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Abstract:
In

 
this

 
paper,

 
we

 
considereted

 
the

 
quantum

 
state

 
information

 
of

 
qubits

 
moving

 
according

 
to

 
the

 
quantum

 
adiabatic

 

dynamics
 

around
 

a
 

black
 

hole.
 

We
 

demonstrated
 

that
 

a
 

fibre
 

bundles
 

geometric
 

structure
 

gives
 

a
 

quantum
 

state
 

description
 

and
 

spacetime
 

geometry
 

discription
 

in
 

a
 

same
 

framework.
 

We
 

analysed
 

the
 

fact
 

that
 

the
 

black
 

hole
 

induces
 

a
 

decoherence
 

on
 

the
 

qubit
 

in
 

this
 

framework,
 

particulary
 

on
 

the
 

quantum
 

information
 

when
 

it
 

reaches
 

the
 

event
 

horizon.
 

Then
 

we
 

analysed
 

Kerr,
 

Schwarzschild
 

and
 

Rindler
 

black
 

hole
 

cases
 

by
 

computing
 

the
 

fidelity
 

of
 

the
teleportation.
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I. INTRODUCTION

Black holes are such dense bodies that the speed of release
in their vicinity exceeds the speed of light in a vacuum. As
a result, no body too close can escape from the black hole,
and not even light due to a relativistic effect. The border of
the region around the black hole where no return is possi-
ble is called the event horizon. For the simplest black holes
(Schwarzschild black holes) this horizon is spherical. In 1975,
Stephen Hawking demonstrated that black holes must emit
thermal radiation. This radiation can only be emitted from the
horizon, because below it would be trapped. Or, nothing is on
the horizon! Being defined only as the boundary such as vlib =
c, the event horizon is not a material structure. But for thermal
radiation to be emitted, atoms or particles must be agitated.
From this observation, an black hole entropy was then asso-
ciated with this object to compensate for the loss of informa-
tion. Nevertheless, it remains to find a theoretical framework
in which this macroscopic quantity is associated with the mi-
crostates of a thermodynamic system. String theory and loop
theory of gravity seem to be possible frameworks at present.
Physicists believe the answer to this question lies in a the-
ory of quantum gravity. One of them, brane theory (a variant
of string theory), assumes that space is not continuous but a
frame made up of a network of quantum strings on the Planck
scale (10− 33cm). Gravitation is then the manifestation of
the structure of the network and its vibrations. In this theory,
the event horizon would be a network of quantum strings with
the topology of a sphere (what is called a fuzzy sphere), in a
state of thermal equilibrium (it is the agitation resulting from
vibrations of the strings constituting the structure of the space
which would be at the origin of the thermal radiation). To be
in a thermal state, the fuzzy sphere must be in contact with
an environment, the latter is made up of emptiness ! It is the
quantum fluctuations of the vacuum which would cause the
thermalization of the fuzzy sphere. Note that the gravity ef-
fects on quantum systems have been demonstrated by many
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works such as 1,2. Palmer et al 3. The work here is to rewrite
the qubit quantum states and spacetime geometry in a same
framework by using a fibre bundles and we showing that the
black hole created quantum decoherence on the qubit, espe-
cially if the qubit reach it. In addition, the qubits reaching a
black hole is describes by the quantum adiabatic dynamics;
In other words, we showing that the teleportation fidelity is
describes by the geometric and dynamical phases in quantum
decoherence.The case of many blacks hole is analysed.

II. METHODS

A. Adiabatic approximation in a curved space time

let eA
i (x) be the moving coordinate system associated with

gi j = ηABeA
i eB

j the metric and where ηAB is the Minkowski
metric. With ωAB

µ = eA
i ∂µ eBi + eA

i Γi
µ je

Bi the Lorentz connec-
tion. The Dirac-Einstein equation is given by:

(ιγAeA
i (x)Di−µ)φ(x) = 0 (1)

with γA∈0,1,2,3 the Dirac matrix and Di is a spinor covariant
derivate:

Di =
∂

∂xi +ω
i
ABΣ(MAB) (2)

Here Σ is (1/2, 0)⊕ (0, 1/2) the SL(2,C2) representation(main
group of group SO+(3,1) on C2⊕C2

Σ(MAB) =
1
4
[γA,γB] (3)

let M tangent bundle be PM → M and M main bundle
space FM → M. Where ψT : R4⊗M → PM and ψF : M⊗
SO+(3,1)→ FM:

ψ
i
T (x,v) = ei

AvA (4)

and

ψF(x,Λ) = ei
AΛ (5)

Paper ID: MR211224033254 DOI: 10.21275/MR211224033254 1181 

International Journal of Science and Research (IJSR)

Licensed Under Creative Commons Attribution CC BY

ISSN: 2319-7064

www.ijsr.net

SJIF (2020): 7.803

Volume 10 Issue 12, December 2021

b)



(with e ∈ GL(4, R4 the element matrix ei
A) The quadri field

can be designed as the

FM : x→ e(x) = ϕF(x, id) ∈ Γ(M,FM)

local sections trivialization.
if T →M is a principal bundle with the spinors transformation
SL(2,C) (T is an FM extented like FM = T/Z2. If E → T M
and Ē → T M vector bundles with the (1/2,0) and (0,1/2) rep-
resentation, a trivialization can defined E→ T M

ψE = T M×C2→ E (6)

with

ψE(v(x),φ) = [ψT (πP(v(x),g),g−1
φ ];g ∈ SL(2,C) (7)

With ψP the T → PM a local trivialization and πP the PM→
M projection;

ψE(v(x),φ) = [ψT−1(πP(v(x),g),g−1
φ ];g ∈ SL(2,C) (8)

(Let ( 1
2 ,0) the g ∈ SL(2,C) action by gφ ∈ C2 and (0,1/2) the

g action on φ by g−1φ ; Γ(FM, Ē ⊕E) be a Hilbert module
C0(T M) with an inner product such as

∀φ ,ϕ ∈ Γ(FM, Ē⊕E)

,

〈φϕ〉Γ(FM,Ē⊕E(u(x)) = 〈φu(x)|γAγ0|ϕu(x)〉C4uA(x) (9)

In other words u(x) ∈ PxM(uA.uA = 1,uA = ei
Aui) if Ξ⊂M is

a spatial hypersurface of M,then

M+
Ξ = {n ∈ PMΞ;∀t ∈ PΞ,gi jnit j = 0;gi jnit j > 0} (10)

with forward-oriented normal vectors at Ξ. The Dirac field φ

is a Dirac space vector

L2(M+
Ξ, Ē⊕E) = {φ ∈ (11)

