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Abstract: The advent of next - generation sequencing technology has led to an exponential growth of genomic data. At the same time, 

the development of high - throughput methods for patient characterization, recording environmental factors around patients, and 

collating clinical data has led to an immense increase in clinical records. Analysis of large amounts of such diverse data can provide 

deeper biological insights about diseases and identify personalized treatments. Integrating and analyzing genomic data and clinical 

records from heterogeneous sources in a scalable and rapid manner pose significant technical challenges. In contrast to batch learning 

methods that require data storage and centralized processing, which are often inapplicable to medical data, online learning can process 

streaming data. Integrating them through online - learning - based systems can help analyze diverse data in a rapid and responsive 

manner without storage requirements. This is particularly reliable in a big data context, where online learning methods can scale even 

beyond data diversity to large data volume and unmatched data levels. It is therefore better suited for analyzing genomic information 

along with clinical and imaging data and for integrating information from diverse and concurrent data sources. In a data war, multiple 

health organizations develop ML - driven solutions to gain competitive advantages. A robust analysis and matching ML framework that 

guarantees data privacy allows organizations to compete with each other without the risk of data leaks. This guarantees data usage 

fairness and rewards the protection of patients’ privacy. It also maintains the integrity of the institutional review board (IRB) process, 

which states that patient data will not leave the premises of institutions. Furthermore, it significantly reduces the risk of mass data 

breaches, which can have devastating repercussions on both patients and health organizations. Such reputations may include the loss of 

trust, reduced patient willingness to share data, and legal prosecution. In a similar vein, personalized medicine requires more diversity in 

treatment and diagnosis as opposed to traditional one - drug - fits - all strategies. Where there are millions of candidate models and 

parameters that can ingeniously predict treatment effects on prognosis but inadvertently introduce more complexities and uncertainties, 

a powerful framework that efficiently identifies reasonable explanations remains elusive.  
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1. Introduction  
 

Personalized medicine is in a transition phase. It used to 

develop drugs with a targeted action on a specific target, such 

as an infected tissue, a cancerous cell, or a pathway involved 

in pathophysiology. The target is generally tightly connected 

to the formulation of the drug and is the basis for its pre - 

clinical and clinical development. However, at the same time, 

it is crucial to consider the opposite process. Analysis 

approaches hold the potential for the characterization of 

metabolic or genomic patterns responsible for disease 

propagation or work - up of therapeutic treatments. Artificial 

intelligence currently does not integrate with analysis in the 

development and validation of new drugs. It is crucial to 

widen the analysis capabilities currently available to 

academic and industrial labs to exploit this novel potential for 

the development of driven personalized medicine. A clinical 

trial, aiming at validating a personalized adaptive treatment 

with respect to a standard treatment in patients affected by 

biomarker positive mutations frequently found in advanced 

non small cell lung cancer, is considered. The static 

evaluation of responses collected within the framework of 

clinical trials raised the question on the feasibility of 

capturing, decoding, and characterizing single patient 

mutation - and - response patterns. The initial 

pharmacological agents alter either protein structures of 

kinases or intracellular pathways targeted by these kinases. 

The goal is to identify biomarkers predictive of therapeutic 

efficacy, in particular, for treatment with inhibitors. 

Specifically, to characterize responses of patients treated with 

an inhibitor and analyze the variations of the oncogenic 

mutation according to therapeutic outcome. Data on genomic 

signatures and therapeutic responses as part of a multi - 

centered validated trial are considered for analysis. Clinical 

records prospectively collected in a clinical trial have been 

used as training data to investigate deeper insights on patients’ 

responsiveness. The challenge is to derive a functional 

evaluation of treatment effects from sparse clinical responses. 

In particular, to characterize both personalized responses 

revealed by data and predicted outcomes missed in clinical 

data. As shown in these early analyses, all machine learning 

methods successfully captured complex input/outcome maps 

on the training set, resulting in an average validation.  

 
Figure 1: Genomics and Big Data Analytics for 

Personalized Medicine and Health Care. 
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1.1 Background and Significance  

 

Personalized medicine is regarded as the most promising 

frontier of biomedical research and healthcare industries with 

sufficient temporal and spatial multi - omics data collection. 

Government and private organizations are harvesting multi - 

omics and clinical records at an unprecedented scale and rate. 

The treatment of diseases can be tailored based on the genetic 

background, lifestyle, and environmental exposures of 

patients. However, the success of precision medicine relies on 

efficient integration and model creation of the collection data. 

Such complexity arises from high dimensionality, missing 

values, and heterogeneous nature. The efficient integration 

and modeling of multimodal data is currently one of the most 

challenging grand challenges of artificial intelligence in the 

bio - health field. Here, representative studies and 

achievements, tools, and algorithms are reviewed to address 

the need for a systematic understanding of the state of the art.  

After the Human Genome Project trained researchers in the 

country to analyze single - omics, systematic studies on multi 

- omics integration will enable them to study the genomic 

landscape of diseases better. Nowadays, multiple diseases, for 

example, autism, cancer, and diabetes, can be modeled from 

a multi - omics perspective, which holds great promise for 

greater understanding and improved diagnosis and treatment 

of diseases. However, multi - omics integration is a 

challenging task due to the difficulties in accommodating the 

diverse nature of such expanded modalities.  

 

Unbalanced features and missing values are common 

difficulties in the study design and scientific conduction. Such 

complexity requires advanced approaches with the ability to 

deal with multimodal integration. The integration is also 

hindered by the fast growth of the available data and omics, 

as acquiring new ones does not seem to end. A systematic 

review of the advantages and limitations of current statistical 

tools and computational platforms would help researchers 

navigate through the various choices of the field.  

 

2. Understanding Big Data in Healthcare 
 

Recent advances in biosensors and digital imaging techniques 

have led to an explosion in the generation of clinical data for 

biomedical research as well as healthcare delivery. All these 

developments have brought enormous advances in disease 

diagnosis and treatments, but have also introduced new 

challenges as large - scale information becomes increasingly 

difficult to store, analyze, and interpret. In recent years, 

medical record - keeping institutions, pharmaceutical 

companies, and biotechnology start - ups have been collecting 

vast amounts of clinical data, treatment outcome data, as well 

as data from genomics, transcriptomics, proteomics, 

micrometabolomics, and other high - dimensional data 

spaces. This problem has given way to a new era of “Big” 

Data in which scientists are exploring new ways to understand 

the large amounts of unstructured and unlinked data generated 

by modern technologies, and leveraging it to discover new 

knowledge. The ultimate goal is to convert all this data into 

information, and ultimately knowledge, hypotheses and 

predictions that can be tested, verified, and acted upon in the 

laboratory or the clinic.  

