis module. When

data is ingested, several cloud services are set up, including

Google Cloud Storage, an object storage service, Google

Cloud PubSub, a messaging service, and Google Cloud

BigQuery, a cloud-hosted data warehouse. Data is ingested

from online and offline data sources to PubSub, which writes

data to transient storage, and then consumed by a cloud

function that validates and aggregates data, and written back

to durable storage. Data is further processed using Google

Cloud Dataflow, a fully managed data analysis service. A

Dataflow template consumes data from a cloud storage bucket

and calls a model. Since a piping file is used, this is the only

step needed to set up and schedule the job.

Figure 4: Serverless AI Solutions

5.2 Best Practices for IaC and Serverless Integration

Infrastructure-as-code (IaC), a paradigm that defines

infrastructure as code to manage assets, has become a

dominant method for automating and securing the cloud.

Thanks to its declarative nature, maintaining the current state

of a cloud provider while applying changes is straightforward.

Moreover, various cloud providers now offer tools for

performant implementations, making it easy to include IaC in

CI/CD pipelines or easily adapt existing setups. This reduces

the entry point for organizations to own and maintain their

own machine learning (ML) infrastructure and thus offers

new scripting and support opportunities. A drawback is the

lack of strict paradigms to prevent undue complexity of IaC

files, which rise to the point of becoming immobile and

written in a roundabout way. Escalating code size may even

be unmanageable for smaller organizations.

Although, by design, IaC provides good reproducibility of a

cloud provider’s resources, it is more difficult to achieve

reproducibility during a watertight and auditable ML pipeline.

It is common for small scripts to slip in and out of CI/CD

pipelines or prototyping stages. For example, some data

preprocessing steps may be skipped in a cloud environment,

leading to bad model performance, while other steps are too

complex for IaC tooling to manage. In addition to compliance

requirements, there is also a chance that these scripts exhaust

cloud resources or fail to be cleared up. Any pipeline should

be composed only from serverless steps, and a prevention

mechanism that enforces this should be common for all

projects.

Although less mature than IaC, serverless orchestration

tooling is available by both major cloud providers, but little

work has been done detecting risks in such code. Several steps

in a workflow should be defined as serverless functions, such

as simple implementations that may call other AI tooling. The

optimization of serverless functions sharing occurred only

recently and is more complex than other approaches, often

introducing new risks and corner cases and requiring

additional consideration within the tooling.

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1582

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5.3 Case Studies of Successful Integrations

This section presents two case studies of cloud adoption for

multi-model AI workloads in a telco and a retailer. Case

Study 1 focuses on the research done in telco cloud adoption

and optimally deploying existing AI workloads and pipeline

with serverless and IaC. Case Study 2 focuses on the cloud

adoption in a retailer that needs to optimize the service

infrastructure of existing AI models deployed in the cloud.

Research technologies are developed in parallel with the

adoption of user applications. This section first delineates a

use case from Telecom Sector where the user has a large

number of pre-trained AI model pipelines for network event

prediction, fraud detection, user opinion mining, etc. Those

models and pipelines are instantiated with ML frameworks.

Pre-trained models in these ML frameworks need to adopt

cloud infrastructures for usage since those models are

currently hosted either on local data center machines or on

clouds. Some research topics include but are not limited to the

user requirements for platform design, and deployment

pipeline generation techniques relying on machine learning

and formal reasoning, etc.

A scenario for deploying ML models on cloud infrastructure

is depicted. It can be divided into three sub-nodes, including

resource generation, resource allocation, and resource

deployment. The first step is to load model files,

preprocessing and post-processing functions, and training and

inference task configuration files. Then the correct

infrastructure representation will be generated based on the

prior knowledge of infrastructure templates. Infrastructure

generation outcome samples are included. Auxiliary tools

include the utilization of common APIs to estimate resource

scale and to monitor ongoing workloads. The first two

components generate templates in template language and

provide scenarios for potential images to choose. Given

traditional deployment languages, either a proprietary parser

or a template-to-template conversion needs to be researched

on.