Γ(M+
Ξ,E−1⊕E)

∫
Ξ

‖φ‖2(n(x))dΞ(x)< 0} (12)

The living Dirac spin fields space has a moment in the instan-
taneous space Ξ. If l is a line of the geodesic and Ξτ∈R a M
violation along l by spatial hypersurfaces (with τ , the time
appropriate along l) by Wentzel Kramers Brillouin. The cur-
vature scale is big than compton wavelength in approximation
assumption association∫

L2(M+
Ξ, Ē⊕E)dτ →WentzelKramersBrillouin

Γ(PC, Ē⊕E)

(13)
the spatial delocalization of the fermion supporting the qubit
is deleted by the semi-classical approximation and the ambi-
guity of the number of particles is also deleted by the absence
of a second quantization. Note that the description of a sin-
gle spin (qubit) is been due to the representation (1/2.0) ,let

project on the space Γ(TC,E⊕ Ē). Then work is based on the
composite bundle 4 E→ T M→M. Note the easierly to work
with the bundle E+→M and the fiber structure R4×C2 . The
local trivialization defines E+ by

ψE+ : M×R4×C2→ E− (14)

ψE+ : ϕE(ψT (x,v),φ) = ψE(e(x)v,φ) (15)

by the action of SL(2,C) on E+ defined by:

∀g ∈ SL(2,C)

;

D+(g)ψE+ = ψE+(x,∧(g)v),Dgφ) (16)

where ∧: the group SL(2,C) → SO+(3,1) associated with
quotient SO+(3,1)/SL(2,C)/Z2.
The E+Γ(M,E+) locals space is identified at the SO+(3,1) E
sections locales space invariant:

Γi(PM,E) = {φ ∈ Γ(PM,E); (17)
∀∧ ∈ S0+(3,1),∀v ∈ PM,φ(∧v(x)) = φ(v(x))} (18)

The following property is obtains by Γ(T M,E) restriction to
be invariant sections :

∀φ ,ϕ ∈ Γi(PM,E),∀g ∈ SL(2,C),∀v ∈ PM

〈D(g)φ |D(g)ϕ〉Γ(PM,E)(Λ(g)v(x)) = 〈φ |ϕ〉Γ(PM,E)(v(x))
(19)

In other words the Lorentz transformations allows the quan-
tum properties to be invariant underthe inner product

〈φv|ϕw〉Γ(PM,E+)(x) = 〈φ |ϕ〉Γ(PM,E)(v(x))δ (u(x)−w(x))
(20)

Let φv(x) = φ(v(x)) = φE(Prφ
−
E +(φv))δ be the distribution

of dirac, Γ(PM,E+) be a Hilbert module C(M). Let’s rewrite
the Dirac Einstein equation as the Van der waerden equation

φ = (ϕA,χA′) (21)

γI =

(
0 σA

σ̄A 0

)
(22)

ισ̄ADuϕA = mχ
A′ (23)

ισADvχ
A′ = mϕA (24)

With χA′ pulled in the first equation and inserted in the second
we got

eA
u σ̄AeB

u σADuDvφE +m2
φE = 0 (25)

φE ∈
∫ ⊕

R L2(M+Ξ,E)dτ with

{σA}A = {id,σx,σy,σz}
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;

{σ̄A}A = {id,−σx,−σy,−σz}(σx,σy,σz)

The Pauli matrices. It allowed

eA
u σ̄AeB

u σA(D{uDv}+D[uDv])φE +m2
φE = 0 (26)

2D[uDv] = [DuDv] ;2D{uDv} = {DuDv} et guv = σ{A ¯σA}

guvDvDuφE − ιLAB(Ruv− ieδFuv)φE +m2
φE = 0 (27)

Fuv = 2D[uAv]; σ{uσv} = guv; RuvψE = 2D{uDv}ψE and LAB =

eu
Aev

BLIJ =
1
2 σ[uσv] which results in LIJ =

1
2 [σIσ̄J−σJσ̄I ] and

Ruv the Ricci tensor; we are setting φE = φeιS/ε with DuS = ku

(ku is the length wave, kuku = m2) in the WKB approximation
that assumes that:

guvDvDuφ − ιLABRuvφ (28)

+
ι

ε
(2kuDuφ +φDuku

φ + ieδFuv)φE) (29)

− 1
ε2 kuku

φ (30)

+m2
φE = 0 (31)

2kuDuφ +φDuku
φ + ieδFuv)φE = 0 (32)

kuku
φ −m2

φE = 0 (33)

ku = Duθ − eAu and by deriving the last equation

Du(kuku−m2) = 2kuDuku = 2kuDu(Duθ − eAu) (34)

= 2(kuDukvθ + ekuFuv) = 0 (35)

Let uu(x) = ku(x)
m defined by dxu

dτ
= uu

m
D2xu

Dτ2 + e
dxv

dτ
Fuv = 0 (36)

If we multiply the first equation of the previous system by
kuσ̄u

Aψ and by adding with the conjugate

2kuDuφ +φDuku = 0 (37)

with the geodesic C

ẍu +Γ
u
ρν xρ xν = 0 (38)

with ku

m = ẋu

ψ ∈ Γi(PM,E)' Γ(M,E+) (39)

which respects the Schrödinger equation:

ιdφ

dτ
=−1

2
ω

AB
u (x(τ))ẋu(τ)LABφ(τ) (40)

with natural time τ along the geodesic where the qubit
reaches. In the WKB properties ψ consists of a very small
wave packet localized essentially around the spatio-temporal
curvature. If φ(τ) ∈ π

−1
E (u(τ)) where πE is the total space E

and base PM fibration and u(τ) = ẋu ∂

∂xu ∈ Tx(τ)M, the Hilbert
space for a instantaneous qubit π

−1
E (u(τ)) ⊂ Γi(PM,E) de-

pends of quadri-velocity. Dirac’s field theory induces the con-
nection of the inner product

〈φ ,ϕ〉τ(T M,E)(u(x)) = 〈φu(x)|σ̄Aϕu(x)〉C2(u(x)) (41)

= 〈φ ∗u(x)|ϕu(x)〉C2 (42)

where φ ∗ = σ̄AuA(x)φ(u(x)) is the conjugate state. The Ein-
stein Dirac gives an interaction of the Dirac field with grav-
ity. These terms in the localized qubit of Schrodinger’s equa-
tion with the operator − 1

2 ωAB
u (x(τ))ẋu(τ)LABφ(τ) are found.