 

Yet, despite these advances, for all the promises that Big Data 

holds for revolutionizing healthcare and disease treatment, we 

see few examples of Big Data being leveraged in healthcare 

despite the plethora of data that is available and the enormous 

socio - economic benefits that could be reaped. In fact, 

countries that invest massively in biomedical data generation 

technologies and pharmaceuticals could gain huge economic 

returns on the basic research they fund. It is hard to think of a 

field with more healthcare data than cancer and, therefore, one 

with more opportunities for Big Data discovery. 

Nevertheless, an analysis of the field of Oncology indicates 

that despite billions of dollars being invested in genomics data 

collection, TCE data collection, and possibly two competing 

drug - treatment databases (one for treatment regimens, the 

other for drug - drug interactions), there are little indications 

still that the whole is greater than the sum of these parts. 

Analysis of this fragmented landscape reveals large swathes 

of unmonetized data - generating healthcare institutions and 

small start - ups, and they are all doing their own mutually 

incomprehensible and isolated things.  

 

2.1 Research Design  

 

Given the rise in biobanks, rapidly decreasing costs of omics 

data generation, and new developments in core IT 

infrastructure, big datasets will soon be more readily available 

for biomedical research. New tools are required to navigate 

the information deluge in the precise medicine era. 

Nonetheless, the growth of new data types also comes with 

serious challenges. Biomedical research is often siloed, with 

genomic and clinical data belonging to different fields. 

Interdisciplinary research is rare, leading to inefficiencies and 

missed opportunities. Genetic variants and other biomarkers 

have been hypothesized as crucial components of outcomes - 

related treatment decisions, preventing adverse drug reactions 

and improving health care costs. Competitive methods based 

on traditional statistics and bioinformatics are thought to be 

reaching their limits, leading the field towards wide adoption 

of machine learning (ML) methods, which have made 

significant strides in traditional statistical and computational 

bioinformatics.  

 

It has previously been demonstrated that ML can enhance the 

identification of actionable biomarkers beyond current efforts 

by focusing on the different characteristics of the new data 

types. This demonstrates the feasibility of genomics - driven 

and CSC - informed patient stratification, but only limited 

conclusions can be drawn for real - world application due to 

the relatively simplistic model systems employed. The 

integration of often much larger clinical records in ML 

rigorously trained on genome - scale data may be difficult in 

practice. As an effort to take a step towards this integration of 

big data sources, developments in genomic bioinformatics, 

chemoinformatics, and clinical records processing were 

translated into generalizable workflows.  

 

The approach provided can incorporate any kind of static or 

temporal data on either biological systems or item 

characteristics, which can be amended to incorporate other 

biological data or to use different representation schemes for 

the input features. Nevertheless, some of the data 

transformation steps are specific to the particular data types 

considered. Multiple linear regression and similarity 
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ensemble clustering were chosen as the first models to be 

considered in predictive screening (PS). The proposed 

methods could also easily be replaced with other ML models 

or modules from more extensive native implementations in 

ML analysis environments.  

 

3. Machine Learning Fundamentals 
 

ML refers to a sub - field of artificial intelligence that uses 

computational techniques to learn patterns of relevant 

features from data to predict outcomes of unseen 

observations. Because big data in biomedicine is often 

collected as complex n - dimensional arrays, it shall be 

referred to here generically as ‘data’. Genomic data are 

collected in form of n×5–200k matrices, where n is the 

number of subjects and the number of columns vary by a 

factor of 10 between different data types, e. g., n∼105 for 

expression data and n∼107 for methylation data. Clinical data 

can be treated as n×p tables, where p usually range from 6 for 

less enriched clinical records (i. e., only diagnosis and 

medications) to hundreds for some extensively characterized 

populations. ML approaches are fundamentally classified into 

two categories: supervised and unsupervised. Supervised ML 

learns a classifier from labeled inputs and corresponding 

outputs provided during training. Unsupervised ML acts on 

unlabeled input data, inferring properties about the discovered 

clusters and providing a basis for future classification. 

Recently proposed semi - supervised learning approaches 

build classifiers with the assumption that the unlabeled data 

can be grouped into multiple categories is a balancing hybrid 

between supervised and unsupervised learning.  

 
Figure 2: Machine Learning Fundamentals 

 

Stockwell Transform (ST), a time - frequency analysis 

method that offers flexibility and time - frequency resolution 

is used to extract Time - Frequency Domain Features (TFDF) 

from one - dimensional signal data. Genomic, imaging, and 

multifactorial data/types converge to large multi - 

dimensional data stored in huge databases in the era of big 

data and Knowledge Discovery from Databases has drawn 

wide concern in recent years. Different from traditional 

Bioinformatics and Data Mining, ‘deep learning’ does not 

rely on domain knowledge, classifying raw data automatically 

from zero and can be seen as the best explorer instead of 

developers in learning representations of worldly objects. 

However, there are limitations in deep learning models for 

clinical data integration with electronic health records 

composed of heterogeneous data types, while complex 

learning and early stout might not complement with 

christening biomedical discoveries. The conclusion is also 

drawn that ML provides promising strategies to process 

different types of biomedical data and integrate diverse 

clinical features for precision medicine.  

 

3.1 Types of Machine Learning  

 

Understanding Machine Learning and Its Various Types 

 

Technology, specifically computational technology, has 

advanced tremendously and continues to advance. The 

development of computer technology has also led to the 

introduction of this technology into many fields, including 

health care, education, marketing, and so on. These computer 

systems are now capable enough to digitally record 

information and process it to give results tailored to the 

requirements of a user, thereby automating the processes 

required. Medical records of patients are recorded in a 

physical format and, for the past few decades, in an electronic 

format. Development in information technology has 

enhanced the productivity of the medical field in managing 

electronic health records (EHRs).  

 

Storing and managing such a high number of records has 

become a challenging task for health organizations. Many 

options are available today for health organizations to store 

and manage EHRs. The medical data of patients often include 

their personal records, medications taken, clinical notes, 

laboratory investigations that have been carried out, radiators 

and imaging information, allergies, immunizations, etc. This 

variety of data has become a source of information that, if 

properly processed, can help predict many diseases of 

personal concerns, with specific records of data resulting in a 

tailored health diagnostic tool, estimation of failures in health 

of the population, analysis of population health statistics in 

service to the society, and so on. Moreover, the analysis of 

this data with proper mathematical techniques can also help 

benefit medical institutions, health organizations, and 

laboratories in developing more sophisticated equipment for 

diagnosis.  