Due to the complex dependencies among a large number of

AI workloads in a retailer, the optimization of cloud service

infrastructure is also a hard problem. It also includes

input/output and last-minute pipeline-generation techniques

for complying with these scenarios. Inputs are AI services

involved in the optimization process, AI frameworks used

underneath these AI services, provider designated resources,

and cost budget constraints. Outputs are proposed serverless

APIs online service denoting the same input/output format as

existing AI services.

6. Performance Optimization Techniques

Serverless computing and Infrastructure-as-Code are two

modern cloud computing paradigms gaining traction among

developers due to their low entry cost and operational

overhead. In serverless computing, users can easily deploy

Functions-as-a-Service (FaaS) to serverless platforms for

automatic scaling and management of execution

environments. Infrastructure-as-Code automates the

provisioning of cloud resources needed to deploy applications

with a set of template files detailing resources provisioned in

a domain-specific language (DSL). Modern programming

languages also allow using libraries to write Infrastructure-as-

Code more flexibly.

As both paradigms decouple the development and

management of cloud resources, cloud users take control of

their cloud architectures to exploit platform optimization

techniques to avoid overspending and performance

degradation. However, like cloud providers, a challenging

problem is developing general optimization techniques that

consider many important aspects of one scope (e. g., system,

algorithm, and usage) and optimize their respective

parameters. A more relaxed problem is developing a library

of modular optimization components for a specific aspect that

takes the current architecture as input and proposes

adjustments to improve performance, but composing these

independent components into an optimization framework also

requires a fixed cloud architecture.

This paper proposes a modularizable optimization library

optimization through an infrastructure-as-code approach and

applies it to a serverless computing environment. As a proof-

of-concept demonstration, a library of design patterns for

AWS Lambda is developed, covering the function placement

and sizing problems, functions fusion, and events spreading

techniques. Using both real-world and synthetic workflows, it

demonstrates how to use the proposed library to guide

composable optimizations. This library serves as a library of

functions applying optimization techniques developed to a

serverless computing environment. Using a serverless

architecture manifests easy composition of proposed patterns

and global optimizations based on local ones.

Equ 3: Workflow Execution Time in Serverless Pipelines.

6.1 Monitoring and Logging

Monitoring and logging are essential for understanding what

is happening inside the AI models and the cloud

infrastructure. Among other things, monitoring and logging

can provide business insights into how the AI models affect

business KPIs and how cost-and performance-effective the

deployed cloud infrastructure is. Monitoring is performed by

automatedly collecting metrics from the above components

using monitoring tools. It detects anomalies for alarms and

insight reports. On the other hand, logging is used to explain

anomalies in more detail. Logging events give finer-grained

information to describe what is happening at specific

moments. Usually logging events are stored in specialized

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1583

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

data stores and processed later on by engineers and data

scientists.

The collected raw data and engineered metrics for monitoring

and logging purposes costs a lot of cloud resources to store,

transfer, and process. It is essential to apply different data

preprocessing techniques so that the most relevant data is

collected and stored. This includes data sampling, selection,

engineering, etc. Furthermore, the monitoring dashboards and

logging event collector need to be properly configured. A

representative subset of metrics should be visualized and the

notifications should be configured properly. In this case, it

may take time for additional data scientists/engineers to

prepare monitoring dashboards and logging strategies.

Though it is a reasonable price to pay, some industry partners

still prefer better monitoring systems that come with existing

cloud-native components or bring from existing open-source

solutions with minimal manual effort.

Providing initial monitoring and logging systems as models

that can be translated together with the deployment templates

is beneficial because it gives engineers and data scientists the

choice of choosing an appropriate monitoring strategy that fits

their purpose. This approach would hide a lot of complexities

when manually collecting metrics from different models,

devices, or cloud services. Although framework-or layer-

agnostic solutions are provided that monitor and log almost

everything, some AI engineers still prefer finer-grained

control and configuration over the monitoring process. For

instance, a logging event with a detailed payload can be added

if an anomaly is detected in a model metric.

