
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A General Programmable Fluid Interface for a

Smart Device

Ganesh M. Bhat
1
, Mahesh Gosi

2

1Department of Information Science and Engineering, PESIT – BSC, Bengaluru, India

ganeshmbhat96[at]gmail.com

2Department of Information Science and Engineering, PESIT – BSC, Bengaluru, India

maheshgosi53[at]gmail.com

Abstract: As we approach the dawn of the “Smart” world era, a revolution to control all devices is essential. Thus, a single device that

integrates with a smart device and generates an interface that is unique for that device is highly beneficial. Imagine the concept of

controlling all your smart devices at your fingertips with an application which has an interface to handle all your devices. With this

application, we minimise the number of mandatory devices to control each product individually, by converting normal devices to smart

devices and make a common augmented interface to interact with them. We identify them by their unique id (called a Target) and

segregate basic functions, called IO Points, using Open Hybrid platform for each individual device. These basic functions work together

with other IO Points on different devices to perform extra functions, as well as their factory-made tasks. Thus, enabling users to

seamlessly interact with their devices, as the interface is mapped to them independently.

Keywords: Fluid interfaces, Augmented Reality, Arduino, Direct Mapping, Reality Editor, Hybrid objects, IO-points, Object tracking

1. Introduction

Humans operate the physical world with hands. Since the

dawn of human race, humans have formed shapes and

affordances of objects that can simply operate with muscle

memory, without using anyone’s mind to even think about

it. It is due to this scenario that operating the world with a

touch screen promises an advantage over the paradigms

previously used to operate physical things in the past.

Having multiple devices for each device becomes a tedious

task and sometimes difficult to keep track off. To this

problem, the proposed solution is to use a fluid interface for

providing fast action requirements to the users.

Users will use their daily drivers, such as their phones, to

immerse themselves into an augmented reality, using them

to perform actions that would usually take a bit of exercise

to follow through. The Reality Editor helps us in this

process by utilising Ubiquitous Computing (Ubicomp). The

vision of Ubiquitous Computing is that computers will be

interwoven into everyday objects to support everyday

interaction with these objects [6]. To do so, the answer

would be to convert common devices to smart devices

called as Hybrid Objects. With that, the first thing is to

figure out the basic functions which enable the object to

function as its intended when working together. By

accessing and utilising each function of a device

individually, they enable us to control them at its elementary

level. A phone or tablet’s camera captures the real-time

hybrid object for us to control it remotely.

This is possible by making day to day devices as Hybrid

Objects. Each device will have a unique tag to identify itself

from the lot. By scanning this unique identifier, it is possible

to fetch its functions and controlling them with your

handheld. By providing extra features to an ordinary device,

indirectly there are new ways to handle the same device.

2. Current System

Human Beings are constantly surrounded by devices with

which to interact frequently. The technology has developed

exponentially these past years and the recent trend of IoT

has helped us automate a person’s work considerably with

the help of smart devices. A human’s interaction with

objects can be classified into two types:

1) Physical Interaction – Where a person physically enters

the domain space of the device and interact with it

manually. Such as light switches, cooking stove, locks,

etc.

2) Interaction using an external device – Where there is

utilisation of an external device to interact with a device

remotely. Such as television remotes, displays,

speakers, etc.

The way humans interact with their devices has also been

reformed with the introduction of various apps to control

them, but the difficulty in using them seems to be elevated.

As a matter of fact, with new technologies in the market

such as Amazon Echo [8] and Google Home [7], which

makes user’s feel like living in a smart house, and uses

voice recognition to perform various tasks, such as

monitoring music, ordering online, booking a cab, and all

those mundane tasks which can be finished with ease.

Philips Hue [9] is another noteworthy development where

users can alter the colour of the lights in their rooms, as well

as provide scenic colours by connecting multiple Huelights

together. Additional features for the devices can be found

using their respective apps, which might be a hassle to find

them individually on a person’s phone. The most general

way to interact is by using plug and play devices, which is

directed connected to the system.

It may sometimes be difficult to open and use respective

apps on every occasion, since each app will have a unique

interface to match its functionalities with various menus and

Paper ID: SR211127154536 DOI: 10.21275/SR211127154536 218

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

drop downs. So, the proposed system enables the user to

seamlessly control all different devices, all with a single

interface which provides an augmented menu on the screen

of the user’s device, with which to operate all the

functionalities.

3. Proposed System

The principle being used is based on is the MIT Fluid

interface design principles. It uses a platform called as Open

Hybrid for interaction with everyday objects. It combines

physical objects with the benefits of a flexible augmented

user interface. Any object that is built with this open hybrid

platform can be connected with any other object built using

the same platform. A basic representation of the system is

illustrated below in figure 1.

Figure 2

The entire platform is built on web standards. The user

device contains a system called as the Reality Editor
 [1]

,

which uses Ubicomp to interact with physical objects

virtually. The Reality Editor associates a virtual object with

each physical object and enables the reprogramming of the

physical object’s behavior using an intuitive, visual

interface [6].