 

Machine learning (ML) is a subset of artificial intelligence 

(AI) that enables systems to learn from data to identify 

patterns and make decisions with minimal human 

intervention. The main goal of machine learning is to 

construct a model that can accurately predict outcomes or 

classify data points. This model is a mathematical 

representation of the data learned through the underlying 

patterns. The growth in technology and its diffusion into 

society has led to the generation of huge amounts of data, 

which often cannot be dealt with manually. Consequently, the 

demand for tools and techniques to extract relevant 

information from data and build systems that could mimic 

human intelligence increased.  

 

3.2. Key Algorithms Used in Healthcare  

 

Machine learning (ML) refers to a set of technologies and 

methods used to outperform traditional algorithms. Machine 

learning models improve by learning from existing evidence 

and new data, making increasingly accurate predictions. One 

group of methods, supervised learning, builds prediction 

models from already collected evidence. A different class of 

algorithms, called unsupervised learning, generates models 
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without having pre - collected reliable prediction results. It 

uses only raw input variables to extract structure and 

knowledge from information. An example of unsupervised 

models is clustering techniques, which group entities based 

on similarity. Using supervised methods solely on the 

analysis of electronic health records data, deep - learning - 

based approaches straightforwardly integrate structured and 

unstructured data. Both structured and unstructured clinical 

data can be used to predict clinical events, nurture 

recommendations, and classify patient cohorts.  

 

Interpretable systems, which generate a decision rule that is 

easily conveyed to the users and allow human understanding, 

are crucial in the medical environment. Health being a 

sensitive field with high stakes, systems that are not 

interpretable could fail to be trusted by practitioners. This 

occurs despite superior predictive performance and could lead 

to no adoption of their results for the benefit of patients. 

Various methods exist for interpreting supervised learning 

prediction models. These include rule - based systems and 

global surrogate models. Shapley Additive Explanations 

(SHAP) is a general methodology that generates explanations 

in the fu of identifying features that contribute most to a 

prediction.  

 

In the healthcare ecosystem, predictions on patients from 

machine learning approaches, most of which have a black - 

box nature, can be troublesome. A lack of explanations of 

why a patient is predicted to be at risk leads to helpless 

practitioners not being trusted in their decisions. This 

ultimately defeats the purpose of improving the patient 

clinical pathway. ML is important in clinical pharmacology 

to enable better drug prescriptions. The amount of drug 

exposure depends on the patient’s pharmacokinetic profile 

and relies on their parameters, genetics, clinical context, and 

administered drug. However, since these parameters can 

exhibit high variability and due to the lack of extensive 

knowledge of the model relationships, standard population 

models are often used. A standard regimen plan is selected for 

patients considered average with the extreme assumption that 

one size fits all. This causes variable therapeutic efficacy and 

side effects.  

 

4. Data Integration Techniques 
 

Although clinical data and OMICS data serve different 

purposes in patient care, recent studies show that clinical data 

possess strong predictive power while multi - OMICS data 

provide very descriptive demographics. On one hand, clinical 

data types are heterogeneous with various sizes and 

structures, e. g. text - based clinical records, numerical 

laboratory measurements, and coded diagnoses. On the other 

hand, multi - OMICS data types are homogeneous, displaying 

consistent numbers of patients and standardized matrix 

structures. The goal is to introduce data integration techniques 

that can bridge the heterogeneity of clinical data and high 

dimensionality of OMICS data, thereby facilitating the 

analysis of clinical data with embedding knowledge from 

genetics.  

 

In detail, the i2b2 architecture itself is a three - layer 

architecture that consists of a central data layer that includes 

multiple and heterogeneous clinical databases, a server layer 

that includes i2b2 - related biomedical web services 

developed in Java to access the data layer, and representation 

layer that includes web clients for clinical output 

visualization. The focus was mainly on the data layer of this 

architecture to integrate different clinical databases into one 

i2b2 easily.  

 

Given the diversity of clinical databases and demand for 

working with them, existing health IT environments are 

heterogeneous and thus hard to fully utilize; a tight integration 

of them into one would certainly result in a very difficult 

development process. The different clinical and biomedical 

domains with their diverse standards for databases result in 

confusion on data representation, data - entry procedures, lab 

measurements in different units, and failed interoperability. In 

such a complicated world of various systems and domains, a 

well - designed architecture for biomedical research is 

extremely valuable for reaping the full potential benefit of 

these commercial systems. It can widen the control of most 

basic clinical business processes (i. e., clinical data collection 

and storage) from the various sources of data - mining AI 

engines in the future analysis stage. i2b2’s open - sourced 

clinical data integration technology enables mining huge 

amounts of clinical big data and thus making them sharable.  

Unlike systems that automatically store clinical records in a 

number of disparate tables and only serve a limited number of 

queries, i2b2 provides an entire architecture consisting of 

clinical data integration and a variety of plug - and - play 

analytical engines, ranging from statistical and machine 

learning packages to deep learning environments. It therefore 

provides a basis for more complex biomedical data - mining 

challenges. It has the potential functionality to go beyond the 

i2b2’s clinical data warehouse and be integrated with 

imaging, semantic/metabolic, and genetic data - mining 

engines.  

 

In summary, the i2b2 architecture complements existing 

systems rather than competing with them. It is nevertheless 

clear that the intensive efforts made by other groups and a 

tight integration among these base - layer systems will be 

necessary to address the MACS 2014 challenge, which is to 

go beyond these base - layer ‘unclean’ data sources.  

 

4.1 Integrating Genomic Data  

 

Most of the challenges for the integration of genomic data 

within EHRs center on the open access to genomic data. In 

recent years, a large number of companies, research 

institutions, and hospitals have started to offer completely 

online services for ownership, storage and interpretation of 

genome variants, gene panels, and exomes. Although there 

are plans to allow genomic data to be shared openly and 

accessed by researchers and healthcare professionals 

worldwide, the lack of proper laws that govern the ownership 

of genomic data, data privacy and ethical matters are creating 

issues.  
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Figure 3: Integrating Genomic Data in Personalized 

Medicine 

 

The debate over whether the genomic variant should belong 

to the person from whom it was sequenced, the clinic that 

performed the sequencing, the health care institution that 

offered the testing, the researcher that analyzed it, or the 

company that developed the testing, is a hot topic at meetings 

related to social and ethical issues in genomics, but at the 

moment there are no clear answers. The Clinical Laboratory 

Improvement Amendments (CLIA) of the United States 

federal law regulate laboratory testing to ensure the safety and 

accuracy of laboratory tests. Because of these restrictions, a 

few online analysis centers have started offering non - 

interpretative analysis, in which raw data could be uploaded 

for less specific analysis, but this is currently limited to only 

a small number of widely adopted gene panels, it creates a 

burden on laboratories that may offer clinical tests and need 

to accommodate an unusual data format.  

