Quantum Information Reaching the Black Holes

Jean Luc Wendkouni TOUGMA ${ }^{\text {a }}$, Sié Zacharie KAM, Jean KOULIDIATI ${ }^{\text {c }}$

Laboratoire de Physique et Chimie de l'Environnement", Burkina Faso
jeanluctougma@outlook.fr ${ }^{\text {a) }}$, szachkam@gmail.com, ${ }^{\text {b) }}$ j.koulidiati@yahoo.fr ${ }^{\text {c) }}$

Abstract

: In this paper, we considereted the quantum state information of qubits moving according to the quantum adiabatic dynamics around a black hole. We demonstrated that a fibre bundles geometric structure gives a quantum state description and spacetime geometry discription in a same framework. We analysed the fact that the black hole induces a decoherence on the qubit in this framework, particulary on the quantum information when it reaches the event horizon. Then we analysed Kerr, Schwarzschild and Rindler black hole cases by computing the fidelity of the teleportation.

Keywords: Quantum teleportation, Black Hole,qubit in curved spacetimes, non-Hermitian adiabatic dynamics, brebundle

I. INTRODUCTION

Black holes are such dense bodies that the speed of release in their vicinity exceeds the speed of light in a vacuum. As a result, no body too close can escape from the black hole, and not even light due to a relativistic effect. The border of the region around the black hole where no return is possible is called the event horizon. For the simplest black holes (Schwarzschild black holes) this horizon is spherical. In 1975, Stephen Hawking demonstrated that black holes must emit thermal radiation. This radiation can only be emitted from the horizon, because below it would be trapped. Or, nothing is on the horizon! Being defined only as the boundary such as vlib = c , the event horizon is not a material structure. But for thermal radiation to be emitted, atoms or particles must be agitated. From this observation, an black hole entropy was then associated with this object to compensate for the loss of information. Nevertheless, it remains to find a theoretical framework in which this macroscopic quantity is associated with the microstates of a thermodynamic system. String theory and loop theory of gravity seem to be possible frameworks at present. Physicists believe the answer to this question lies in a theory of quantum gravity. One of them, brane theory (a variant of string theory), assumes that space is not continuous but a frame made up of a network of quantum strings on the Planck scale $(10-33 \mathrm{~cm})$. Gravitation is then the manifestation of the structure of the network and its vibrations. In this theory, the event horizon would be a network of quantum strings with the topology of a sphere (what is called a fuzzy sphere), in a state of thermal equilibrium (it is the agitation resulting from vibrations of the strings constituting the structure of the space which would be at the origin of the thermal radiation). To be in a thermal state, the fuzzy sphere must be in contact with an environment, the latter is made up of emptiness! It is the quantum fluctuations of the vacuum which would cause the thermalization of the fuzzy sphere. Note that the gravity effects on quantum systems have been demonstrated by many

[^0]works such as ${ }^{1},{ }^{2}$. Palmer et al ${ }^{3}$. The work here is to rewrite the qubit quantum states and spacetime geometry in a same framework by using a fibre bundles and we showing that the black hole created quantum decoherence on the qubit, especially if the qubit reach it. In addition, the qubits reaching a black hole is describes by the quantum adiabatic dynamics; In other words, we showing that the teleportation fidelity is describes by the geometric and dynamical phases in quantum decoherence. The case of many blacks hole is analysed.

II. METHODS

A. Adiabatic approximation in a curved space time

let $e_{i}^{A}(x)$ be the moving coordinate system associated with $g_{i j}=\eta_{A B} e_{i}^{A} e_{j}^{B}$ the metric and where $\eta_{A B}$ is the Minkowski metric. With $\omega_{\mu}^{A B}=e_{i}^{A} \partial_{\mu} e^{B i}+e_{i}^{A} \Gamma_{\mu j}^{i} e^{B i}$ the Lorentz connection. The Dirac-Einstein equation is given by:

$$
\begin{equation*}
\left(\imath \gamma_{A} e_{i}^{A}(x) D_{i}-\mu\right) \phi(x)=0 \tag{1}
\end{equation*}
$$

with $\gamma_{A \in 0,1,2,3}$ the Dirac matrix and D_{i} is a spinor covariant derivate:

$$
\begin{equation*}
D_{i}=\frac{\partial}{\partial x^{i}}+\omega_{A B}^{i} \Sigma\left(M_{A B}\right) \tag{2}
\end{equation*}
$$

Here Σ is $(1 / 2,0) \oplus(0,1 / 2)$ the $S L\left(2, \mathbb{C}^{2}\right)$ representation(main group of group $\mathrm{SO}^{+}(3,1)$ on $\mathbb{C}^{2} \oplus \mathbb{C}^{2}$

$$
\begin{equation*}
\Sigma\left(M_{A B}\right)=\frac{1}{4}\left[\gamma_{A}, \gamma_{B}\right] \tag{3}
\end{equation*}
$$

let M tangent bundle be $P M \rightarrow M$ and M main bundle space $F M \rightarrow M$. Where $\psi_{T}: \mathbb{R}^{4} \otimes M \rightarrow P M$ and $\psi_{F}: M \otimes$ $S O^{+}(3,1) \rightarrow F M:$

$$
\begin{equation*}
\psi_{T}^{i}(x, v)=e_{A}^{i} v^{A} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{F}(x, \Lambda)=e_{A}^{i} \Lambda \tag{5}
\end{equation*}
$$