There is an equivalence with these two and the equations of
a fermion. Where Lorentz connection is considerated as "the
field of gravity" felt by qubit or fermion. The local inertial
frame of reference in the neighborhood of x is defined by
{eA}A. For best interpreting of the Hilbert space-time depen-
dence on the speed quadrivector instantaneous spin, it is im-
portant to remind some quantum mechanics axioms. Hilbert
space constitutes a quantum system states space but its dual
H∗, represents the continuous linear space functions of H, is
the elements amplitudes probability space : Let l ∈ H∗ be
H representation in C with(l(ψ))2, the probability of associ-
ated events to l performing the measurement for ψ state quan-
tum system. According to Riesz’s theorem ∀l ∈ H∗,∃!n ∈ H
(phase factor and renormalization with ∀ψ ∈ H), we have:

l(φ) =
〈nl |φ〉H
‖nl‖H‖φ‖H

(43)

Let’s take 〈nl | ∈H∗ an observable Θ co-vector associated with
measure. Where 〈nl | is Θ result event measure λl with (λl the
value associated with 〈nl |. With ket |φ〉 measuring the quan-
tum system event. Geting back ours objectives is to define
two linear functions |φ〉 and 〈φ ∗|= 〈σ̄+

A uAφ | difference(bra is
the domestic product part of C2:〈φ |.〉C2 , never 〈φ |.〉Γ(PM,E). If
φ ∈ Γi(PM,E) is a normalized state we have:

〈φ |.〉Γ(PM,E) = 1 (44)

⇐⇒ 〈φ |σ̄A|φ〉C2uA = 1 (45)

⇐⇒‖φ 2‖u0−〈φ |σA|φ〉C2 uA = 1 (46)

⇐⇒ γ(S0−~S~v) = S0∗ (47)

with quadri-magnetic moment operator is:

{ŚA}A = {id,σx,σy,σz} (48)

SA = 〈φ |ŚA|φ〉C2 ; γ = u0 ,γ~v =~u and

S0∗ = 〈φ |
id
2
|〉Γ(T M,E) = 〈φ ∗|

id
2
|〉C2 =

id
2

(49)
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the previous equation shows the relationship between quadri-
moment magnetic S measured in inert space K and quadri-
moment S∗ measured in the space at quadri-velocity ~u =
(γ,γ~v) rest K∗ based on K. For solving this problem, K and the
black hole must co-moving, in others part K∗ and qubit must
co- moving. By the normalization analysis using 〈.‖.〉Γ(T M,E):
〈ψ|must be linear function linked with amplitude of probabil-
ity (not normalized) for getting φ state ,which an observer who
co-moving with black hole measures(〈φ ||〉C2 = 2S0). 〈φ ∗|
must be the linear function linked with the normalized am-
plitude of probability for getting the spin in the ψ state, which
an observer who co-moving with qubit measures( 〈φ ∗||〉C2 =
2S0∗ = 1; ‖φ‖Γ(T M,E)=1) The Schrödinger equation:

ι
dφ

dτ
= Hφ (50)

H = H0 +H] the Halmitonian with H+ 6= H

H0 =−ω
a0
u ẋuLa0 (51)

La0 =
1
2
[σAσ̄0−σ0σ̄A] (52)

H0 =
ι

2

(
W 03 W 01− ιW 02

W 01 + ιW 02 W 03

)
(53)

σ0 = id, σx =

(
0 1
0 1

)
,σx =

(
0 ι

−ι 0

)
,σx =

(
1 0
0 −1

)

H] =−
1
2

ω
ab
u ẋuLab (54)

H] =−
1
2

(
W 12 W 23− ιW 31

W 23 + ιW 31 −W 12

)
(55)

(W AB ≡W AB
u ẋu). We get H+

0 = −H0 (dissipation operator),
H+
] =−H] (Hamiltonian of the rotating qubit):

H =
1
2

(
z3 z1− ιz2

z1 + ιz2 −z3

)
(56)

Where zi = ιW 0i− 1
2 ε i

jkW
jk (zi

u = ιW 0i
u − 1

2 ε i
jkW

jk
u ) is the dual

complex of the lorentz connection from the qubit point of
view, the spin subjected to a complex magnetic field is sim-
ilar to the interaction with the gravitational field. We take
z = (z1,z2,z3) ∈ C3, for the dynamics integration that the
Schrödinger equation induces.

φ(τ)' Σk∈{+,−}〈ϕ∗k (z(0))|φ(0)〉C2e−ι
∫

τ
0 λkdτ−

∫ Ak
Γ ϕk(z(τ))

(57)
With ϕk;ϕ∗k , λk respectively right-left co-vectors and co-
values of H:

H(z)ϕk(z) = λkϕk(z) (58)

H(z)+ϕ
∗
k (z) = λ̄kϕ

∗
k (z) (59)

(the bar for the conjugate complex); 〈ϕ∗k |ϕq〉C2 = δkq , Ak the
non-unit geometric phase generators:

〈ϕ∗k |d3|ϕq〉C2 (60)

Γ is the curve caractherizes by τ → z(τ) in C3

zi = ιW 0i− 1
2

ε
i
jkW

jk (61)

zi
u = ιW 0i

u −
1
2

ε
i
jkW

jk
u (62)

According to 5 6.

P(τ) =
1
2

∥∥∥∥ z3−λ z1− ιz2

z1 + ιz2 −z3−λ

∥∥∥∥ (63)

−(z3−λ )(z3 +λ )− (z1 + ιz2)(z1− ιz2) = 0 (64)

λ± =±
√

(z1)2 +(z2)2 +(z3)2 =±ξ (65)

We get:

|φ+(z)〉=
1√

2ξ (ξ + z2)

∥∥∥∥ ξ + z3

z1 + ιz2

∥∥∥∥ (66)

|φ ∗+(z)〉=
1√

2ξ̄ (ξ̄ + z̄2)

∥∥∥∥ ξ̄ + z̄3

z̄1 + ι z̄2

∥∥∥∥ (67)

|φ−(z)〉=
1√

2ξ (ξ + z2)

∥∥∥∥−z1 + ιz2

ξ + z3

∥∥∥∥ (68)

|φ ∗−(z)〉=
1√

2ξ̄ (ξ̄ + z̄2)

∥∥∥∥−z̄1 + ι z̄2

ξ̄ + z̄3

∥∥∥∥ (69)

A±(z) =±
1
2

z1dz2− z2dz1

ξ̄ (ξ̄ + z̄2)
(70)

In the non-adiabatic coupling negligible condition, the adia-
batic approximation is valid

M± =±|
〈ϕ∗−(z(τ))|Ḣ(z(τ))|ϕ+(z(τ))〉

λ+(z(τ))−λ−(z(τ))
| (71)

M±� 1 (72)