 

Genetic data could be considered as sensitive data, and some 

countries rule their transmission strictly. Different regulations 

exist in different continental areas and even in a same country, 

depending on the state. Even in research centered countries, 

huge costs are incurred by taking precautionary measures. 

Recently, there has been several efforts to define ways to 

analyze genomic data that are stored in a remote cloud 

without transferring them, but practical solutions are still 

lacking. Most companies offering genomic testing do not 

guarantee that the raw sequencing data of tests can be 

accessed by external parties, and only a few allow reparsing 

the raw data, while the remaining databases do not guarantee 

that the data remain accessible in time. Some companies, 

while allowing raw data text files to be downloaded, only 

provide an interpretation of single nucleotide polymorphisms 

but not of more complex types of variants such as copy 

number variations, structural variations, or exome variants.  

 

4.2 Integrating Clinical Records  

 

While an extensive amount of clinically correlated genomic 

data are generated daily through advanced sequencing 

technologies, the integration of such genomic data with 

clinical and biomedical records still presents a major 

challenge for data analysts and researchers. An ideal setting 

to integrate, query and analyze genomic big data in a timely 

manner would be a big data - based platform designed with a 

"distributed" architecture where genomic data are stored at 

different nodes of a network and the applied analysis may be 

conducted at each of these nodes without the requirement to 

move the data to one central workstation. Within such 

settings, particularly privacy - sensitive medical information, 

such as data from electronic health records (EHR), may be 

stored locally and not disclosed to external authorities for 

analysis. However, it would still be inheriting all data mining 

tools and functional capabilities that are available within the 

distributed data warehouse.  

 

In the last decade, state - of - the - art natural language 

processing (NLP) methods and tools were developed. The 

majority of the research on NLP - based analysis of textual 

corpora is however based on monolingual techniques even 

though a large share of the available textual data is described 

in two or more languages. The rapid development of social 

media in the last decade has proved extremely beneficial for 

the dissemination of diseases and their symptoms by the 

affected citizens. The clear impact of such data on people's 

health by the affected individuals is also supported by a 

rapidly growing body of literature aiming to analyze health 

events using social media data. Text mining NLP methods are 

employed to extract epidemiological information related to 

the outbreak of diseases.  

 

5. Challenges in Data Integration 
 

The rapid growth of sides in both the initiation of clinical 

patient records and genomic data is creating a challenge for 

the pairing of such data into information systems that will 

facilitate joint scientific queries on the transcriptome and 

clinical data. This paper deals with and investigates three 

strategies to integrate clinical data from the i2b2 and genomic 

data from a diverse resource of structural genomics data and 

functional genomics data, examining their cardinalities and 

means.  

 
Figure 4: Data Integration Challenges. 

 

The quality of the schemas and the integrity of the mapping 

rules help the data modelers provide review and feedback to 

the schema designers. Meaningful transformation steps, such 

as Normalization and Aggregation, would also have entities 

for in - line protocols. The combined use of querying and data 

integration tools can be much more productive than relying 

on the querying tools alone. Unlike the many tools and 

established techniques for schema matching and data 

preparation, users of querying and integration tools need to 

often re - learn the condition language, put - in Rule Editor 

criteria, and manage the execution of relevant agents.  

 

With careful planning, particularly with Schema Assembly 

controls and direct agent execution of pre - planned 

redundancy - removing schema queries, a much increased 

productivity of pathological query processing can be attained. 

Data transformation based on a set of mapping rules, applied 

to correspondence relations in coupling rules, requires 

referring to the research of fine - grained corrections of 
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transformation and coupling rules. Many existing approaches 

transform and couple schemas at the level of database relation 

and schema representation. Due to schema heterogeneities 

that arise from both differences in semantics and ordinalities 

of patient history.  

 

5.1 Data Privacy Concerns  

 

The collection and use of genomic data is expected to be a 

driver of the next breakthroughs in healthcare and 

personalized medicine, otherwise this data will be effectively 

wasted. Health data is an invaluable asset that might improve 

population health and the quality of care while reducing 

overall costs. In the past decade, this realization has led to 

substantial investments to collect genomic data. For example, 

the U. K. government has announced plans to sequence the 

genomes of five million people. The European Union funded 

the H2020 project focusing on data sharing and big data 

analytics in biomedical research and patient care. Markets in 

Europe and Asia have emerged to store and share health data. 

Unfortunately, at the same time, questions about privacy have 

gained new importance.  

 

There is ample reason for concern regarding data privacy. A 

study demonstrated the feasibility of de - identifying medical 

prescriptions with supervised machine learning. With respect 

to genomic data, research showed that 99.9% of all U. S. 

individuals can be uniquely identified from the combination 

of just 64 single - nucleotide polymorphisms (SNPs). 

Furthermore, an adversary might obtain such SNPs through 

free state - of - the - art sequencing services. Because genetic 

information is static and shared with relatives, privacy 

breaches will become a much more serious problem than in 

the case of traditional data. Thus, without a proper, rigorous 

privacy framework, data holders of genomic data will hesitate 

to share them.  

 

5.2 Data Quality Issues  

 

Data quality issues are among the main challenges for your 

research field objectives. Data quality refers to the grade of 

data concerning use of data quality indicators: accuracy, 

completeness, consistency, credibility, precision, and 

timeliness. In the health big data era, data is collected from 

various heterogeneous sources with diverse formats, 

semantics, and protocols. Quality evaluation of big data in the 

health domain is hence a challenge. Two aspects under 

investigation include big data quality evaluation and health 

informatics interventions promoting data quality 

improvement. The first study attempts to identify and 

formalize quality indicators for health big data using literature 

- based knowledge modeling. A framework is proposed. A 

conceptual framework and prototype tools called iBigCue 

(Intelligent Big Data Quality Evaluation) are developed for 

mining, evaluating, and visualizing health big data quality in 

accordance with the proposed framework. The framework 

and tools are a first step towards supporting evidence - based 

data quality evaluation and quality data use in health systems. 

With the wide adoption of electronic health records (EHRs), 

immense amounts of health data are systematically collected 

with in - depth details about patient healthcare over time. 

Secondary use of EHR data for research and decision support 

is of great value for improving data - driven healthcare 

services, patient outcomes, and health systems performance. 