6.2 Cost Management Strategies

AI models are increasingly deployed in serverless computing

platforms. Serverless computing abstracts cluster

management, enabling users to deploy AI models with ease.

However, this ease cannot come at the expense of efficiency.

AI models need to be properly resized and deployed to cloud

functions in such a way that the SLO requirements are met

while minimizing costs. Currently, deploying AI models

running on serverless computing is akin to deploying

applications on VMs; users need to estimate the correct

resources manually, often resulting in over-provisioning and

redundant costs. However, if current serverless function

development paradigms do not change, the raw operational

costs of serverless computing are expected to double every

1.7 years. More importantly, the share of serverless costs to

the overall cloud bill is anticipated to increase from 43% in

early 2023 to over 75% by 2025.

With quotes from leading serverless vendors, recent

comparisons of serverless cloud patterns with IaaS VMs

emphasized how the IWOC platform is different. Serverless

computing is a new paradigm for cloud computing. However,

workloads running on serverless computing need to be

profiled with high accuracy in order to make fair comparisons

with infrastructure-as-code cloud patterns. This requires

performance modeling methods, and a different way to

deploy workloads than with VM-based cloud patterns. This

research discussed how to overcome this hurdle by

implementing serverless function profiling in a serverless

way, how to use it for accurate performance modeling, and

how to map serverless workflows to the cloud using a

serverless FaaS workflow deployment pattern. With these

contributions and a case study, the IWOC platform, which

consists of architecture, design and implementation of cloud

patterns, addressing cloud-scale workload deployment and

optimization in serverless computing environments.

6.3 Scaling Serverless Applications

Geographically distributed application deployment is

essential for low-latency applications. It minimizes the time

for meeting user requests with geographically distributed

application deployments. Placement of user applications in

edge regions nearer to end users is essential to reduce latency.

Multi-layer model for application deployment considers user

request latency, data latency, and operation latency metrics in

placement. Optimization techniques available under different

mathematical programming approaches distribute the

application deployments for reduced latency. Flexible

placement of serverless applications across multiple cloud

providers improves performance and minimizes cost.

Directed Graph approach estimates the performance of

serverless application deployments across multiple,

heterogeneous clouds. Optimizing it using an Integer Linear

Programming model finds the best placement. Migrating a

portion of workloads across clouds to alleviate the task

processing delay is important for task processing efficiency.

The problem is modeled as a Mixed Integer Programming

model with funding and budget constraints. A hybrid of

answering multi-query reinforcement learning and the dual-

primal algorithm leverages cloud providers’ spare resources

for cost-effective batch submission of tasks.

Serverless computing is an emerging paradigm for creating,

deploying and using applications where the application

provider only pays when user requested imminent processing

is completed. Serverless computing atop Function-as-a-

Service is being widely adopted owing to the rapid

provisioning of computing resources and the ability of user

applications to scale. Serverless cloud providers

automatically scale function resources to meet application

needs while maintaining quality-of-service.

7. Security Considerations

As with any solution that incorporates cloud-based services,

care must be taken to ensure that sensitive data, systems, and

user identities are properly protected. The cloud components

used in the patterns should be properly managed and secured.