We take A the main bundle P connection space SL(2,C).
With the eigenvectors like maps ϕ́± : A× T M → C2 such
as ϕ́±(w,u) = φ±(ξ iuw) with i the M inner product with
ξ : sl(2,C)→ C3 which is defined by ξ (WABLAB) = (ιW 0i

u −
1
2 ε i

jkW
jk

u )i=1,2,3({LAB}A,B) constitute a sl(2,C) set lie algebra
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SL(2,C) generators. Where eigenvectors is defined as nor-
malized with a phase factor; The C fiber lines is defined by
φ±→A×T M with the trivialization ϕ́± : A×T M×C→' ϕ±,
ϕ́±(w,u,λ ) = λϕ́±(w,u). We obtain φ using the local sec-
tion adiabatic transport ϕ−⊕ϕ+ on A×TC. As remark the
right eigenvectors fixes the normalization factors, with the
left eigenvectors don’t define the bundles 7 8 9. Let’s sum-
marized it by the following commutative diagram: where
iw(u) = (w,u)∈ A×T M, with w ∈ A a connection of the main
bundle

FIG. 1. Geometric structure 10

P and A± are the main fibers C∗ associated with ϕ±. Where
three gauge types changes linked with each bundle composite
stage:In each stage: φ ∈ Di f f (M) (main space-time diffeo-
morphism) W̃ = ϕ∗ω and ũ = ϕ∗u

First stage: Λ ∈ C in f ty(M,S0+(3,1)

W̃ A
uB = Λ

A
CWC

uDΛ
D
B +Λ

D
C ∂uΛ

D
B (73)

with ũ = ΛB
AuB Second stage: µI ∈ C∞(A× T M∗,C) ( stan-

dardization and change local phase)

Ã± = A±+dlnµI (74)

Let’s summarize it:∫ ⊕
R

L2(M+
Ξτ , Ē⊕E)dτ −→WKB WKBτ(PC, Ē⊕E)(75)

−→T ( 1
2 ,0) Γi(PC,E)' Γ(C,E+)(76)

−→adiab
Γ(A×PC,ϑ+⊕ϑ−)(77)

Note that the holonomy of W ∈ A along the geodesic C (be-
tween 0 and τ) is

Hol(W,C) = Pe−ι
∫
C zui σidxu

(78)

= Te−ι
∫

τ
0 H(zτ )dτ (79)

= Σk∈{+,−}e
−ι(

∫
τ
0 λk−

∫
τ Ak)dτ |ϑk(z(τ))〉〈ϑk(z(0))| (80)

With Pe, Te showing exponentials ordered (Dyson series)
ϕC,± = e−ι(

∫
τ
0 λ±−

∫
τ A±)dτ considered as the cylindrical func-

tions of the Lorentz connection space, ϕC,± ∈ cyl(A), ψ as
these two cylindrical functions linear combination11. Note
that the H = 1

2 ziσi form, with Pauli matrices {σ}i=1,2,3 and
the Lorentz connection self-dual complex {zi}i=1,2,3 is taken
by localized qubit Hamiltonian. There exist an effective for-
malism He f f

MM = (Zi − zi)σi in D-brane matrix models 12 13.
The non-commutative geometry emerging from membranes

12 can be associate whit the equigeneration He f f
MM|Λ〉= 0 with

|Λ〉 ∈ κ ⊗C2 1314. He f f
MM|Λ〉 = 0 =⇒ Zi⊗σi|Λ〉 = zi⊗σi|Λ〉

where the localized qubit is considered as matrix model non-
commutative eigenvalue with super-gravity 15. In other parts,
noncommutative equations like Zi⊗σi|Λ〉 = zi⊗σi|Λ〉 also
appear in the entangled quantum systems adiabatic theory and
their geometric phase operators 16 17. the connection between
D-brane matrix models and localized qubit theory on qubit
reaching the black hole is discussing in18 19. It is very impor-
tant that:

〈φ ∗(τ)|φ(τ)〉C2 = 〈φ ∗(0)|ψ(0)〉C2 (81)

〈Hol(W,C)φ(0)|σ̄ |Hol(W,C)φ(0)〉CuA(τ)= 〈φ(0)|σ̄ |φ(0)〉CuA(0)
(82)

It is’nt necessary unitary with 〈.‖.〉C2

B. Physical phenomena of non unitary evolution

The articles 20 21 22 23 studied the non-self-deputy two-
level quantum system adiabatic transport. With ~W 0 =
(W01,W02,W03) and ~W ] = (W23,W31,W12)

ξ
2 = (~W ]− ι~W 0)2 = ‖~W ]‖2−‖~W 0‖2−2ι~W ]~W 0 (83)

with λ+(z) = λ−(z)⇒ ξ = 0,

M = {‖~W
]‖=‖~W 0‖

~W ].~W 0=0
(84)

is the complex magnetic monopole where dimRM = 4
In the condition ~W ].~W 0 = 0 satisfied outside of M(‖~W ]‖>

‖~W 0‖) ξ ∈ R, eι
∫

λIdτ ∈ U(1) are just pure phases in
M(‖~W ]‖ < ‖~W 0‖) ξ ∈ ιR and eι

∫
λIdτ ∈ R are non-unit dy-

namic phases. For the last situation, the weights of the super-
position is modified by the evolution of ϕI(relatively at 〈.|.〉C2 .
With an observer and black hole co-moving. This effect is
called a decoherence because:

|〈ϕ∗+φ |φ〉〈ϕ∗−〉|
‖φ‖2 =

|c+c−|e
1
2
∫
|ξ |dτ e−

1
2
∫
|ξ |dτ

c2
+e

∫
|ξ |dτ + c−e−

∫
|ξ |dτ

' |c−
c+
|e−

∫
|ξ |dτ

(85)
tends towards 0 for τ big (with ck = 〈ϕ∗+φ |φ〉, the geometric
phases is neglected and we assume that Imξ = |ξ | > 0). The
effects of non-unit geometric phases e−

∫
τ A± have not been

considered which induces a geometric decoherence if A± ∈ R
(let us use the geometric decoherence in case the geometric
phase never depends on proper time).