Major challenges include data quality issues with respect to 

both obesity predicted and related predictors. This paper 

reports such first - hand experience with focusing on issues 

and methods for the secondary use of EHR data for survival 

analysis. Data quality issues include variable - related, entity 

- related, issue - related, record - related, and time - related 

issues. These issues lie in the collected data extraction from 

EHR sources, secondary use data from raw EHR data, and 

translating subject domain knowledge into engineering logic. 

Development of external informatics algorithms such as rule 

- based approaches, pre - trained machine learning models, 

and resampling techniques, is essential. The promising 

experimental results suggest future work to further improve 

work performance through systematic evaluation and 

integration of more informatics methods.  

 

6. Case Studies in Personalized Medicine 
 

Prediction of breast cancer recurrence in clinical state This 

study aimed to predict breast cancer recurrence with 

integrated genomic and clinical data. Legacy clinical data 

resources as well as genomic data such as uPA/PAI - 1 test, 

IHC test, and microarray test were collected from EHR, 

PACS, and previous tests. In this case, physician - derived 

features would play vital roles in prediction accuracy. 

Hormone receptor status, tumor stage, and lymph node 

involvement were selected as features detected from 

physicians’ comments. Additional features like LP had to be 

computed with prognosis interval and tolerance. Baselines 

were built using six classic ML algorithms. Random forest, 

support vector machine, and decision tree data mining 

algorithms outperformed other schemes. Tree - based model 

was used as the meta - ML model here since it allows 

understanding of how the input variables affect predictions. 

In this case, a personalized medicine question was presented 

where the goal was to decide treatment recommendations for 

chronic myeloid leukaemia (CML) patients based on genomic 

sequences. Each CML patient sits in a unique position in the 

variable space, and treatment regimens vary according to the 

spatial placements. The approach focused on the treatment 

recommendations based on inflammatory markers. The first 

task was to extract the features from blood test records, 

classify the new records into one of the 4 classes, and 

reclassify the potential false positive records from the first 

stage. Using a class imbalance correction method, multi - 

class imbalanced classification was studied, and a few 

techniques for specific clinical domains were proposed. The 

network relies on multi - class classification mechanisms; 

nevertheless, in real - world scenarios, a patient may have 

multiple possible treatment regimens offered by multiple 

different doctors, which may contradict each other. Both the 

number of candidate treatment regimens and the time taken 

for recommending a decision would significantly increase 

with a large number of sampling requirements. Moreover, 

conflicting recommendations would confuse the patients.  

 

 

6.1 Successful Implementations  

 

Next - generation sequence and clinical data integration has 

been signaled out as the next step for the genomic data hosting 

and processing ecosystem. To support this move, a 
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proteomics data management platform designed for 

compatibility. Using a publicly available MS data set on 

rhinovirus - A16 infection, different levels of 

complementarity between software for data import, sample 

quality control, data processing, and batch correction, tested. 

In terms of technical implementation of MS workflows, one - 

third of evaluated algorithms permitted binning of 

complementary tools in Texture, PeptideQuant, and SumOf 

in Quasar, respectively. However, the integration of tools 

from different software bundles and merging of analysis 

results across samples is usually not possible due to a lack of 

common file formats and well - defined minimum 

requirements of input data. To ensure seamless compatibility 

of batch analysis workflows, the output of open - source 

software is. In addition to capability testing of biophysical 

binding assays, modalities of use to adapt available 

models/additional data types to experimental design and 

consequently increase the size of applicability domain are 

illustrated. These approaches are compatible with available 

open - source implementations and commercial tools in this 

field and compared with respect to their training load, 

available options for probing agent design and the type of data 

output. We have shown the potential of mass - spectrometry - 

based proteomics as a tool in personalized medicine, utilizing 

an analytical platform with a high - throughput protein quality 

control assay, a multiplexed biointeraction assay for 

simultaneous screening and target nomination, and a 

classifying pKD framework complemented with additional 

machine - learning algorithms. The steps necessary for the 

application of this platform to drug discovery and 

development dosing regimens tailored to patients are 

considered.  

 

6.2 Lessons Learned  

 

Big data is an emerging field that encompasses enormous 

volumes and varieties of structured and unstructured data 

across systems and organizations that cannot be captured, 

stored, managed, or analyzed without using new innovative 

technologies. In health care, big data has been harnessed to 

assist decision - making, manage knowledge, identify risk 

factors, determine treatment options, generate health and care 

strategies tailored to individuals’ needs, and predict health 

status trajectories. Precision medicine, or personalized 

medicine, refers to tailoring a specific therapy to an individual 

based on their genomic and clinical records. Precise and 

individualized therapies are acknowledged as the next 

frontiers in therapeutics. The cost of high - throughput 

sequencing technologies and the lift in data volumes collected 

has stimulated the growth of bioinformatics, which is 

assessed as a prime application of big data in biomedicine. 

Simulation criteria for temporal multiplex networks may 

assist with big - data - driven health management and 

treatment monitoring. Recent tethered smart devices 

generating substantially comprehensive bio and clinical 

health data present new opportunities and challenges for PM 

solutions.  

 

Omics technologies span multiple domains, including 

genomics, epigenetics, transcriptomics, proteomics, 

metabolomics, microbiomics, etc. Omics are relevant to 

multiscale PM since the data measures on different biological 

systems and processes, on different time scales, and on 

information, knowledge, and evidence contents. However, 

such collections of heterogeneous big data pose major 

challenges to how best integrate and analyze the data. Though 

multiscale PM requires ad hoc and integrated analytics, there 

is a lack of methods and systems that allow a multi - 

dimensional and multi - scale analysis at the same time. Few 

studies appraise multi - level integration of omics, clinical 

procedures, and other information sources on health 

development, disease progression, and treatment reactions. 

An effort was also made to introduce network frameworks 

into this multidimensional data integration problem, 

nevertheless focusing mostly on the methodological aspect 

rather than a concrete biomedical application.  

 

7. Future Directions in Personalized Medicine 
 

The potential of big data in biomedical research of the future 

will depend on its bulk, accuracy, and richness. Genomic, 

ontological, phenotypic, and therapeutic big data should be 

individualized and collectively stored and accessible in secure 

and interoperable formats. New here ontology and format - 

conversion efforts will be needed to enable this compilation. 

Furthermore, data - mining technologies and bespoke AI 

algorithms should be deployed to mine the high - dimensional 

heterogeneous big data correctly. This will alter the course of 

personalized practice (s) in medicine, leading to smarter 

diagnosis and precision drug design to bring miracles at an 

affordable cost worldwide. Computational biomedicine is at 

the interface of biology and computer science, including areas 

such as bioinformatics, biostatistics, biomedical data mining, 

computational medicine, network biology, omic - data 

science, and systems biology, wherein mathematical, 

statistical, and computational modeling and simulation are 

utilized to solve problems in biomedicine. Multi - omics will 

be capitalized to understand diseases and drug processes' 

etiology and mechanism at multiple molecular levels. Further, 

studying tumor evolution and tumor - immune interactions 

will enhance the effectiveness of cancer immunotherapy.  