(with e $\in \operatorname{GL}\left(4, \mathbb{R}^{4}\right.$ the element matrix $\left.e_{A}^{i}\right)$ The quadri field can be designed as the

$$
F M: x \rightarrow e(x)=\varphi_{F}(x, i d) \in \Gamma(M, F M)
$$

local sections trivialization.
if $T \rightarrow M$ is a principal bundle with the spinors transformation $S L(2, \mathbb{C})$ (T is an FM extented like $F M=T / Z_{2}$. If $E \rightarrow T M$ and $\bar{E} \rightarrow T M$ vector bundles with the $(1 / 2,0)$ and $(0,1 / 2)$ representation, a trivialization can defined $E \rightarrow T M$

$$
\begin{equation*}
\psi_{E}=T M \times \mathbb{C}^{2} \rightarrow E \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
\psi_{E}(v(x), \phi)=\left[\psi_{T}\left(\pi_{P}(v(x), g), g^{-1} \phi\right] ; g \in S L(2, \mathbb{C})\right. \tag{7}
\end{equation*}
$$

With ψ_{P} the $T \rightarrow P M$ a local trivialization and πP the $P M \rightarrow$ M projection;

$$
\begin{equation*}
\psi_{E}(v(x), \phi)=\left[\psi_{T^{-1}}\left(\pi_{P}(v(x), g), g^{-1} \phi\right] ; g \in S L(2, \mathbb{C})\right. \tag{8}
\end{equation*}
$$

(Let $\left(\frac{1}{2}, 0\right)$ the $g \in S L(2, \mathbb{C})$ action by $g \phi \in \mathbb{C}^{2}$ and $(0,1 / 2)$ the g action on ϕ by $g^{-1} \phi ; \Gamma(F M, \bar{E} \oplus E)$ be a Hilbert module $\mathbb{C}^{0}(T M)$ with an inner product such as

$$
\forall \phi, \varphi \in \Gamma(F M, \bar{E} \oplus E)
$$

$$
\begin{equation*}
\langle\phi \varphi\rangle_{\Gamma(F M, \bar{E} \oplus E}(u(x))=\langle\phi u(x)| \gamma_{A} \gamma_{0}|\varphi u(x)\rangle_{\mathbb{C}^{4}} u_{A}(x) \tag{9}
\end{equation*}
$$

In other words $u(x) \in P_{x} M\left(u_{A} \cdot u_{A}=1, u_{A}=e_{A}^{i} u_{i}\right)$ if $\Xi \subset M$ is a spatial hypersurface of M,then

$$
\begin{equation*}
M^{+} \Xi=\left\{n \in P M_{\Xi} ; \forall t \in P \Xi, g_{i j} n^{i} t^{j}=0 ; g_{i j} n^{i} t^{j}>0\right\} \tag{10}
\end{equation*}
$$

with forward-oriented normal vectors at Ξ. The Dirac field ϕ is a Dirac space vector

$$
\begin{array}{r}
L^{2}\left(M^{+} \Xi, \bar{E} \oplus E\right)=\{\phi \in \\
\left.\Gamma\left(M^{+} \Xi, E^{-1} \oplus E\right) \int_{\Xi}\|\phi\|^{2}(n(x)) d \Xi(x)<0\right\} \tag{12}
\end{array}
$$

The living Dirac spin fields space has a moment in the instantaneous space Ξ. If 1 is a line of the geodesic and $\Xi_{\tau \in R}$ a M violation along 1 by spatial hypersurfaces (with τ, the time appropriate along l) by Wentzel Kramers Brillouin. The curvature scale is big than compton wavelength in approximation assumption association

$$
\begin{equation*}
\int L^{2}\left(M^{+} \Xi, \bar{E} \oplus E\right) d \tau \rightarrow^{\text {WentzelKramersBrillouin }} \Gamma(P \mathbb{C}, \bar{E} \oplus E) \tag{13}
\end{equation*}
$$

the spatial delocalization of the fermion supporting the qubit is deleted by the semi-classical approximation and the ambiguity of the number of particles is also deleted by the absence of a second quantization. Note that the description of a single spin (qubit) is been due to the representation ($1 / 2.0$) , let
project on the space $\Gamma(T \mathbb{C}, E \oplus \bar{E})$. Then work is based on the composite bundle ${ }^{4} E \rightarrow T M \rightarrow M$. Note the easierly to work with the bundle $E^{+} \rightarrow M$ and the fiber structure $\mathbb{R}^{4} \times \mathbb{C}^{2}$. The local trivialization defines E^{+}by

$$
\begin{gather*}
\psi_{E^{+}}: M \times \mathbb{R}^{4} \times \mathbb{C}^{2} \rightarrow E^{-} \tag{14}\\
\psi_{E^{+}}: \varphi_{E}\left(\psi_{T}(x, v), \phi\right)=\psi_{E}(e(x) v, \phi) \tag{15}
\end{gather*}
$$

by the action of $S L(2, \mathbb{C})$ on E^{+}defined by:

$$
\forall g \in S L(2, \mathbb{C})
$$

;

$$
\begin{equation*}
\left.D_{+}(g) \psi_{E^{+}}=\psi_{E^{+}}(x, \wedge(g) v), D g \phi\right) \tag{16}
\end{equation*}
$$

where \wedge : the group $\operatorname{SL}(2, \mathbb{C}) \rightarrow \operatorname{SO}^{+}(3,1)$ associated with quotient $S O^{+}(3,1) / S L(2, \mathbb{C}) / \mathbb{Z}_{2}$.
The $E^{+} \Gamma\left(M, E^{+}\right)$locals space is identified at the $S O^{+}(3,1) \mathrm{E}$ sections locales space invariant:

$$
\begin{array}{r}
\Gamma_{i}(P M, E)=\{\phi \in \Gamma(P M, E) \\
\left.\forall \wedge \in S 0^{+}(3,1), \forall v \in P M, \phi(\wedge v(x))=\phi(v(x))\right\} \tag{18}
\end{array}
$$