We take MW = I−1
W ξ−1(M) a pre-image of M on PM. In

this case the monopole complex magnetic for a fixed geomet-
ric space time MW can’nt be a time M sub-space but for the
tangent bundle PM. These four velocity afects the complex
magnetic monople around the hole black in a qubit point of
view . In sum the set complex magnetic monopoles can be
MA = {(W,MW ),ω ∈ A} ⊂ A×T M, to conclude a prime in-
tegrals {Iα}α in iu(W )(u ∈ T ×C,C ∈ g{Iα}α α can be used
to define a class g{Iα}α of geodesic on {Iα}α and x. It ap-
pends MW,{Iα}α = πT (MW ∩π

−1
T ({Iα}α ) a sub-space of M that
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could be an image for the following qubits co-moving with the
geodesics of {Iα}α , a complex magnetic monopoles in space-
time. To be more clear the non-physical come from the non-
unitarity relative to 〈.‖.〉C2 . We first take a simpler model get
up of a system of levels wrote |d〉, |0〉, |1〉; with a |0〉 sponta-
neous emission with a ratio γ−1 in |d〉 state. In second time
we took system restricted to (|0〉, |1〉) as qubit18.

dρ

dt
=−ι [H,ρ]− γ−

2
{σ+

d0σ
−
d0,ρ}+ γ−σ

+
d0σ

−
d0 (86)

With ρ the system matrix density, {., .} shows an anti-switch,
σ
−
d0 = |d〉〈0| and σ

−
d0 = |d〉〈0|, we rewritten it as:

dρ

dt
=−ι(He f f

ρ−ρHe f f )+ γ−ρ00|d〉〈d| (87)

here He f f = H − γ−
2 ι |0〉〈0|. This Hamiltonian anti-self-

adjoint part − γ−
2 ι |0〉〈0| models the loss population of |0〉

to "black state" i.e this black state gains population gain
which is modeled by γ−ρ00|d〉〈d|. Let’s forget the black
state in this modeling, the Schrodinger equation is obtained
by the qubit governed by a non-self-adjoint Hamiltonian
He f f
|0〉,|1〉 = H|0〉,|1〉 − γ−

2 ι |0〉〈0|, this non-self-adjoint part of

He f f , − γ−
2 ι |0〉〈0|, could be renamed by the loss operator

since it has been modeling the wave function dissipation in-
duced by the |0〉 loss population at the black state 24 25. i.e If
〈0|H|ψ〉= 〈d|H|ψ〉= 0, then :

dρ

dt
=−ι(He f f

i0 ρ0 j +He f f
i1 ρ1 j−

¯He f f
j0 ρi0−

¯He f f
j1 ρi1) (88)

∀i, j ∈ {0,1}. We take ψ as solution of ι ṗsi = He f f
|0〉,|1〉, where

P = |ψ〉〈ψ| obeys Ṗ = −ι(He f f
|0〉,|1〉P−PHe f f

|0〉,|1〉), the popula-
tion and the consistency Pi j = 〈i|P| j〉 obey the same above
equation. So ρi j = Pi j (P2 6= P for ψ is’nt normalized due to
the He f f

|0〉,|1〉 non-Hermitian character. A single qubit is had, the
latter is forgotten by a semi-classical WKB approximations
using in this thesis. In this case two qubit states is had, |10〉
and |11〉 (C2 canonical basic formation is used in the differ-
ent fibrations construction) and a black state |�〉 of the void.
In many articles of physical systems the modeling for a spon-
taneous evolution decreasing is described 20, also for a finite
vacuum state 21 22.

C. Teleportation fidelity

For starting Bob and Alice are at initially point xB of M
supposedly so far of black hole for setting M flat in xB neigh-

borhood. Let black hole moving with |0〉 =
(

0
1

)
|1〉 =

(
1
0

)
but the geodesic is following by Alice reaching the horizon at
xA point. Alice teleports informations. We take τB = τA = 0
for Alice leaving Bob; a tangled qubit pair in a bell state has
had by them

|ψ0
AB〉〉=

1√
2
(|0A0B〉〉+ |1A1B〉〉) ∈Π

−1(u0
A)⊗Π

−1(u0
A)

(89)

(u0
A) ∈ PxB M and u0

B = (1,0,0,0) ∈ PxBM the Bob and Alice
quadri-verctor velocity. Then Bob and Alice belong are in
differents total own qubit states spaces definitions. Firstly
Bob’s linear functions are in particular state 〈0| and 〈1|, but
Alice’s linear functions are 〈0∗| and 〈1∗| because the black
hole is not co-moved by her. The Alice’s qubit state is
〈a∗|bA〉= 〈a|σ̄A|bA〉u0

AA = δab
(∀a,b ∈ {0,1}). It happens |0A〉 = σAu0

AA|0〉 with |1A〉 =
σAu0

AA|0〉(σAu0
AA = (σ̄Au0

AA)
−1

|〉〉= 1√
2
〈a|σA|bA〉u0

AAΣ
ab|ab〉〉 (90)

for zB = 0, |ϕ+(zB)〉= 1√
2

(
1
1

)
and |ϕ−(zB)〉= 1√

2

(
−1
1

)

|ψ0
AB〉〉=

1
2

Σ
ab

Σi=±〈a|σA|bA〉u0
AAia|φ−(zB)〉⊗ |b〉 (91)

We take τ
−1
A the proper time when Alice travels to xA. Ac-

cording adiabatic approximation; For τA = τ
−1
A and τB > 0

|ψ1
AB〉〉=

1
2

Σ
abi〈a|σA|bA〉u0

AAiaeιϕi |φ−(zB)〉⊗ |b〉 (92)

ϕi = −
∫ τ1

A
0 λidτ + ι

∫
Γ

Ai ). |ψ1
AB〉〉 is defined by two pproper

times, one for Bob and other for Alice, with asynchronous
clocks. Because evolution is inertial in the flat M part, Bob’s
qubits is trivial.

|φi(zB)〉= Σc〈c∗|φi(zB)|cA〉= 〈c|σ̄Cφi(zB)u1
AC|cA〉 (93)

where the four velocity for Alice at τ1
A is u1

A ∈ TxA M is:

|ψ1
AB〉〉=

1√
2

Σbcχbc|cAb〉〉 (94)

Alice’s quantum information is encoded by

χbc =
1√
2

Σai〈a|σA|bA〉u0
AAiaeιϕi〈c|σ̄C|〉u1

AC (95)

in the qubit |φI〉 = α|0A〉+ β |1A〉 with (|α|2 + |β |2 = 1),
|ψ1

AAB〉〉〉 = |ψI〉⊗ |ψ1
AB〉〉 in usual teleportation protocol op-

erations is performed by Alice:

|φ 2
AAB〉〉〉= (hA⊗ id⊗ id)(cnotA⊗ id)|φ 1

ABI〉〉〉 (96)
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cnotA and hA are the CNOT and Hadamard for Alice’s part. It
happens

|ψ2
AAB〉〉〉= |0A0A〉〉⊗ (

αχ00 +β χ10

2
|0〉 (97)

+
αχ01 +β χ11

2
|1〉) (98)

|1A0A〉〉⊗ (
αχ00−β χ10

2
|0〉 (99)

+
αχ01−β χ11

2
|1〉) (100)

|0A1A〉〉⊗ (
αχ10 +β χ00

2
|0〉 (101)

+
αχ11 +β χ10

2
|1〉) (102)

|1A1A〉〉⊗ (
αχ10−β χ00

2
|0〉 (103)

+
αχ11−β χ10

2
|1〉) (104)

Alice takes a qubit measurement as 0A1A. Alice communi-
cates it to Bob that she used the identity operation to performe
her qubit. The message is received by Bob at τ3

B. The state is
for τA > τ

−1
A and τB = τ3

B

|ψ3
AAB〉〉〉= (UA⊗UA|0A1A〉〉)⊗ ((αχ10 +β χ00)|0〉(105)

+(αχ11 +β χ10)|1〉)(106)

With UA the operator evolution for Alice’s qubits after τ
−1
A .