Security management and compliance processes will need to

be updated to address the emerging cloud technologies and

how they’re used. It will be necessary to monitor cloud usage,

ensure that any data storage complies with applicable

standards and regulations, provide the ability to identify

violations of security policies or compliance standards, and

make sure classification and protection mechanisms are

applied appropriately. Provider-level capabilities such as

logging can help with this monitoring; and if needed, third-

party security monitoring and governance tools may also be

employed to help manage compliance in the cloud. Execution

of the serverless components of the patterns bypasses the

organization’s security perimeter, so any potentially sensitive

data must be protected with the mechanisms appropriate for

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1584

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

cloud services (and validated with monitors). Cloud provider

security capabilities can help meet these needs to some

degree. Cloud resource shape (smaller costs) must also be

configured in patterns. Security restrictions must be

adequately tested with monitors. Engineers need security

training as tracking tools, cloud service monitoring,

protection design, and testing methods change following

transition to cloud services. Security management is both

more decentralized and more rapid after cloud transition, so

this management must be reviewed and potentially revamped

to retain effectiveness. Where cloud services are available

where the organization operates, cost-effective patterns

become possible. As these methodologies broaden, cloud

terms of service must be interpreted, models must be adapted

to determine appropriate costs and cost savings, and

organizational education must close the gaps in existing

organization capabilities.

7.1 Security Challenges in Serverless Architectures

Security vulnerabilities have profoundly affected the

adoption of serverless cloud services, leading to attacks

against serverless applications and the extraction of sensitive

information from functions and their environments. The

diversity of event triggers and policies available in serverless

cloud services can further expand the attack surface and

increase complexity. The support of functions for restricted

programming languages leads to specific implementation

problems, such as exposing serverless function environments

where untrusted code can succeed.

Although serverless architectures leverage some new

capabilities in cloud platforms that can limit the surface of

attacks, the added complexity raises two fundamental

challenges for security: security reasoning and the definition

of secure architectures. Client-side security policies worry

about what attacks will be attempted against an architecture

and what application security aspect can be compromised.

Such policies rely on knowledge about the coding and

deployment processes, thus raising issues on their

completeness and trustworthiness. No classical security

policy is available for serverless architectures because end-

users cannot play an explicit role in the coding and

deployment processes. Such architectures indeed benefit from

the designer's main goal of turning policies into virtual private

cloud artifacts storing and redirecting sensitive data.

Rich information manipulation facilities at scale produce

differential access on a large number of cloud resources.

Hence, the decoration of security-oriented task-relevant

features is essential for the continuous assessment of security

policies throughout the whole cloud service lifetime. Higher-

level security policies, such as those that govern the

deployment and execution of new application functions and

limit data exposure to a chosen functional context, can play

crucial roles in maintaining a trusted cloud service in the

presence of severe architectural assumptions.

Figure 5: Serverless Security

7.2 Implementing Security Best Practices

Every application exposes an entry point to the outside world

by which it listens for incoming requests (APIs, files, etc.). It

also closes sockets, files, and other resources opened to

process requests, either gracefully by returning resources to

the operating system, or abruptly, by terminating the

computation. Ideally, any errors along the way should be

handled properly and logged somewhere for later inclusion in

system logs. This is expected from any software deployment.

With infrastructure-as-code deployments, cloud

infrastructure is programmed in a manner similar to

application source code, requiring its own audit trail. On

deploys to run arbitrary source code, cloud providers usually

restrict tolerated procedures and resources. Any missteps in

source code can result in infinite costs. Serverless computing

functions have the same start/stop request boundaries, and

uncivilized behavior of functions remains fairly similar across

IaaS and FaaS cloud offerings.

When using the FaaS programming model, limited run time

and memory means that the resource handling logic becomes

more focused. Logging, for example, might just send logged

strings to a permanent file or output redirect, as opposed to a

dedicated server. As with IaaS, logic should sanitize and

escape user input to avoid abuse and injection attacks. Avoid

long-running calculations. The run time maximum is

generally generous, but can scale down and may require re-

architecting of some workloads. Cloud functions candidates

may run as a batch, or require native HTTP (S) endpoints.

Any logic should be callable via a function, and often such

integrations can be forgotten as the rest of the operations

become cumbersome. Authorizations and authoring software

can drift apart, which allows for privilege escalation.