The device that is to be connected to the user becomes the

server. This device is encased in a target (Figure 2). Once

the user using any device, such as a phone or any embedded

system, scans this target, it creates a HTTP GET query with

a query string to the server. The server responds with a

HTTP CONNECT query and thus establishes a connection

between the two devices. All the data about the interface

and connections are stored in the object. Once connected,

the user’s device will now receive data from the object

about the interface to be generated for the object. This

functionality can also be extended for devices with

dissimilar functionality. Here, the devices that need to be

connected to each other and in turn to the user, first generate

GET requests to the user as per normal functionality and

then initiate CONNECT requests with each other thus

sharing their bandwidth. Thus, both their functionalities can

now be linked and both the objects share their data to the

user. But the interface generated will now be an

amalgamation of both the functionalities. Any input given to

any one of the device will affect both the devices. This

mechanism is based on a direct mapping principle.
[1]

Reality Editor: The Reality Editor is a system that supports

editing the behavior and interfaces of the so called “smarter

objects”, i.e. objects or devices that have an embedded

processor and communication capability. Using augmented

reality techniques, the Reality Editor maps graphical

elements directly on top of the tangible interfaces found on

physical objects, such as push buttons or knobs. It allows

flexible reprogramming of the interfaces and behavior of the

objects, as well as defining relationships between smarter

objects to easily create new functionalities.

Figure 2

4. Setup and Configuration

For this system, an Arduino Yun is used which can store the

data and the interface of each device that is provided as an

input for connection. The Arduino is connected to the

device through a port or some other form of connection that

allows the Yun to access the data stored in the embedded

system of a device. Then a printout is taken of a valid target

and the Yun is covered with it. This process is to convert the

common object in to a Hybrid Smart Object. The target is

used to cover the Yun so that when the user scans the target

using the Reality Editor, a connection is setup with the Yun

via a HTTP GET operation. Once the connection is setup,

the data and the interfaces that are stored in the Yun are now

sent via a HTTP RESPONSE connection. On the user’s

device, the interface is generated.

Once the initial interface has been generated then adding of

IO-points
 [1]

 to the object can begin. First, it is ensured that

the user’s device and the Yun are on the same local network

and then run Reality Editor. There are three steps involving

the process:

1) Define Basic Functions of a Device

2) Add IO Points Based on Functions

3) Mapping the IO Points

1) Define Basic Functions of a Device:

The different modules of a compound device are

distinguished and noted. Each module represents a basic

function that the device can perform. Only if all the modules

work together, the original device works as per the

predefined role. These different modules are essential in the

defining IO Points, as each of the modules represent an IO

Point for the device.

2) Adding IO Points
A new IO Point is added for each functionality of the

device. These points are visible through the Reality Editor

and defines meaning to each of the points.

3) Mapping IO Points

IO points can be linked to the device to be connected via the

interface. The target that is used initially for the setup on the

Yun is the first IO point. The other IO point will be present

Paper ID: SR211127154536 DOI: 10.21275/SR211127154536 219

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

on the device to be connected. The user simply uses a drag-

and-drop mechanism to connect the IO point. This allows a

connection between the user’s device and the other device.

By establishing this connection, both the points are

interlinked and the user can define how the linked states

should react when either of them are triggered.

If the user wishes to link two or more devices to his device,

the user connects all the points required using the drag-and-

drop mechanism from the other devices to link it to the main

device the user wants to program. This yields all three

devices being able to use the functionalities of the other

device in addition to their own.

The hybrid object can be altered using an instance of itself

with the Java Script [4]

varobj = new HybridObject(); (1)

4) Interface with IO-Points
.addReadListener([IO Point], callback) (2)

If a user interface wants to read data from a Hybrid Object,

it first needs to send a read request.

.write([IO Point], [Value 0 ~ 1]) (3)

To write to the Hybrid Object use write(). The scale of the

values should be between 0.0 and 1.0.

5) Interface with Reality Editor

.sendGlobalMessage([message]) (4)

Send broadcast messages to all other objects currently

visible in the Reality Editor.

.addGlobalMessageListener(callback[message]) (5)

Used to listen to messages sent to all other objects currently

visible in the Reality Editor.

.addVisibilityListener(callback[e]) (6)

Used for reading if the interface is visible or not. The

interface stays active for 3 seconds after it becomes

invisible.

.getPossitionX(), .getPossitionY(), .getPossitionZ() (7)

Returns a number for translation distance and position

between the iOS device and the marker.

6) Developer Functions

.developer() [5] (8)

The developer() function allows access to all developer

functionality. It is used to move and scale user interfaces

within the Reality Editor and it gives access to the

Developer Web-Page.

.add([Hybrid Object], [IO Point]) (9)

With the .add() function it can be used to add new IO Points

to the Hybrid Object.

.read([Hybrid Object], [IO Point (String)]) (10)

Within the Arduino loop() function the .read is used to read

data from an IO Point.