The following property is obtains by $\Gamma(T M, E)$ restriction to be invariant sections :

$$
\begin{gather*}
\forall \phi, \varphi \in \Gamma_{i}(P M, E), \forall g \in S L(2, \mathbb{C}), \forall v \in P M \\
\langle D(g) \phi \mid D(g) \varphi\rangle_{\Gamma(P M, E)}(\Lambda(g) v(x))=\langle\phi \mid \varphi\rangle_{\Gamma(P M, E)}(v(x)) \tag{19}
\end{gather*}
$$

In other words the Lorentz transformations allows the quantum properties to be invariant underthe inner product

$$
\begin{equation*}
\left\langle\phi_{v} \mid \varphi_{w}\right\rangle_{\Gamma\left(P M, E^{+}\right)}(x)=\langle\phi \mid \varphi\rangle_{\Gamma(P M, E)}(v(x)) \boldsymbol{\delta}(u(x)-w(x)) \tag{20}
\end{equation*}
$$

Let $\phi_{v}(x)=\phi(v(x))=\phi_{E}\left(\operatorname{Pr} \phi_{E}^{-}+\left(\phi_{v}\right)\right) \delta$ be the distribution of dirac, $\Gamma\left(P M, E^{+}\right)$be a Hilbert module $C(M)$. Let's rewrite the Dirac Einstein equation as the Van der waerden equation

$$
\begin{gather*}
\phi=\left(\varphi_{A}, \chi_{A^{\prime}}\right) \tag{21}\\
\gamma_{I}=\left(\begin{array}{cc}
0 & \sigma_{A} \\
\overline{\sigma_{A}} & 0
\end{array}\right) \tag{22}\\
\imath \bar{\sigma}_{A} D_{u} \varphi_{A}=m \chi^{A^{\prime}} \tag{23}\\
\imath \sigma_{A} D_{v} \chi^{A^{\prime}}=m \varphi_{A} \tag{24}
\end{gather*}
$$

With $\chi^{A^{\prime}}$ pulled in the first equation and inserted in the second we got

$$
\begin{equation*}
e_{u}^{A} \overline{\sigma_{A}} e_{u}^{B} \sigma_{A} D_{u} D_{v} \phi_{E}+m^{2} \phi_{E}=0 \tag{25}
\end{equation*}
$$

$$
\phi_{E} \in \int_{R}^{\oplus} L^{2}\left(M^{+} \Xi, E\right) d \tau \text { with }
$$

$$
\left\{\sigma_{A}\right\}_{A}=\left\{i d, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}
$$

$$
\left\{\overline{\sigma_{A}}\right\}_{A}=\left\{i d,-\sigma_{x},-\sigma_{y},-\sigma_{z}\right\}\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)
$$

The Pauli matrices. It allowed

$$
\begin{gather*}
e_{u}^{A} \bar{\sigma}_{A} e_{u}^{B} \sigma_{A}\left(D_{\{u} D_{v\}}+D_{[u} D_{v]}\right) \phi_{E}+m^{2} \phi_{E}=0 \tag{26}\\
2 D_{[u} D_{v]}=\left[D_{u} D_{v}\right] ; 2 D_{\{u} D_{v\}}=\left\{D_{u} D_{v}\right\} \text { et } g_{u v}=\sigma_{\{A} \sigma_{A\}}^{-} \\
g_{u v} D_{v} D_{u} \phi_{E}-\imath L_{A B}\left(R_{u v}-i e \delta F_{u v}\right) \phi_{E}+m^{2} \phi_{E}=0 \tag{27}
\end{gather*}
$$

$F_{u v}=2 D_{[u} A_{v]} ; \sigma_{\{u} \sigma_{v\}}=g_{u v} ; R_{u v} \psi_{E}=2 D_{\{u} D_{v\}} \psi_{E}$ and $L_{A B}=$ $e_{A}^{u} e_{B}^{v} L_{I J}=\frac{1}{2} \sigma_{[u} \sigma_{v]}$ which results in $L_{I J}=\frac{1}{2}\left[\sigma_{I} \overline{\sigma_{J}}-\sigma_{J} \bar{\sigma}_{I}\right]$ and $R_{u v}$ the Ricci tensor; we are setting $\phi_{E}=\phi e^{\imath S / \varepsilon}$ with $D_{u} S=k^{u}$ (k^{u} is the length wave, $k_{u} k^{u}=m^{2}$) in the WKB approximation that assumes that:

$$
\begin{array}{r}
g_{u v} D_{v} D_{u} \phi-\imath L_{A B} R_{u v} \phi \\
\left.+\frac{\boldsymbol{l}}{\varepsilon}\left(2 k^{u} D_{u} \phi+\phi D_{u} k^{u} \phi+i e \delta F_{u v}\right) \phi_{E}\right) \\
-\frac{1}{\varepsilon^{2}} k_{u} k^{u} \phi \\
+m^{2} \phi_{E}=0 \tag{31}
\end{array}
$$

$$
\begin{equation*}
\left.2 k^{u} D_{u} \phi+\phi D_{u} k^{u} \phi+i e \delta F_{u v}\right) \phi_{E}=0 \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
k_{u} k^{u} \phi-m^{2} \phi_{E}=0 \tag{33}
\end{equation*}
$$