Repeated invocation or scandals can cause flooding and incur

a high penalty. Logging can be segmented by workloads to

ease the analysis, and automatically sanitized to avoid

confusion.

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1585

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

8. Future Trends in AI and Cloud Computing

As the Artificial Intelligence (AI) technology system

continues to mature, new models, techniques, tools, and

systems for using AI are emerging every day. A few specific

trends that will massively impact the AI community and a

broad base of AI clients are reviewed from four different

angles of AI models, infrastructure, services, and

applications. It can interact with users in a natural way,

answer sophisticated questions, generate creative multimedia

content, and provide human-like tutoring services. As more

recent models emerge, they are exposed to various dynamic

scenarios for application. However, further efforts are needed

to implement corresponding integration and evaluation

systems in the AI service community to allow for easy

integration, quality assessment, and control. Generative AI

services will profoundly complement people’s work and

improve end-customers’ interactions with and productivity of

various enterprise applications and insights.

Another common trend is the fast-moving progress and

increased accessibility to the infrastructure side of AI. In the

past few years, significant weights and models have been

developed on some private clusters with millions of expensive

GPUs. As more specialized models are developed, options

around proprietary runtimes, model efficiencies, and costs

grow. Open sourcing can help democratize innovation but

needs proper perception and curation of risks. As this turmoil

continues and the possibility of self-hosting potentially

powerful models rises, more smaller-scale models become

available. However, substantial initial investments in

infrastructure, expertise, and operations are a barrier to

smaller companies with promising applications who want to

leverage generative AI. Tools, platforms, and expert teams

from larger vendors render easy access to the newest model

family to a broader set of clients. There is a focus on how

these platform-building companies are leveraging existing

cloud capabilities and workflows to pre-integrate the latest

models within their services and thus lower the barrier to

access.

8.1 Emerging Technologies

Pressures to optimize the cost of AI workloads have

motivated research into the deployment of AI workloads as

serverless applications using Function-as-a-Service offerings.

Such applications can greatly minimize the operational

burden required to run AI workloads, as cloud providers

manage provisioning, scaling, and operating the underlying

infrastructure on the user’s behalf. Deploying AI workloads

as FaaS applications typically leads to reduced operational

expenditure compared to standard cloud services such as

Virtual Machines. This is due to how FaaS pricing structures

are aligned with the deployment of workloads with bursty

time profiles (e. g., workloads with many periods of little to

no activity separated by short periods of high utilization).

Crucially, the FaaS pricing model is particularly well-suited

to AI workloads, which frequently suffer from bursty time

profiles due to the overhead of data preparation and model

averaging/load balancing.

To this end, it is necessary to understand the challenges and

implications of deploying AI workloads as FaaS applications

on cloud providers. Such applications can comprise many

functions composed into unit-serving workflows. The

challenges of deploying cost-effective FaaS applications

using function composition strategies and transformations are

discussed (including workload scheduling, function

placement, and function merging). Cost modeling heuristics

at the infrastructure and application levels are introduced, and

a framework that scales to the number of functions and

computes cost-efficient deployments for diverse workloads

and architectures is proposed. The focus is on using the

serverless stack APIs and services, and the unit-serving basis

on which these technologies are designed to build scalable

serverless applications.

Figure 6: Optimizing AI workflows with infrastructure-as-

code and serverless cloud patterns.

8.2 The Role of AI in Cloud Optimization

An important approach in cloud optimization is to find

suitable machine learning (ML) techniques to improve the

accuracy and speed of the optimization. A complex cloud

service contains a multitude of components and hyper-

parameters that work together to connect the ingestion,

ingestion processing, serving, and serving scaling stages of a

cloud data service. To reduce the operational effort on tuning

these components, users can specify targets on metrics, run

monitor jobs, and upload raw data for the past periods to a

cloud data service. Then, MLSweep, an optimization service

that automates and speeds up the tuning jobs for cloud hosting

data services, is designed to produce hyper-parameter

candidates for tuning each component. For a complex cloud

service, it is impractical to create a massive optimization

problem that at once optimizes all components. Ongoing

efforts continue to jointly optimize a selection of components

while synchronizing the deployment of changes of the

involved components. With this approach, it is possible to

focus on optimizing related components working together;