 
Figure 5: Future Directions of ML in Personalized 

Medicine. 

 

Modernization will entail smart, facilitated, and citizen - 

consented delivery of biomedical data to patients, clinicians, 

researchers, and pharmaceutical companies for collaborative 

and pooled opportunities, curtailing time, resources, and 

costs. Feasible codecs and/or converters should be devised for 

omics big data in binary forms that fit on affordable consumer 

electronics globally. There should be guaranteed free online 

downstream services worldwide that automatically convert 

and provide processed genomic data in disease - ontology, 

drug - reaction - ontology - based formats depending on the 

patient's consent. Enhanced free follow - up services should 

fulfill precision medical needs before deciding treatment. 

Should design - a - drug - need arise, automatic matching of 
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receptors' pharmacogenetic information with existing drug 

structures will be provided following the algorithmic opening 

of associated molecular medicinal chemistry bio 

specifications. These capabilities will upgrade childhood to 

clinical genome - to - drug - to - home big data analytics and 

preclusion opportunities for any disease domain. Similar 

algorithms will catch up and speed with other compensating 

biomedicines curious about unexplored diseases. 

Personalizable and affordable ubiquitous initiatives to 

enhance detection and treatment prospects could unify the 

world.  

 

7.1 Emerging Technologies  

 

Healthcare is entering a new era of data - driven discoveries 

and personalized applications. New data acquisition devices 

such as digital pathology, wearable biosensors, and molecular 

imaging are generating huge amounts of high - dimensional 

data like genomic sequences, molecular structures, and hybrid 

records of clinical notes, imaging, and pathology. The wealth 

of data containing information related to drug mechanisms 

and patient response to specific treatments is motivating big 

data - driven precision medicine applications. Data analytics 

techniques such as computer vision, natural language 

processing, deep learning, and reinforcement learning have 

been successfully applied and widely adopted in other 

industries. However, the long tail of 90/90 rule applies that it 

is typically a 90 - to - 10 rule in terms of cost and effort with 

90% funding requirement directed toward 90% of the effort 

in data acquisition, preprocessing, cleaning, integration, and 

normalization. The supply problem remains a critical 

challenge in healthcare AI.  

 

Personalized medicine is a new healthcare paradigm that 

integrates the Natural history of disease (NHD) model and its 

data structure in developing precise data - driven predictive 

analysis. By tailoring treatment to individual patients based 

on integrated genomic/clinical/microbiome exposure data, it 

aims to optimize treatment efficacy and patient health 

outcome. A NHD model that integrates the knowledge of 

genomic and clinical data with ML techniques is studied to 

personalize therapy for bladder cancer patients based on their 

hlA genotype. Pre - processing and integration approaches 

that transform genomic and clinical records into structured 

representations are highlighted to enable answers to 

sophisticated queries that present a unified view of 

comprehensive information.  

 

7.2 Potential Impact on Patient Care  

 

Big Data is presently on the tip of everyone’s tongue. This 

term encapsulates an era where information has become 

ubiquitous, generated by various devices, in growing 

volumes, with increasing velocity and variety. Suddenly, 

databases, hard drives, and even the cloud feel too small, and 

new options such as Blockchain are now in vogue. Big Data 

is currently driving scientific advancement in many fields, 

with scientists looking for new, efficient, and actionable ways 

to understand large amounts of unstructured data from genetic 

sequences to Twitter. New technologies such as Next 

Generation Sequencing (NGS) generate vast amounts of 

information to better understand biology and 

pathophysiology, and at the same time, treatments are 

becoming increasingly individualized.  

 

Some large - scale data - driven projects to leverage Big Data 

are already in place in the fields of health and healthcare 

research. The concept of “Population Health” and 

commenting on “Big Data in Digital Health - Care” focuses 

on NHS Digital’s new Data Services Platform, which is 

expected to support research on and improve patients’ health 

outcomes. However, Big Data still has immense potential 

advantages to unlock in the field of healthcare and clinical 

practice in order to create more personalized and effective 

treatments. Some large - scale datasets even derive from 

public or partially open sources; including, but not limited to, 

patient records from EMRs, wearables, genetic assays, and 

clinical reports. The global healthcare stack also faces a 

unique infirmity; the digitization processes and the transition 

from paper - based records to exclusive EHRs still represent 

a major task. Compliance and standardization to abide by 

CURES and preventive health regulations in order to be able 

to share records among national endpoints is time - 

consuming and resource - wasting. Moreover, Big Data 

means putting together “2D” or “X - Y - Z” datasets, rather 

than solely storing text files or images into data lakes. The 

amounts of Big Data are too - often unmanageable, as follows.  

In the present era, Machine Learning (ML) enables the 

development and deployment of new approaches to leverage 

Big Data. ML, a discipline of AI, provides the means to 

understand, solve, and improve processes using data rather 

than following strict instructions. Actionable machines based 

on data and algorithms already impact individuals’ every - 

day lives, producing better or targeted recommendations on 

the amount of time spent on a specific website, or in decoding 

the propensity of a contact network node to develop a disease. 

The Healthcare sector has not been alien to this wave, with 

Modelling Learning Easy (MLE) and much experimental 

literature currently affecting patients, physicians, payers, 

researchers, and companies. All sorts of datasets have been 

studied and leveraged, from structured patient records to text 

- based clinical notes.  

 

EHRs are databases where patients’ records are stored. 

Following standards, they store heterogeneous information 

such as structured records, clinical notes, laboratory tests, and 

images. EHRs have become more accessible through remote 

electronic access and easy data manipulation, driving the 

discovery of biases in demographic data, confirming the 

“social determinants of health” (SDS - H) and illustrating the 

possibility of actionable analysis on datasets. These new 

resources have also made an impact on the collection and now 

predicted cost - effectiveness of drugs on heterogeneous data. 

Drug models integrated with NGS, routinely collected data 

such as EHRs, or datasets are filtering patterns in the 

treatment effects of NGS based on EMERGE OncoCube, as 

well as evaluating/repurposing treatment regimens based on 

EHRs and CDRs.  