F(α,β )= | (ᾱ〈0|+ β̄ 〈1|)((αχ10 +β χ00)|0〉+(αχ11 +β χ10)|1〉)
‖((αχ10 +β χ00)|0〉+(αχ11 +β χ10)|1〉)‖

|

(107)

F(α,β ) =
||α|2χ10 + ᾱβ χ00 +αβ̄ χ11 + |β |2χ10|√
|αχ10 +β χ00|2 + |αχ11 +β χ10|2

(108)

the black hole induces a decoherence which degrades the fi-
delity of teleportation,encoding in χbc. With a Alice’s con-
stant four velocity in a flat space-time:

χbc = Σa〈c|σA|a〉〈a|σ̄C|b〉u0
AAu1

AC = δcb (109)

It happens F = 1.

III. RESULTS

A. Rindler’s Black Hole

Now we are going to apply the models that we developped
in the previous section. For comparing with the Fuentes-
Schuller-Mann model26, the Rindler’s space-time case is con-
sidered

dτ
2 = (Ax)2dt2−dx2 (110)

dτ2 = −ds
c2 that corresponds with the acceleration parameter

1
A to a flat space-time seen in a uniformly accelerated non-
inertial frame A = 1

2Rs
, Rs = 2GM. For e0 = Axdt and e1 =

dx the tetrad fields, we obtain the components of the Lorentz
connection from:

W AB
u = eA

u ∂ρ euB + eA
u Γ

u
ρveBv (111)

W AB = ω
AB
u eu (112)

W 01 =−g00,1dt =−Adt is only nonzero ; It happens that z1 =

−ιAṫ and z2 = z2 = 0

H =
−ιAṫ

2

(
0 1
1 0

)
(113)

with λ± =±−ιAṫ
2 the eigvalues and

|ϕ−〉=
1√
2

(
−1
1

)
; |ϕ+〉=

1√
2

(
1
1

)
(114)

are the eigvectors, A± = N± = 0 for flat space-time. If the
qubit is moving in the x direction with σxφ± = ±φ±: ϕ+ as
positive helicity state of spin parallel to the linear moment. ϕ−
as negative helicity state of anti-parallel spin at linear moment

ẍ+Γ
β
uvẋuẋv = 0 (115)

ẗ +2Γ
0
01ṫ ẋ = 0 (116)

ẍ+Γ
1
00ṫ2 +Γ

1
11ẋ2 = 0 (117)

ẗ +
2
x

ṫẋ = 0 (118)

ẍ+A2xṫ2 = 0 (119)

The first integral ẗ + 2
x ṫ ẋ = 0 is defined by the first equation

⇒ x2ṫ = K (120)

In this situation automatically the second becomes

ẍ+
A2K2

x3 = 0 (121)

The state qubit adiabatic transport φ(τ0) = c+ϕ++ c−ϕ− is:

ψ(τ) =
c−√

2
e

A
2 (t(τ)−t(0)

(
1
1

)
+

c+√
2

e−
A
2 (t(τ)−t(0)

(
−1
1

)
(122)

ψ(τ) =
c−√

2
e

AK
2
∫

τ
0

dτ

x2

(
1
1

)
+

c+√
2

e−
AK
2
∫

τ
0

dτ

x2

(
−1
1

)
(123)

the positive helicity state is destroyed by the dynamic
decoherence19. The positive helicity mode couples the
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fermion to this thermal bath for the matrix density ρ+ (for
|1k,s〉= |φ+〉 or | /0〉 obeys the main equation 23

dρ+

dτ
=−γ

2
(1− n̄){c++c+,ρ+}+ γ(1− n̄)c+ρ+c++ (124)

−γ

2
(1− n̄){c+c++,ρ+} (125)

+γ n̄c++c+ρ+ (126)

the operators fermionic annihilation and creation on the pos-
itive helicity mode c±+ (c+ = | /0〉〈1k,s|,γ as the bath spec-
tal density, c++ = |1k,s〉〈 /0|) n̄ = 1

e
ω

kBT +1
. With assumptions

γ(1− n̄) ' γ0ω

4kBT is constant 27. Due to n̄ very low (the Unruh
temperature is very low), the |1k,s〉= | /0〉 dissipation dominates
the main equation matching the above equation;projecting on
|1k,+〉〈1k,+| and for neglecting the quantum jumps and the n̄
terms 1019 28, we have:

He f f
+ =− ιγ0ω

4kBT
|φ+〉〈φ+| (127)

As solution

x(τ) =
√

5A2K2(β + τ)2−1 (128)

where β =−
√

x(0)2+1
AK
√

5

e
AK
2
∫

τ
0

dτ

x2 (129)

C =
∫

τ

0

dτ

5A2K2(β + τ)2−1
=

1
2

ln[(

√
5AK(β + τ)−1√
5AK(β + τ)+1

)(
1+
√

5AKβ

(1−
√

5AKβ )
]

(130)
where e

AK
4 C 'C

AK
4 =C

1
4 with AK=1

e
AK
2
∫

τ
0

dτ

x2 = [(

√
5AK(β + τ)−1√
5AK(β + τ)+1

)(
1+
√

5AKβ

(1−
√

5AKβ )
] (131)

With τH = − 1√
5AK
−β a qubit reaching the horizon time; It

happens limτ→τH e
AK
2
∫

τ
0

dτ

x2 = 0.