thus, the joint optimization of these focused components can

often improve the overall system performance in a way that

optimizing the components independently cannot. A basic

technique for diagnosing how go wrong is to filter the

problematic cases by a specified granularity and to run a few

rounds of joint tuning. Components returning suspicious

candidates of their hyper-parameters are grouped into one

cluster and tuned with the relevant data. Naturally, there are

concerns about the risks posed by AI. With the growing

complexity of machine learning models, cloud services

leveraged by AI are becoming more expensive to maintain

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1586

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and develop; therefore, one of the main tasks is to help keep

this performance and spending at acceptable levels.

Intuitively, tricking the cloud vendor by making them spend

extremely may lead to a loss with intolerable budget overruns.

Introduced guardrails to protect customers from impossible or

expensive solutions by checking candidate decisions with

several in-house, cloud independent scoring functions of

complexity and sanity. For example, a huge number of

training data points would be needed for a complex model;

however, the amount of training data cannot be obtained

instantly, which gives at least a chance to spot the suspicious

kinds of optimal decisions early on. Another type of guardrail

enables checking the performance of the model output using

a small test set from the cloud vendor to detect regression.

9. Conclusion

AI workloads are not only critical workloads. They are

challenging workloads. The key challenges can be

summarized as: (1) AI workloads must expand rapidly to

become billion-trillion param workloads to assist Giga-Byte,

Tera-Byte, and even Petabyte data scale, while having

tougher batch times for training due to larger Λ, larger cost of

iterating Mini-batch times, suboptimal scaling, fidelity, and

floorplan compared to cost when growing SuperComputer

like Continent-Scale Exascale clusters. In this new era of AI,

the performance of training AI workloads and their routines

is bottlenecked not only due to new computer technology but

also new architecture in the last mile. Large dominance of

Tera-Byte and Petabyte data in Giga-Bolt data scale increases

batch size from K lower-$$ to G higher-$$. The contention of

upper-level addresses in Tera-Byte GPU chips and above,

lower-level addresses in M이나 LCache + Migrate chips, and

flow-control in the ASIC-DPU laden W-DL with

CPI>TgSpeed worsens the train-testing time, and why b-

size=G & M on-chip/pipeline-only for NewDS should

accelerate both training and testing simultaneously is

discussed. (2) AI workloads must be more sustainable for

lower-E and less-MT$ despite more costly innovation,

training, and inference stage. E$ are also introduced to gauge

companies/teams in designing new chips. For instance, new

Centre-Scale AI training chips like DPU+ASIC should be

cooled to T<50C for energy savings by pipeline ON-OFF

oscillation, and fine-grained background task-miss

contending light device activation might increase 20x E$ for

1% QoS$ o$ controllable latency $ extless4T_{test}$. E$

would be higher and more challenging in AI inference

workloads with wider-but shallower stage width and Turing

stage ratio, including non-trivial hardware pipelines.

However almost all EEISM worth $1T_{trillion/annum}$ is

spent on all kinds of training and tests to make sense of

natural/scientific phenomena, which nonetheless amounts to

not even 5$ ext%$ of the ML output through SlowOS.

References

[1] Paleti, S., Singireddy, J., Dodda, A., Burugulla, J. K. R.,

& Challa, K. (2021). Innovative Financial

Technologies: Strengthening Compliance, Secure

Transactions, and Intelligent Advisory Systems

Through AI-Driven Automation and Scalable Data

Architectures. Secure Transactions, and Intelligent

Advisory Systems Through AI-Driven Automation and

Scalable Data Architectures (December 27, 2021).