.write([Hybrid Object], [IO Point], [Value 0 ~ 1]) (11)

The Arduino loop() function can be used to write to an IO

Point. All values are floating point for both the .read and

.write functions are in the range between 0 and 1.

[1] IO-point: This is a marker on the object target that

connects the device input and output functionalities to make

it visible when scanned by the user

5. Applications

This system will be able to bind two or more independent

objects to work together to finish a job, which would be not

be plausible with them individually. This would be done

without the hassle of finding an application for each such

object in use. This can be used for home automation by

converting all the devices as Hybrid Objects. When

travelling in vehicles, it becomes easier to operate the

vehicles by utilizing functions embedded in them. E.g. to

bring down the windows of a car can be accomplished with

a single button. As there is no need to have separate apps to

control these functions, they can be directly mapped to the

functions beforehand to control them.

6. Real World Example

Consider the example of boiling food for 10 min as per the

recipe. Traditionally, one could make a note of the time the

food has started to cook and manually keep checking the

clock till it reaches a point where it looks like it’s about 10

min from boiling or maybe even set a timer for 10 min. But

with the proposed system, the user can utilize the

components in our surroundings, like a toaster in the

kitchen, to accomplish the same objective.

There will be the need to divide the toaster into its basic

functions, functions which would enable the toaster to

operate as its whole if used together. The different

components of a toaster can be listed as:

1) Trigger to start the toaster

2) Timer Knob to set the time

3) The grill inside the toaster (Heating unit)

These different components are viewed as different

functions in the Reality Editor and can be operated

individually. To convert the toaster and stove to a hybrid

object (1) is used and then add IO Points using (9) and

define them with (11).

If the trigger is mapped to the timer and then to the stove

using the Reality Editor, then it would be able to stop the

stove after a set amount of time. The connection is made by

calling (4) and (5) repeatedly. If the timer is set to 10 min

and the trigger is pulled on the toaster, it will send a signal

Paper ID: SR211127154536 DOI: 10.21275/SR211127154536 220

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

to the timer to start the count down. Once the timer has

ended, the stove will get a response from the timer to stop

the flame.

This same timer can be mapped to a different device for

another use as well. This allows for a change of perspective

completely on how to manipulate objects to perform chores

that were never thought to be possible.

7. Advantages of Fluid Interfaces

Some of the benefits of fluid interfaces are:

1) Remote usage and operation of devices in the locale of

the user.

2) Having a single device for connection instead of

multiple devices for setting up individual connections.

3) Remote monitoring of user’s device.

4) A clutter free interface which provides only the major

functionalities of each device.

5) Extension and linking of one devices functionality to

another.

6) Doesn’t require sophisticated hardware and time

consuming setup.

7) Fast connection to devices.

8) Memorisation of existing connected devices so that

repeated setup of device is not necessary.

9) Non-Smart-Devices can be made smart use the

provided hardware and thus their functionality can also

be linked.

8. Limitations

1) Need of carrying a device to map hybrid objects.

2) Need constant Wi-Fi connection to all the hybrid

devices, this with the development of the industry, this

drawback is not as severe.

3) Range is limited to the user’s Wi-Fi range.

4) Bandwidth is limited when used with two or more

devices.

9. Future Scope and Enhancements

Since wearables, such as smart watches, VR headsets, etc.

hit the market, it is possible to integrate them using this

system. Wearables use the same layout techniques as

handheld devices but need to be designed with specific

constraints. To port any significant UI to a wearable, first

thing is to customise the UI to tailor to the different shapes

and appearance of a wearable, such as circular or flat

screens (which form most the shapes in case of a smart

watch). The UI on the wearable would primarily consist of a

layout containing an array of buttons each mapped to a

different IO point based on the respective device. The user

can dynamically change the functions of the buttons based

on his location, such as a conference hall, kitchen, etc.

By implementing the Reality Editor on an AR headset, it

would be possible to see the IO Points of all the devices

through the user’s eyes directly, without having to drag

around the device in hand. Linking of IO Points can be

enabled with buttons, to provide a handsfree interaction.

10. Conclusion

Thus, in this paper, the proposed system can be used to

implement an interface that can interact with our everyday

objects, thus enabling the users, to maximise the utilisation

of their devices and virtually make all devices work together

as a single common device, which can perform activities by

amalgamating them with different combinations.

References
[1] https://www.wired.com/2015/12/mits-reality-editor-

app-lets-you-reprogram-the-world-with-augmented-

reality/
[2] http://fluid.media.mit.edu

[3] http://www.realityeditor.org
[4] http://openhybrid.org/reference-javascript.html

[5] http://openhybrid.org/reference-arduino.html

[6] Reality Editor: Programming Smarter

Objectshttp://ubicomp.org/ubicomp2013/adjunct/

adjunct/p307.pdf

[7] Google Home: https://madeby.google.com/home/

[8] Amazon Echo:

http://alexa.amazon.com/spa/index.html

[9] Philips Hue: http://www2.meethue.com/en-in/

Paper ID: SR211127154536 DOI: 10.21275/SR211127154536 221