B. Symmetry Spherical Black Hole

The Schwarschild is defined as

dτ = T 2(r)dt2−R−2dr2− r2(dθ
2 + sin2

θ)dϕ
2 (132)

where T =R=
√

1− Rs
r ,with Rs the radius. The contravariant

vectors are e0 = T dt, e1 = R−1dt, e2 = rdθ , e3 = rsinθdϕ . It
happens for lorentz connection

W AB
u = eA

u ∂ρ eBu + eA
v Γ

u
ρveBv (133)

W AB =W AB
u eu (134)

FIG. 2. Rindler’s average time-space teleportation fidelity

Γ
0
01 =

1
2

1
T 2dt2 2T ′T dtdr (135)

W 01 = T ′Rdt W 12 = Rdθ , W 13 = Rsinθdϕ and W 23 =
cosθdϕ are the non-zero components. Because of the spheri-
cal symmetry we must restrain to θ = π/2 plan

ẗ +2Γ
0
01ṫ ṙ = 0 (136)

r̈+Γ
1
00ṫ2 +Γ

1
11ṙ2 +Γ

1
22θ̇

2 +Γ
1
33ϕ̇

2 = 0 (137)

θ̈ +Γ
2
22θ̇ ṙ+Γ

2
21θ̇ ṙ+Γ

2
33ϕ̇

2 = 0 (138)

ϕ̈ +2Γ
3
13ϕ̇ ṙ+2Γ

3
23θ̇ ϕ̇ = 0 (139)

ẗ +2
T ′

T
ṫṙ = 0 (140)

r̈+T ′R2Tṫ2 +
R′

R
ṙ2 +R2rϕ̇

2 = 0 (141)

ϕ̈ +
2
r

ϕ̇ ṙ = 0 (142)

The prime integrals are defined by the first and last equations

T 2ṫ = E (143)

r2
ϕ̇ = L (144)

E: energy and L:angular momentum per unit of mass; It hap-
pens z1 = ιω01 = −ι

T ′R
T 2 E, z2 = − ι

2 2ω13 = ιRϕ̇ = ιR
r2 L and

z3 = 0

H =
1
2

(
0 −ι

T ′R
T 2 E− ιR

r2 L
−ι

T ′R
T 2 E + ιR

r2 L 0

)
(145)
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where λ± =±
√
(rR2L)− (T ′R

T 2 E)2.

With λ± ∈ R if rR2L)− (T ′R
T 2 E)2 ≥ 0⇒ L ≥ T ′r2

T 2 E(MW,L,E =

{(rLE,φ);φ ∈ [0,2π] and
T ′
(r2

LE )
rLE

T 2
(rLE )

= L
E }). Note that dynamic

decoherence disappears for Schwarzchild’s case

T ′ =
Rs

2
√

1− Rs
r

(146)

(1− Rs
r )

3
2 L ≥ Rs

2 E i.e if Rs
2L E < 1 so r > rLE = Rs

[1−( Rs
2L E)

3
2 ]

.It

happens that the qubit following the strongly rotating geodesic
(L wide) is subjected to dynamic decoherence and far from the
complex magnetic monopole(i.e radius sphere is RLE ≥ Rs ).
A±= 1

2
z1dz2−z2dz1

ξ (ξ+z3)
is defined as the geometric phase generators

A±=
1
2
[(T ′RE

T 2 (RdrL
r2 −2R dr

r3 )− RL
2 (T ”REdr

T 2 −2 (T ′)2REdr
T 3 + T ′R′Edr

T 2 )]

(T ′)2R2E2

T 4 − R2L3

r4

(147)
A± = ± 1

2
uvw′−u′vw−uv′w

w2L2−u2v2E2 LEdr ∈ Ω1(M,R)( with

Schwarzschild case u = T ′
T ,v = R

T ,w = R
r2 ), A± =

±EL
2

R2
s

(1− Rs
r )3r2L2− R2

s rE2

4(1− Rs
r )

. Always the Geometric deco-

herence appears except for a circular orbits(r = cst) and radial
geodesic(L = 0). In other ways the adiabatic non-coupling N±

M± = |
〈ϕ∗−(z(τ))|Ḣ(z(τ))|ϕ+(z(τ))〉

λ+−λ−
|=± λ̇

λ
(148)

N± = | (wL−uE)(u′w−uw′)

4(w2L2−u2E2)
3
2
|LE|ṙ| (149)

Where the adiabatic approximation validity for circular orbits
and radial geodesics is ensured without any speed indication.

1. Radial geodesic (Schwarzschild metric)

The radial geodesics equation is

r̈+
R′

R
ṙ = 0 (150)

=⇒ r̈+
Rs

r
= 0 (151)

U1 = ṙ (152)

dU1 =U2 (153)

→
∫
(
∫

rdr)dr =
∫
(
∫ −Rs

2
dτ)dτ (154)

It happens:r3 =− 3
2
√

Rs(τ)
2 +(

√
r3

0)
2 i.e r = (− 3

2
√

Rs(τ)
2 +

(
√

r0)
3
2 ) 2

3 , by taking Aτ
√

r0 ' 0 ; the event horizon is reached

at τH =
r

3
2
0 −R

3
2
s

3
2 Rs

.Due to the decoherence induced by the grav-

itational field as well as quantum teleportation fidelity drops
if Alice closes to the event horizon like Rindler’s space-time (
MW,L=0,E = {(+∞,φ);φ ∈ [0,2π]}) contains radial geodesics

2. Schwarzschild Circular orbits

Which is defined by r = r0 = constante; with φ = L
r0

τ +φ0

we obtain:

R2rϕ̇
2 =−T ′R2T (dt)2 (155)

FIG. 3. Representation of the Fidelity of teleportation

=⇒ R2r
L2

r2
0
(dt)2 =−T ′R2T (dt)2 (156)

=⇒ L2 =−
Rsr2

0
r

(157)

and the metric allows

dτ = T 2 E2

T 4 − r2 L2

r4 (158)

dτ = 1 so E2 = T (r0)
2(1 + L2

r2
0
). The difference in quadri-

vector velocity between Alice and Bob causes the effect in
circular orbits (that shows the fidelity almost uniform with
respect to r0 and τ1

A),there is’nt decoherence for each r0 ,
ξ ∈ R(MW,r0 = {(3Rs,φ)∈ [0,2π]}) ,the photon sphere is cre-
ated by the circular orbits outsiding the complex magnetic
monopole). In this situation a phase difference ϕ+ and ϕ−
is generated by the adiabatic transport inducing few interfer-
ence in the quantum teleportations which explains the short
oscillations of fidelity.
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FIG. 4. Teleport Fidelity for reaching geodesics almost the event
horizon

3. Geodesic reaching the event horizon

Let take the geodesic starting far enough horizon
and traveling there by adiabatic approximation. Here
ξ →r→Rs +ι∞, e

ι
2
∫

H−ε ξ dτ ' 0 τH is taken to being
the necessary time reaching event horizon with ξ <<

1). Foreover ϕ+ −→r→Rs 1
2

(
1
1

)
,ϕ− −→r→Rs 1

2

(
−1
1

)
and

(uA)A∈{t,r,θ ,ϕ} = (E
T ,−

√
E2

T 2 −1− L2

r2 ,0,
L
r ), where teleporta-

tion fidelity for geodesics reaching almost the event horizon
is estimated, as well as the above figure shows Teleportation
fidelity oscillates with Alice’s relative angular position as soon
as she arrived to the event horizon (Schrödinger’s cat Telepor-
tation , do’nt occurs oscillation for |0〉 or |1〉 teleportation .
There is small dependence of E and L on l at exception for the
few values of these first integrals.