[2] Gadi, A. L., Kannan, S., Nanan, B. P., Komaragiri, V.

B., & Singireddy, S. (2021). Advanced Computational

Technologies in Vehicle Production, Digital

Connectivity, and Sustainable Transportation:

Innovations in Intelligent Systems, Eco-Friendly

Manufacturing, and Financial Optimization. Universal

Journal of Finance and Economics, 1 (1), 87-100.

[3] Someshwar Mashetty. (2020). Affordable Housing

Through Smart Mortgage Financing: Technology,

Analytics, And Innovation. International Journal on

Recent and Innovation Trends in Computing and

Communication, 8 (12), 99–110. Retrieved from https:

//ijritcc. org/index. php/ijritcc/article/view/11581.

[4] Sriram, H. K., ADUSUPALLI, B., & Malempati, M.

(2021). Revolutionizing Risk Assessment and Financial

Ecosystems with Smart Automation, Secure Digital

Solutions, and Advanced Analytical Frameworks.

[5] Chava, K., Chakilam, C., Suura, S. R., & Recharla, M.

(2021). Advancing Healthcare Innovation in 2021:

Integrating AI, Digital Health Technologies, and

Precision Medicine for Improved Patient Outcomes.

Global Journal of Medical Case Reports, 1 (1), 29-41.

[6] Just-in-Time Inventory Management Using

Reinforcement Learning in Automotive Supply Chains.

(2021). International Journal of Engineering and

Computer Science, 10 (12), 25586-25605. https: //doi.

org/10.18535/ijecs. v10i12.4666

[7] Koppolu, H. K. R. (2021). Leveraging 5G Services for

Next-Generation Telecom and Media Innovation.

International Journal of Scientific Research and Modern

Technology, 89–106. https: //doi. org/10.38124/ijsrmt.

v1i12.472

[8] Adusupalli, B., Singireddy, S., Sriram, H. K., Kaulwar,

P. K., & Malempati, M. (2021). Revolutionizing Risk

Assessment and Financial Ecosystems with Smart

Automation, Secure Digital Solutions, and Advanced

Analytical Frameworks. Universal Journal of Finance

and Economics, 1 (1), 101-122.

[9] Karthik Chava, "Machine Learning in Modern

Healthcare: Leveraging Big Data for Early Disease

Detection and Patient Monitoring", International

Journal of Science and Research (IJSR), Volume 9 Issue

12, December 2020, pp.1899-1910, https:

//www.ijsr.net/getabstract.

php?paperid=SR201212164722, DOI: https:

//www.doi. org/10.21275/SR201212164722

[10] AI-Based Financial Advisory Systems: Revolutionizing

Personalized Investment Strategies. (2021).

International Journal of Engineering and Computer

Science, 10 (12). https: //doi. org/10.18535/ijecs.

v10i12.4655

[11] Cloud Native Architecture for Scalable Fintech

Applications with Real Time Payments. (2021).

International Journal of Engineering and Computer

Science, 10 (12), 25501-25515. https: //doi.

org/10.18535/ijecs. v10i12.4654

[12] Innovations in Spinal Muscular Atrophy: From Gene

Therapy to Disease-Modifying Treatments. (2021).

International Journal of Engineering and Computer

Science, 10 (12), 25531-25551. https: //doi.

org/10.18535/ijecs. v10i12.4659

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1587

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[13] Pallav Kumar Kaulwar. (2021). From Code to Counsel:

Deep Learning and Data Engineering Synergy for

Intelligent Tax Strategy Generation. Journal of

International Crisis and Risk Communication Research,

1–20. Retrieved from https: //jicrcr. com/index.

php/jicrcr/article/view/2967

[14] Raviteja Meda. (2021). Machine Learning-Based Color

Recommendation Engines for Enhanced Customer

Personalization. Journal of International Crisis and Risk

Communication Research, 124–140. Retrieved from

https: //jicrcr. com/index. php/jicrcr/article/view/3018

[15] Nuka, S. T., Annapareddy, V. N., Koppolu, H. K. R., &

Kannan, S. (2021). Advancements in Smart Medical

and Industrial Devices: Enhancing Efficiency and

Connectivity with High-Speed Telecom Networks.