 

 

 

 

8. Ethical Considerations 
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Federated data technology enables virtual unification of data 

from different sources under a uniform data model, while the 

underlying data stores operate autonomously. This would 

allow currently isolated genomics training datasets to become 

accessible to machine learning models. Privacy - preserving 

technologies enabling safe and ethical data access should be 

pursued. Machine learning models have several applications 

in genomic medicine such as to recommend diagnostic tools 

and pharmacogenomic therapies based on the patient’s 

genetic makeup. It is critical to address the under 

representation of many ethnic groups and the social, 

environmental, and health disparities prevalent in clinical 

research and healthcare datasets. Machine learning 

algorithms may exacerbate inherent biases. Clinically 

underserved communities are unlikely to develop trust in 

machine - learning - guided genomic - based treatment plans 

unless health disparities research is incorporated from the 

start of the model - building process. To engender trust and 

build a culture of ethical and transparent machine - learning 

applications, partnerships among stakeholders should be 

promoted. Machine - learning model developers in clinical 

settings should understand health disparities research as a 

prerequisite for applying their models to patient data. Other 

ELSI considerations include establishing standards for 

explainability, transparency, reproducibility, trustworthiness, 

and accountability regarding machine learning applications in 

genomic medicine. ELSI research at the interface of machine 

learning and genomic medicine reveals a multitude of 

scenarios in need of further research support. The risk of 

“black box” algorithms, which cannot be interpreted, is a 

nationwide concern that is amplified in clinical practice with 

severe implications for screening, diagnosis, and treatment. 

The academic community must respond to the demand for 

advanced models while ensuring that patients’ rights or social 

goals are not compromised and that trusted access, use, and 

sharing of health, genetic, and other sensitive data is enabled. 

Explanatory algorithms must complement predictions 

through uncertainty quantification, sensitivity analysis, 

probing, intuition building, imitation, and visualization.  

 

8.1 Informed Consent  

 

Many genomic research initiatives that triage and store 

anonymized and broad consent evidence in biobanks require 

re - invitation for new studies. Furthermore, many patients 

wish to notify secondary use once healthy again or change 

treatment. Using a 3D scoring system to visualize types of 

consent categories in easy - to - understand form and with 

flexibility in a dashboard enables medical doctors and 

biobank staff to target and select categories in a direct user - 

friendly way. Over time, genes defining the heritable risk 

predisposition for common diseases in modern populations 

have been uncovered using various methods.  

 

These genetic factors influenced the development of 

individualized risk scores for clinical usage. Molecular 

medicine translates genetic information into individual 

structure–function derangements of genetic landscape. Both 

approaches are hampered by phenotypic measures which are 

imprecise and non - determined biological and environmental 

exposure factors apart from sex and age and ethnic ancestry. 

Using microarrays to gather deep - level histological and 

pathological, gene and microRNA transcriptomic, and 

integrated epigenomics data sets from supervised medical 

health records analysis, several proofs of the prospects and 

challenges of polygenic risk score and molecular medicine 

usage for health have been published. Up to 35% of initial 

phonemes of acute coronary syndrome, breast, prostate, and 

colorectal cancer were found sharable with research biobanks. 

Large - size biobanks of diverse ethnic ancestry and diagnoses 

exist and are expected to get annually feasible biobanks of 

diverse ethnic ancestry and diagnoses by creating individual 

genomic information - based rapid health improvement.  

 

8.2. Equity in Healthcare Access  

 

Access to healthcare is a universal human right essential for 

achieving ever - growing life expectancy and quality of life 

across the globe. Significant disparities across the world exist 

in access to protective health services. Such disparities matter 

immensely when translating into avoidable deaths or 

associated morbidity. Equal access to healthcare means that 

individuals should not be privileged for inherent 

characteristics such as biological makeup, birthplace, or 

socioeconomic conditions. The philosophy of universal 

equity calls for health systems to be designed in a way that 

minimises inequalities of access, even if this goal cannot be 

achieved in its entirety. The World Health Organization 

describes health equity as ensuring that “everyone has a fair 

and equal opportunity to be as healthy as possible.” 

 

As an equity analysis of Big Data - Driven Precision 

Medicine, it must be highlighted how AI tools can also 

worsen equity issues. The symposium reports a lot regarding 

population diversity. But who has access to the data and the 

associated tools? For example, the European general public 

often expresses discontent with cancelled or delayed health 

care services. It is often presented in the political domain and 

in the media that there are not enough doctors in Europe, let 

alone burdens such as migratory crises. In the meantime, it 

appears that billions of patient records are captured. In many 

hospitals, for example, patient records are digitised, but 

restrictive policies on general access apply. In the USA, 

facing far broader burdens, patients can switch clinicians, but 

this is almost impossible in Europe. In short, ZIN and the 

symposium present great opportunities, but it should also be 

stated who owns the data and resources and, more 

importantly, why they should benefit from using it.  

 

This equity analysis of Big Data - Driven Precision Medicine 

will focus on relying on deep networks, as these require 

significantly less casewise knowledge than other AI 

algorithms. Still, state - of - the - art deep learning systems 

remain either poorly interpretable or high - complexity. 

Therefore, possibilities should be sought to alleviate these 

issues. For example, there appears to be no intrinsic limitation 

in algorithm data compressed in digital signal - info frames. 

Perhaps large networks could be dissected into manageable 

chunks. Practical computational complexity, interpretability, 

robustness, and risk attenuation or behaviours should be 

considered. Nevertheless, even if interpretability was assured, 

the dose–response curve might still be showing outcomes that 

correspond to the field statistics scale of application, and here 

lies a profound ethical concern. In summary, the equity 

analysis by which Big Data Precision Medicine could yield 
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more equitable healthcare services is participation in 

data/resources by patient rights.  

 

9. Regulatory Framework 
 

As Big Data and artificial intelligence are increasingly 

harnessed to improve health outcomes, regulators will be 

challenged to keep pace with innovation. Present efforts are 

focused on analyzing data for designing algorithms that 

accelerate healthcare. Emergent algorithms must be subjected 

to scrutiny akin to drug models to ensure safety and efficacy 

prior to implementation. For models already adopted, 

mechanisms must be instituted to validate efficacy against 

benchmarks once in use. For regulators, cause for optimism 

lies in the fact that the strategies needed are well known since 

the fields of computational biology and bioinformatics have 

been advancing for decades. Solutions to issues brought forth 

by treating health data as a commodity will also be found by 

evaluating ethical and philosophical frameworks that are 

emerging.  

 

For example, much in the way antibodies are evaluated for 

safety, the FDA already has a framework for how Big Data 

models will be evaluated and regulated. This framework must 

be updated to allow for the unique challenges and emergent 

concepts that will arise. Nevertheless, it is surely preferable 

to writing regulations from scratch at the outset.  