C. Kerr’s Black Hole

Let rotating black hole in the form of Boyer -Lindquist met-
ric:

dτ =−(1− Rsr
ρ2 )dt2− 2Rsarsin2θ

cρ2 dtdϕ +
ρ2

c2∆
dr2(159)

+
ρ2

c2 dθ
2 +(r2 +a2 +

2Rsarsin2θ

ρ2 )
sin2θ

c2 dϕ
2(160)

Rs = GM the Schwarzschild radius, the contravariant vectors
are

e0 = ι(1− Rsr
ρ2 )

1
2 dt (161)

e0e3 =
2Rsarsin2θ

cρ2 dtdϕ (162)

e1 =
ρ2

c
√

∆
dr (163)

e2 =
ρ

c
dθ (164)

e3 = (r2 +a2 +
2Rsarsin2θ

ρ2 )
1
2

sinθ

c
dϕ (165)

e0 =
ιΣ

cρ∆
1
2

d
dt

(166)

e03 =

√
Rsra
c∆ρ2

d2

dtdϕ
(167)

e1 = ι
∆

1
2

ρ

d
dr

(168)

e2 =
ι

ρ

d
dθ

(169)

e3 =

√
a2sin2θ −∆

ρ2∆sin2θ

d
dϕ

(170)

The non-zero Lorentz connections are as follows

ω
01 =

Σ2G′G

c2ρ3∆
1
2

dt (171)

where G =
√

1− Rsr
ρ2

ω
12 =

ιρ ′

ρc2 dθ (172)
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ω
13 =

1
2

K′

ρc2

√
a2sin2θ −∆

ρ2∆sinθ
dϕ (173)

with K = (r2 +a2 + 2Rsarsin2θ

ρ2 ) sin2θ

c2

ω
23 =

l2l′

c
dϕ (174)

with l =
√

a2sin2θ−∆

ρ2∆sinθ
in the equatorial plan θ = Π

2

dτ =−(1− Rs

r
)dt2− 2Rsa

cr
dtdϕ+

r2

c2∆
dr2+(r2+a2+

2Rsa
r

)
1
c2 dϕ

2

(175)

e0 = ι(1− Rs

r
)

1
2 dt (176)

e0e3 =
2Rsa

cr
dtdϕ (177)

e1 =
r2

c
√

∆
dr (178)

e2 = (r2 +a2 +
2Rsa

r
)

1
2

1
c

dϕ (179)

e0 =
ιΣ

cr∆
1
2

d
dt

(180)

e02 =

√
Rsa
c∆r

d2

dtdϕ
(181)

e1 = ι
∆

1
2

r
d
dr

(182)

e2 =

√
a2−∆

r2∆

d
dϕ

(183)

like gi j = ni jeie j are only r and θ , ∂L
∂ t = ∂L

∂ϕ
and so

P0 =
∂L
∂ ṫ

= Ec2 (184)

P2 =
∂L
∂ ϕ̇

=−L (185)

en effet

P0 = gtt ṫ +gtϕ ϕ̇ =−c2(1− Rs

r
)ṫ +

Rsac
r

ϕ̇ = Ec2 (186)

P2 = gtϕ ṫ+gϕϕ ϕ̇ =
Rsac

r
ṫ+(r2+a2+

2Rsa
r

)ϕ̇ =−L (187)

we get the following system(
gtt gtϕ
gtϕ gϕϕ

)(
ṫ
ϕ̇

)
=

(
Ec2

−L

)
(188)

Noticing that

∆c2 =−(gttgϕϕ −g2
tϕ) (189)

we obtain

ṫ =− 1
∆
[(r2 +a2 +

2Rsa
r

)E +
Rsa2c

r
L] (190)

ϕ̇ =
1
∆
[
Rsa2c

r
E− (1− Rs

r
)L] (191)

Therefore

z1 =−νω
01 (192)

z2 =−νω
13 (193)

z1 = ι
Σ2G′G

c2ρ3∆
3
2
[(r2 +a2 +

2Rsa
r

)E +
Rsa2c

r
L] (194)

z2 = ι
1
2

K′

ρ∆c2

√
a2sin2θ −∆

ρ2∆sinθ
[
Rsa2c

r
E− (1− Rs

r
)L] (195)

z3 = 0 (196)

that is z1 = AE +BL with

A = ι
Σ2G′G

c2ρ3∆
3
2
(r2 +a2 +

2Rsa
r

)E (197)

B = ι
Σ2G′G

c2ρ3∆
3
2

Rsa2c
r

L (198)

and z2 =CE−DL with

C = ι
1
2

K′

ρ∆c2

√
a2sin2θ −∆

ρ2∆sinθ

Rsa2c
r

E (199)

D = ι
1
2

K′

ρ∆c2

√
a2sin2θ −∆

ρ2∆sinθ
(1− Rs

r
)L (200)

H =
1
2

(
0 (A−C)E +(B−D)L

(A−C)E +(B−D)L 0

)
(201)
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let W = (A−C)2E2, Q = (A−C)(B−D)EL, S = (B−D)2L2,
Z = (A−C)(B−D)EL

λ± =±1
2

√
W −Q+S−Z (202)

λ ∈ R if (A−C)2E2 +(B−D)2L2 ≥ (A−C)(B−D)EL This
condition being verified

⇒ L≥−E(A−C)

(B−D)
(203)

(MW,L,E = {((rLE ,φ),φ ∈ [0,2π]}), the geodesics are
strongly rotating in the Kerr metric from where the qubit is
subjected to a dynamic decoherence. The geometric phase
generators are

A± =±1
2

z1dz2− z2dz1

(z1)2 +(z2)2 (204)

A± =±1
2
[(AE +BL)(C′E−D′L)− (CE−DL)(A′E +B′L)

(AE +BL)2 +(CE−DL)2

(205)
Geometric coherence is always present. Moreover it comes
that N± << 1, which induces the validity of the adiabatic ap-
proximation in the Kerr metric.
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