Open Journal of Medical Sciences, 1 (1), 55-72.

[16] Chava, K., Chakilam, C., Suura, S. R., & Recharla, M.

(2021). Advancing Healthcare Innovation in 2021:

Integrating AI, Digital Health Technologies, and

Precision Medicine for Improved Patient Outcomes.

Global Journal of Medical Case Reports, 1 (1), 29-41.

[17] Kannan, S., Gadi, A. L., Preethish Nanan, B., &

Kommaragiri, V. B. (2021). Advanced Computational

Technologies in Vehicle Production, Digital

Connectivity, and Sustainable Transportation:

Innovations in Intelligent Systems, Eco-Friendly

Manufacturing, and Financial Optimization.

[18] Implementing Infrastructure-as-Code for Telecom

Networks: Challenges and Best Practices for Scalable

Service Orchestration. (2021). International Journal of

Engineering and Computer Science, 10 (12), 25631-

25650. https: //doi. org/10.18535/ijecs. v10i12.4671

[19] Srinivasa Rao Challa. (2021). From Data to Decisions:

Leveraging Machine Learning and Cloud Computing in

Modern Wealth Management. Journal of International

Crisis and Risk Communication Research, 102–123.

Retrieved from https: //jicrcr. com/index.

php/jicrcr/article/view/3017

[20] Paleti, S. (2021). Cognitive Core Banking: A Data-

Engineered, AI-Infused Architecture for Proactive Risk

Compliance Management. AI-Infused Architecture for

Proactive Risk Compliance Management (December

21, 2021).

[21] Vamsee Pamisetty. (2020). Optimizing Tax

Compliance and Fraud Prevention through Intelligent

Systems: The Role of Technology in Public Finance

Innovation. International Journal on Recent and

Innovation Trends in Computing and Communication,

8 (12), 111–127. Retrieved from https: //ijritcc.

org/index. php/ijritcc/article/view/11582

[22] Venkata Bhardwaj Komaragiri. (2021). Machine

Learning Models for Predictive Maintenance and

Performance Optimization in Telecom Infrastructure.

Journal of International Crisis and Risk Communication

Research, 141–167. Retrieved from https: //jicrcr.

com/index. php/jicrcr/article/view/3019

[23] Transforming Renewable Energy and Educational

Technologies Through AI, Machine Learning, Big Data

Analytics, and Cloud-Based IT Integrations. (2021).

International Journal of Engineering and Computer

Science, 10 (12), 25572-25585. https: //doi.

org/10.18535/ijecs. v10i12.4665

[24] Kommaragiri, V. B. (2021). Enhancing Telecom

Security Through Big Data Analytics and Cloud-Based

Threat Intelligence. Available at SSRN 5240140.

[25] Rao Suura, S. (2021). Personalized Health Care

Decisions Powered By Big Data And Generative

Artificial Intelligence In Genomic Diagnostics. Journal

of Survey in Fisheries Sciences. https: //doi.

org/10.53555/sfs. v7i3.3558

[26] Data Engineering Architectures for Real-Time Quality

Monitoring in Paint Production Lines. (2020).

International Journal of Engineering and Computer

Science, 9 (12), 25289-25303. https: //doi.

org/10.18535/ijecs. v9i12.4587

[27] Mandala, V. (2018). From Reactive to Proactive:

Employing AI and ML in Automotive Brakes and

Parking Systems to Enhance Road Safety. International

Journal of Science and Research (IJSR), 7 (11), 1992-

1996.

Paper ID: SR21127160953 DOI: https://dx.doi.org/10.21275/SR21127160953 1588

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