 

As regulators devise new frameworks however, care must be 

taken to ensure the resultant strategy is not worse than the 

existing approach of treating health data and derived 

adaptations as immutable secrets. This defective stance has 

not proven to be sufficient in preventing bias from being 

incorporated into models, nor has it been successful in 

preventing discriminatory use of the biometric data itself. At 

present, the patchwork of policies around the world is 

inadequate to address issues ranging from competition to 

algorithmic transparency, and biomedicine will be left at the 

mercy of tech monopolies. Meanwhile, the information 

asymmetry created by allowing companies proprietary access 

to health data is antithetical to the idea of a health - focused 

digital society.  

 

9.1 Current Regulations  

 

Developments in human genome sequencing and the 

collection of large - volume clinical records that follow 

patients’ longitudinal outcomes act in a synergistic manner to 

revolutionize the practice of medicine, allowing for the 

development of precision health systems that provide 

upgraded transparency in care. The rapid development of 

genomic technologies is matched by the advent of smart 

sensors and synchronous miniaturization of non - invasive 

medical devices. Data - driven machine learning algorithms 

are deemed a necessity to sculpt the colossal data stored in 

cloud computing approaches into useful health information. 

New dimensions of infectious and social disease predictions, 

interactable holographic visualizations, and autonomous 

robotic platforms are expected to emerge with the 

technological advancements in medicine. These 

developments call for a radical conceptual redesign of health 

systems, with the potential of changing the current design 

shipping permanently. National sequencing projects and a 

global interest in health data sharing have the potential of 

opening the Pandora box of unethical automated algorithms 

that uncloak and broaden the extent of human biometrics upon 

invisible internet - operated machines. Artificial intelligence 

(AI) is transforming health systems into information 

monoliths that are increasingly controlled by potent black - 

box closed - source algorithms, deployed by monopolizing 

benched corporations in the business of mass information 

collection and extraction. The widespread use of wearable 

health sensors in health care deepens the existing dilemma, 

posing significant challenges for ethics, regulations, and 

culture. Genome - data - powered biobanks are set to obstruct 

the results heuristically and fall morally under controversial 

exploitation schemes. Textbook diseases do not exist in real 

individuals. By collecting big - data biometrics, hitherto 

trivial, rarely case - reviewed, and inexplicable and unneeded 

markers of biometrics are set to be cloned. They are sabotaged 

by brain minders into nuanced - discriminative disease - 

hotspot portraiture. Failure in repeated testing renders a 

blowback to a global scale, owing to billions’ worth of 

enormous investments in AI business. Novel strategies 

delineating the genetic, environmental, and endogenous 

etiological powers of chronic diseases are recapitulated from 

wholly new vantage points. Their fruitful scientifically sound 

implementation would make it possible to deeply modify the 

workflow of health care. By shifting from symptom - 

inducing disease notions to a user - driven design, blended 

with potent web - footprint behavioral awareness and 

education, it would become possible to significantly slow or 

even stop the diseased pathways perpetuated by the 

pathogenic outcome behaviors. Exploiting expandable 

tissues, high - throughput single - cell genomic, 

transcriptomic, and proteomic technologies have catapulted 

this endeavor to the engine chambers of novel AI increments.  

 

9.2 Future Policy Recommendations  

 

The future of big data in healthcare is uncertain. The 

challenges of integrating existing datasets will take time, 

requiring more than standardization efforts alone. Ownership 

will be a major consideration at both the institutional and 

individual levels. Furthermore, many hospitals that only just 

built EHRs will need to build systems for understanding and 

integrating big data at a significant cost. If essential to their 

suspicion of new patients, they will acquire the new systems 

just as they acquired EHRs in the first place. Some have 

warned that the low marginal costs of obtaining and storing 

data should not distract from figures on the order of one 

billion dollars. Federal funds are currently being directed to 

incentivize small - size systems to adopt modern EHRs. 

However, if only the larger institutions obtain big data 

systems, smaller ones will lose the ability to participate in 

much - coveted markets where they are faceless avatars.  

 

One of the biggest hurdles will be for data flows and quality 

measures to be easily retrofitted and upgradable. With many 

hospitals building their first systems just three years ago, 

these will need to be augmented with flexible cloud 

integration platforms. Just as one hospital was unable to 

transition to a new provider due to concerns over quality 

measures, it is conceivable that many current systems were 

unable to implement big data frameworks and thus become 

obsolete. Data and metrics from well - glossed bidding 
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projects could interface with primary care medical records 

and help physicians participate in big data governance 

initiatives. Data will need to flow on top of the existing 

structured content.  

 

Other recommendations involve analytics and data mining. 

For many of healthcare’s various stakeholders, the question 

of funding will soon be relevant. In the genomes of patients 

with complex traits, for example, there were tariffs up to $1, 

000 while the throughput equaled a practice repeating the 

process. Is it conceivable that basic predictive analytics will 

soon be offered as a subscription service? 

 

10. Conclusion 
 

In this work, personalized medicine is defined and discussed 

from the standpoint of precision medicine, focusing primarily 

on treatment effect estimation under a personalized medicine 

perspective in the context of clinical trials. The key insights 

and contributions discussed are encompassed. Precision 

medicine is a recent healthcare paradigm aiming to improve 

treatment efficacy, safety, and efficiency for patients by 

targeting the proper treatment to suitable patients. One key 

component of precision medicine is the identification of a 

type of non - random variation in treatment effects for 

subgroups of patients. Such variation, often referred to as 

treatment - by - patient interactions, is addressed as an 

essential prerequisite and a logical consequence of early 

phases of a developable treatment pathway in order to 

establish precision medicine.  

 

 
Figure 6: Big Data in Personalized Healthcare 

 

The key methodology for assessing treatment effect variation 

is rigorously studied in evidence - based medicine and 

described in detail recently. However, only a few instances 

have been taken to demonstrate these methodologies, 

particularly in drug clinical trials. A very recent review 

identifies methodological approaches and their particular 

statistical models for assessing treatment effects in 

randomized controlled trials grouped into three non - 

exhaustively overlapping categories. The effect of chance, 

treatment availability, treatment assignment mechanisms, and 

various biases that arise should be addressed to obtain an 

unbiased estimate for treatment effect variation. Clinical trials 

provide sufficient data to address these factors. Two examples 

of clinical trials data chosen illustrate how to estimate 

treatment effect variation in a concrete way. The review also 

summarizes the essential issues not with respect to their 

internal validity, but with respect to generalizing and applying 

the published findings of randomized controlled trials in 

evidence - based medicine.  
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