$k^{u}=D_{u} \theta-e A_{u}$ and by deriving the last equation

$$
\begin{gather*}
D_{u}\left(k_{u} k^{u}-m^{2}\right)=2 k^{u} D_{u} k_{u}=2 k^{u} D_{u}\left(D_{u} \theta-e A_{u}\right) \tag{34}\\
=2\left(k^{u} D_{u} k_{v} \theta+e k^{u} F_{u v}\right)=0 \tag{35}
\end{gather*}
$$

Let $u^{u}(x)=\frac{k^{u}(x)}{m}$ defined by $\frac{d x^{u}}{d \tau}=u^{u}$

$$
\begin{equation*}
m \frac{D^{2} x^{u}}{D \tau^{2}}+e \frac{d x^{v}}{d \tau} F_{u v}=0 \tag{36}
\end{equation*}
$$

If we multiply the first equation of the previous system by $k_{u} \bar{\sigma}_{A}^{u} \psi$ and by adding with the conjugate

$$
\begin{equation*}
2 k_{u} D_{u} \phi+\phi D_{u} k_{u}=0 \tag{37}
\end{equation*}
$$

with the geodesic C

$$
\begin{equation*}
\ddot{x}^{u}+\Gamma_{\rho v}^{u} x^{\rho} x^{v}=0 \tag{38}
\end{equation*}
$$

with $\frac{k^{u}}{m}=\dot{x}^{u}$

$$
\begin{equation*}
\psi \in \Gamma_{i}(P M, E) \simeq \Gamma\left(M, E_{+}\right) \tag{39}
\end{equation*}
$$

which respects the Schrödinger equation:

$$
\begin{equation*}
\frac{\imath d \phi}{d \tau}=-\frac{1}{2} \omega_{u}^{A B}(x(\tau)) \dot{x}^{u}(\tau) L_{A B} \phi(\tau) \tag{40}
\end{equation*}
$$

with natural time τ along the geodesic where the qubit reaches. In the WKB properties ψ consists of a very small wave packet localized essentially around the spatio-temporal curvature. If $\phi(\tau) \in \pi_{E}^{-1}(u(\tau))$ where π_{E} is the total space E and base PM fibration and $u(\tau)=\dot{x}^{u} \frac{\partial}{\partial x^{u}} \in T_{x(\tau)} M$, the Hilbert space for a instantaneous qubit $\pi_{E}^{-1}(u(\tau)) \subset \Gamma_{i}(P M, E)$ depends of quadri-velocity. Dirac's field theory induces the connection of the inner product

$$
\begin{array}{r}
\langle\phi, \varphi\rangle_{\tau(T M, E)}(u(x))=\left\langle\phi u(x) \mid \bar{\sigma}_{A} \varphi u(x)\right\rangle_{\mathbb{C}^{2}}(u(x)) \\
=\left\langle\phi^{*} u(x) \mid \varphi u(x)\right\rangle_{\mathbb{C}^{2}} \tag{42}
\end{array}
$$

where $\phi^{*}=\bar{\sigma}_{A} u_{A}(x) \phi(u(x))$ is the conjugate state. The Einstein Dirac gives an interaction of the Dirac field with gravity. These terms in the localized qubit of Schrodinger's equation with the operator $-\frac{1}{2} \omega_{u}^{A B}(x(\tau)) \dot{x}^{u}(\tau) L_{A B} \phi(\tau)$ are found. There is an equivalence with these two and the equations of a fermion. Where Lorentz connection is considerated as "the field of gravity" felt by qubit or fermion. The local inertial frame of reference in the neighborhood of x is defined by $\left\{e^{A}\right\}_{A}$. For best interpreting of the Hilbert space-time dependence on the speed quadrivector instantaneous spin, it is important to remind some quantum mechanics axioms. Hilbert space constitutes a quantum system states space but its dual H^{*}, represents the continuous linear space functions of H , is the elements amplitudes probability space : Let $l \in H^{*}$ be H representation in \mathbb{C} with $(l(\psi))^{2}$, the probability of associated events to 1 performing the measurement for ψ state quantum system. According to Riesz's theorem $\forall l \in H^{*}, \exists!n \in H$ (phase factor and renormalization with $\forall \psi \in H$), we have:

$$
\begin{equation*}
l(\phi)=\frac{\left\langle n_{l} \mid \phi\right\rangle_{H}}{\left\|n_{l}\right\|_{H}\|\phi\|_{H}} \tag{43}
\end{equation*}
$$

Let's take $\left\langle n_{l}\right| \in H^{*}$ an observable Θ co-vector associated with measure. Where $\left\langle n_{l}\right|$ is Θ result event measure λ_{l} with $\left(\lambda_{l}\right.$ the value associated with $\left\langle n_{l}\right|$. With ket $|\phi\rangle$ measuring the quantum system event. Geting back ours objectives is to define two linear functions $|\phi\rangle$ and $\left\langle\phi^{*}\right|=\left\langle\bar{\sigma}_{A}^{+} u_{A} \phi\right|$ difference(bra is the domestic product part of $\mathbb{C}^{2}:\langle\phi \mid \cdot\rangle_{\mathbb{C}^{2}}$, never $\langle\phi \mid \cdot\rangle_{\Gamma(P M, E)}$. If $\phi \in \Gamma_{i}(P M, E)$ is a normalized state we have:

$$
\begin{gather*}
\langle\phi \mid \cdot\rangle_{\Gamma(P M, E)}=1 \tag{44}\\
\Leftarrow \Rightarrow\langle\phi| \bar{\sigma}_{A}|\phi\rangle_{\mathbb{C}^{2}} u_{A}=1 \tag{45}\\
\Leftarrow \Rightarrow\left\|\phi^{2}\right\| u_{0}-\langle\phi| \sigma_{A}|\phi\rangle_{\mathbb{C}^{2}} u_{A}=1 \tag{46}\\
\Leftarrow \Rightarrow \gamma\left(S_{0}-\vec{S} \vec{v}\right)=S_{0 *} \tag{47}
\end{gather*}
$$

with quadri-magnetic moment operator is:

$$
\begin{equation*}
\left\{\dot{S}_{A}\right\}_{A}=\left\{i d, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\} \tag{48}
\end{equation*}
$$

$S_{A}=\langle\phi| S_{A}|\phi\rangle_{\mathbb{C}^{2}} ; \gamma=u_{0}, \gamma \vec{v}=\vec{u}$ and

$$
\begin{equation*}
S_{0 *}=\langle\phi| \frac{i d}{2}| \rangle_{\Gamma(T M, E)}=\left\langle\phi^{*}\right| \frac{i d}{2}| \rangle_{\mathbb{C}^{2}}=\frac{i d}{2} \tag{49}
\end{equation*}
$$

Volume 10 Issue 12, December 2021

the previous equation shows the relationship between quadrimoment magnetic S measured in inert space K and quadrimoment S_{*} measured in the space at quadri-velocity $\vec{u}=$ $(\gamma, \gamma \vec{v})$ rest K^{*} based on K. For solving this problem, K and the black hole must co-moving, in others part K^{*} and qubit must co- moving. By the normalization analysis using $\langle\cdot \| \cdot\rangle_{\Gamma(T M, E)}$: $\langle\psi|$ must be linear function linked with amplitude of probability (not normalized) for getting ϕ state, which an observer who co-moving with black hole measures $\left(\langle\phi|\left\rangle_{\mathbb{C}^{2}}=2 S_{0}\right) . \quad\left\langle\phi^{*}\right|\right.$ must be the linear function linked with the normalized amplitude of probability for getting the spin in the ψ state, which an observer who co-moving with qubit measures $\left(\left\langle\phi^{*} \|\right\rangle_{\mathbb{C}^{2}}=\right.$ $\left.2 S_{0 *}=1 ;\|\phi\|_{\Gamma(T M, E)=1}\right)$ The Schrödinger equation:

$$
\begin{equation*}
\imath \frac{d \phi}{d \tau}=H \phi \tag{50}
\end{equation*}
$$

$H=H_{0}+H_{\sharp}$ the Halmitonian with $H^{+} \neq H$

$$
\left.\begin{array}{c}
H_{0}=-\omega_{u}^{a 0} \dot{x}^{u} L_{a 0} \\
L_{a 0}=\frac{1}{2}\left[\sigma_{A} \bar{\sigma}_{0}-\sigma_{0} \bar{\sigma}_{A}\right] \\
H_{0}=\frac{\imath}{2}\left(\begin{array}{c}
W^{03} \\
W^{01}+\imath W^{02}
\end{array} W^{01}-\imath W^{02}\right. \\
W^{03}
\end{array}\right), ~\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), \sigma_{x}=\left(\begin{array}{cc}
0 & \imath \\
-\imath & 0
\end{array}\right), \sigma_{x}=\left(\begin{array}{cc}
1 & 0 \tag{55}\\
0 & -1
\end{array}\right), ~ \begin{gathered}
H_{\sharp}=-\frac{1}{2} \omega_{u}^{a b} \dot{x}^{u} L_{a b} \\
H_{\sharp}=-\frac{1}{2}\left(\begin{array}{cc}
W^{12} & W^{23}-\imath W^{31} \\
W^{23}+\imath W^{31} & -W^{12}
\end{array}\right)
\end{gathered}
$$

$\left(W^{A B} \equiv W_{u}^{A B} \dot{x}^{u}\right)$. We get $H_{0}^{+}=-H_{0}$ (dissipation operator), $H_{\sharp}^{+}=-H_{\sharp}$ (Hamiltonian of the rotating qubit):

$$
H=\frac{1}{2}\left(\begin{array}{cc}
z^{3} & z^{1}-l z^{2} \tag{56}\\
z^{1}+l z^{2} & -z^{3}
\end{array}\right)
$$

Where $z^{i}=\imath W^{0 i}-\frac{1}{2} \varepsilon_{j k}^{i} W^{j k}\left(z_{u}^{i}=\imath W_{u}^{0 i}-\frac{1}{2} \varepsilon_{j k}^{i} W_{u}^{j k}\right)$ is the dual complex of the lorentz connection from the qubit point of view, the spin subjected to a complex magnetic field is similar to the interaction with the gravitational field. We take $z=\left(z^{1}, z^{2}, z^{3}\right) \in \mathbb{C}^{3}$, for the dynamics integration that the Schrödinger equation induces.

$$
\begin{equation*}
\phi(\tau) \simeq \Sigma_{k \in\{+,-\}}\left\langle\varphi_{k}^{*}(z(0)) \mid \phi(0)\right\rangle_{C^{2}} e^{-\imath \int_{0}^{\tau} \lambda_{k} d \tau-\int_{\Gamma}^{A_{k}}} \varphi_{k}(z(\tau)) \tag{57}
\end{equation*}
$$

With $\varphi_{k} ; \varphi_{k}^{*}, \lambda_{k}$ respectively right-left co-vectors and covalues of H :

$$
\begin{gather*}
H(z) \varphi_{k}(z)=\lambda_{k} \varphi_{k}(z) \tag{58}\\
H(z)^{+} \varphi_{k}^{*}(z)=\overline{\lambda_{k}} \varphi_{k}^{*}(z) \tag{59}
\end{gather*}
$$

(the bar for the conjugate complex); $\left\langle\varphi_{k}^{*} \mid \varphi_{q}\right\rangle_{\mathbb{C}^{2}}=\delta_{k q}, A_{k}$ the non-unit geometric phase generators:

$$
\begin{equation*}
\left\langle\varphi_{k}^{*}\right| d_{3}\left|\varphi_{q}\right\rangle_{C^{2}} \tag{60}
\end{equation*}
$$

Γ is the curve caractherizes by $\tau \rightarrow z(\tau)$ in C^{3}

$$
\begin{align*}
& z^{i}=\imath W^{0 i}-\frac{1}{2} \varepsilon_{j k}^{i} W^{j k} \tag{61}\\
& z_{u}^{i}=\imath W_{u}^{0 i}-\frac{1}{2} \varepsilon_{j k}^{i} W_{u}^{j k} \tag{62}
\end{align*}
$$

According to ${ }^{56}$.

$$
\begin{gather*}
P(\tau)=\frac{1}{2}\left\|\begin{array}{cc}
z^{3}-\lambda & z^{1}-l z^{2} \\
z^{1}+l z^{2} & -z^{3}-\lambda
\end{array}\right\| \tag{63}\\
-\left(z^{3}-\lambda\right)\left(z^{3}+\lambda\right)-\left(z^{1}+l z^{2}\right)\left(z^{1}-l z^{2}\right)=0 \tag{64}\\
\lambda_{ \pm}= \pm \sqrt{\left(z^{1}\right)^{2}+\left(z^{2}\right)^{2}+\left(z^{3}\right)^{2}}= \pm \xi \tag{65}
\end{gather*}
$$

We get:

$$
\begin{align*}
& \left|\phi_{+}(z)\right\rangle=\frac{1}{\sqrt{2 \xi\left(\xi+z^{2}\right)}}\left\|\begin{array}{c}
\xi+z^{3} \\
z^{1}+i z^{2}
\end{array}\right\| \tag{66}\\
& \left|\phi_{+}^{*}(z)\right\rangle=\frac{1}{\sqrt{2 \bar{\xi}\left(\bar{\xi}+\bar{z}^{2}\right)}}\left\|\frac{\bar{\xi}+\overline{z^{3}}}{\overline{z^{1}}+i z^{2}}\right\| \tag{67}\\
& \left|\phi_{-}(z)\right\rangle=\frac{1}{\sqrt{2 \xi\left(\xi+z^{2}\right)}}\left\|\begin{array}{c}
-z^{1}+l z^{2} \\
\xi+z^{3}
\end{array}\right\| \tag{68}
\end{align*}
$$

$$
\left|\phi_{-}^{*}(z)\right\rangle=\frac{1}{\sqrt{2 \bar{\xi}\left(\bar{\xi}+z^{2}\right)}}\left\|\begin{array}{c}
-\bar{z}^{1}+l z^{2} \tag{69}\\
\bar{\xi}+z^{3}
\end{array}\right\|
$$

$$
\begin{equation*}
A_{ \pm}(z)= \pm \frac{1}{2} \frac{z^{1} d z^{2}-z^{2} d z^{1}}{\bar{\xi}\left(\bar{\xi}+z^{2}\right)} \tag{70}
\end{equation*}
$$

In the non-adiabatic coupling negligible condition, the adiabatic approximation is valid

$$
\begin{gather*}
M_{ \pm}= \pm\left|\frac{\left\langle\varphi_{-}^{*}(z(\tau))\right| \dot{H}(z(\tau))\left|\varphi_{+}(z(\tau))\right\rangle}{\lambda_{+}(z(\tau))-\lambda_{-}(z(\tau))}\right| \tag{71}\\
M_{ \pm} \ll 1 \tag{72}
\end{gather*}
$$

We take A the main bundle P connection space $\operatorname{SL}(2, \mathbb{C})$. With the eigenvectors like maps $\dot{\varphi}_{ \pm}: A \times T M \rightarrow \mathbb{C}^{2}$ such as $\dot{\varphi}_{ \pm}(w, u)=\phi_{ \pm}\left(\xi i_{u} w\right)$ with i the M inner product with $\xi: \operatorname{sl}(2, \mathbb{C}) \rightarrow \mathbb{C}^{3}$ which is defined by $\xi\left(W_{A B} L_{A B}\right)=\left(\imath W_{u}^{0 i}-\right.$ $\left.\frac{1}{2} \varepsilon_{j k}^{i} W_{u}^{j k}\right)_{i=1,2,3}\left(\left\{L_{A B}\right\}_{A, B}\right)$ constitute a $s l(2, \mathbb{C})$ set lie algebra
$S L(2, \mathbb{C})$ generators. Where eigenvectors is defined as normalized with a phase factor; The C fiber lines is defined by $\phi_{ \pm} \rightarrow A \times T M$ with the trivialization $\dot{\varphi}_{ \pm}: A \times T M \times \mathbb{C} \rightarrow \simeq \varphi_{ \pm}$, $\dot{\varphi}_{ \pm}(w, u, \lambda)=\lambda \dot{\varphi}_{ \pm}(w, u)$. We obtain ϕ using the local section adiabatic transport $\varphi_{-} \oplus \varphi_{+}$on $A \times T \mathbb{C}$. As remark the right eigenvectors fixes the normalization factors, with the left eigenvectors don't define the bundles 789 . Let's summarized it by the following commutative diagram: where $i_{w}(u)=(w, u) \in A \times T M$, with $\mathrm{w} \in A$ a connection of the main bundle

FIG. 1. Geometric structure ${ }^{10}$
P and $A_{ \pm}$are the main fibers \mathbb{C}^{*} associated with $\varphi_{ \pm}$. Where three gauge types changes linked with each bundle composite stage:In each stage: $\phi \in \operatorname{Diff}(M)$ (main space-time diffeomorphism) $\tilde{W}=\varphi_{*} \omega$ and $\tilde{u}=\varphi_{*} u$

First stage: $\Lambda \in \mathbb{C} \mathbb{C}^{\text {infty }}\left(M, S 0^{+}(3,1)\right.$

$$
\begin{equation*}
\tilde{W}_{u B}^{A}=\Lambda_{C}^{A} W_{u D}^{C} \Lambda_{B}^{D}+\Lambda_{C}^{D} \partial_{u} \Lambda_{B}^{D} \tag{73}
\end{equation*}
$$

with $\tilde{u}=\Lambda_{A}^{B} u_{B}$ Second stage: $\mu_{I} \in \mathbb{C}^{\infty}\left(A \times T M^{*}, \mathbb{C}\right)$ (standardization and change local phase)

$$
\begin{equation*}
\tilde{A}_{ \pm}=A_{ \pm}+d \ln \mu_{I} \tag{74}
\end{equation*}
$$

Let's summarize it:

$$
\begin{align*}
& \int_{R}^{\oplus} L^{2}\left(M^{+} \Xi_{\tau}, \bar{E} \oplus E\right) d \tau \longrightarrow^{W K B} W K B \tau(P C, \bar{E} \oplus E)(75) \\
& \longrightarrow \tag{76}\\
&\left.\longrightarrow^{\text {(}}, 0\right) \tag{77}\\
& \text { adiab } \\
& \Gamma(P C, E) \simeq \Gamma\left(C, E^{+}\right)(76) \\
&\left(A \times P C, \vartheta_{+} \oplus \vartheta_{-}\right)(77)
\end{align*}
$$

Note that the holonomy of $W \in A$ along the geodesic C (between 0 and τ) is

$$
\begin{gather*}
H o l(W, C)=\mathbb{P} e^{-l \int_{C} z_{u} \sigma_{i} d x^{u}} \tag{78}\\
=T e^{-l \int_{0}^{\tau} H(z \tau) d \tau} \tag{79}\\
=\Sigma_{k \in\{+,-\}} e^{-l\left(\int_{0}^{\tau} \lambda_{k}-\int_{\tau} A_{k}\right) d \tau}\left|\vartheta_{k}(z(\tau))\right\rangle\left\langle\vartheta_{k}(z(0))\right| \tag{80}
\end{gather*}
$$

With $\mathbb{P} e, \mathbb{T} e$ showing exponentials ordered (Dyson series) $\varphi_{\mathbb{C}, \pm}=e^{-l\left(\int_{0}^{\tau} \lambda_{ \pm}-\int_{\tau} A_{ \pm}\right) d \tau}$ considered as the cylindrical functions of the Lorentz connection space, $\varphi_{\mathbb{C}, \pm} \in \operatorname{cyl}(A), \psi$ as these two cylindrical functions linear combination ${ }^{11}$. Note that the $H=\frac{1}{2} z^{i} \sigma_{i}$ form, with Pauli matrices $\{\sigma\}_{i=1,2,3}$ and the Lorentz connection self-dual complex $\left\{z^{i}\right\}_{i=1,2,3}$ is taken by localized qubit Hamiltonian. There exist an effective formalism $H_{M M}^{e f f}=\left(Z^{i}-z^{i}\right) \sigma_{i}$ in D-brane matrix models ${ }^{12} 13$. The non-commutative geometry emerging from membranes

12 can be associate whit the equigeneration $H_{M M}^{e f f}|\Lambda\rangle=0$ with $|\Lambda\rangle \in \kappa \otimes \mathbb{C}^{2}{ }^{1314} . H_{M M}^{\text {eff }}|\Lambda\rangle=0 \Longrightarrow Z^{i} \otimes \sigma_{i}|\Lambda\rangle=z^{i} \otimes \sigma_{i}|\Lambda\rangle$ where the localized qubit is considered as matrix model noncommutative eigenvalue with super-gravity ${ }^{15}$. In other parts, noncommutative equations like $Z^{i} \otimes \sigma_{i}|\Lambda\rangle=z^{i} \otimes \sigma_{i}|\Lambda\rangle$ also appear in the entangled quantum systems adiabatic theory and their geometric phase operators ${ }^{16}{ }^{17}$. the connection between D-brane matrix models and localized qubit theory on qubit reaching the black hole is discussing in ${ }^{18}{ }^{19}$. It is very important that:

$$
\begin{gather*}
\left\langle\phi^{*}(\tau) \mid \phi(\tau)\right\rangle_{\mathbb{C}^{2}}=\left\langle\phi^{*}(0) \mid \psi(0)\right\rangle_{\mathbb{C}^{2}} \tag{81}\\
\langle\operatorname{Hol}(W, \mathbb{C}) \phi(0)| \bar{\sigma}|\operatorname{Hol}(W, \mathbb{C}) \phi(0)\rangle_{\mathbb{C}} u_{A}(\tau)=\langle\phi(0)| \bar{\sigma}|\phi(0)\rangle_{\mathbb{C}} u_{A}(0) \tag{82}
\end{gather*}
$$

It is'nt necessary unitary with $\langle\cdot \| \cdot\rangle_{\mathbb{C}^{2}}$

B. Physical phenomena of non unitary evolution

The articles 20212223 studied the non-self-deputy twolevel quantum system adiabatic transport. With $\vec{W}^{0}=$ $\left(W_{01}, W_{02}, W_{03}\right)$ and $\vec{W}^{\sharp}=\left(W_{23}, W_{31}, W_{12}\right)$

$$
\begin{equation*}
\xi^{2}=\left(\vec{W}^{\sharp}-\imath \vec{W}^{0}\right)^{2}=\left\|\vec{W}^{\sharp}\right\|^{2}-\left\|\vec{W}^{0}\right\|^{2}-2 \imath \vec{W}^{\sharp} \vec{W}^{0} \tag{83}
\end{equation*}
$$

with $\lambda_{+}(z)=\lambda_{-}(z) \Rightarrow \xi=0$,

$$
M=\left\{\begin{array}{l}
\left\|\vec{W}^{\sharp}\right\|=\left\|\vec{W}^{0}\right\| \tag{84}\\
\vec{W}^{\sharp} \cdot \vec{W}^{0}=0
\end{array}\right.
$$

is the complex magnetic monopole where $\operatorname{dim}_{\mathbb{R}} M=4$
In the condition $\vec{W}^{\sharp} . \vec{W}^{0}=0$ satisfied outside of $M\left(\left\|\vec{W}^{\sharp}\right\|>\right.$ $\left.\left\|\vec{W}^{0}\right\|\right) \quad \xi \in R, \quad e^{\imath \int \lambda_{I} d \tau} \in U(1)$ are just pure phases in $M\left(\left\|\vec{W}^{\sharp}\right\|<\left\|\vec{W}^{0}\right\|\right) \xi \in 1 R$ and $e^{\imath \int \lambda_{I} d \tau} \in R$ are non-unit dynamic phases. For the last situation, the weights of the superposition is modified by the evolution of φ_{I} (relatively at $\langle. \mid .\rangle_{\mathbb{C}^{2}}$. With an observer and black hole co-moving. This effect is called a decoherence because:

$$
\begin{equation*}
\frac{\left|\left\langle\varphi_{+}^{*} \phi \mid \phi\right\rangle\left\langle\varphi_{-}^{*}\right\rangle\right|}{\|\phi\|^{2}}=\frac{\left|c_{+} c_{-}\right| e^{\frac{1}{2} \int|\xi| d \tau} e^{-\frac{1}{2} \int|\xi| d \tau}}{c_{+}^{2} e^{\int|\xi| d \tau}+c_{-} e^{-\int|\xi| d \tau}} \simeq\left|\frac{c_{-}}{c_{+}}\right| e^{-\int|\xi| d \tau} \tag{85}
\end{equation*}
$$

tends towards 0 for τ big (with $c_{k}=\left\langle\varphi_{+}^{*} \phi \mid \phi\right\rangle$, the geometric phases is neglected and we assume that $\operatorname{Im} \xi=|\xi|>0)$. The effects of non-unit geometric phases $e^{-\int_{\tau} A_{ \pm}}$have not been considered which induces a geometric decoherence if $A_{ \pm} \in R$ (let us use the geometric decoherence in case the geometric phase never depends on proper time).

We take $M_{W}=I_{W}^{-1} \xi^{-1}(M)$ a pre-image of M on PM. In this case the monopole complex magnetic for a fixed geometric space time M_{W} can'nt be a time M sub-space but for the tangent bundle PM. These four velocity afects the complex magnetic monople around the hole black in a qubit point of view. In sum the set complex magnetic monopoles can be $M_{A}=\left\{\left(W, M_{W}\right), \omega \in A\right\} \subset A \times T M$, to conclude a prime integrals $\left\{I_{\alpha}\right\}_{\alpha}$ in $i_{u}(W)\left(u \in T \times C, C \in g_{\left\{I_{\alpha}\right\}_{\alpha}} \alpha\right.$ can be used to define a class $g_{\left\{I_{\alpha}\right\}_{\alpha}}$ of geodesic on $\left\{I_{\alpha}\right\}_{\alpha}$ and x. It appends $M_{W,\left\{I_{\alpha}\right\} \alpha}=\pi_{T}\left(M_{W} \cap \pi_{T}^{-1}\left({ }_{\left\{I_{\alpha}\right\} \alpha}\right)\right.$ a sub-space of M that
could be an image for the following qubits co-moving with the
 time. To be more clear the non-physical come from the nonunitarity relative to $\langle\cdot \| \cdot\rangle_{C^{2}}$. We first take a simpler model get up of a system of levels wrote $|d\rangle,|0\rangle,|1\rangle$; with a $|0\rangle$ spontaneous emission with a ratio γ_{-1} in $|d\rangle$ state. In second time we took system restricted to $(|0\rangle,|1\rangle)$ as qubit ${ }^{18}$.

$$
\begin{equation*}
\frac{d \rho}{d t}=-\imath[H, \rho]-\frac{\gamma_{-}}{2}\left\{\sigma_{d 0}^{+} \sigma_{d 0}^{-}, \rho\right\}+\gamma_{-} \sigma_{d 0}^{+} \sigma_{d 0}^{-} \tag{86}
\end{equation*}
$$

With ρ the system matrix density, $\{.,$.$\} shows an anti-switch,$ $\sigma_{d 0}^{-}=|d\rangle\langle 0|$ and $\sigma_{d 0}^{-}=|d\rangle\langle 0|$, we rewritten it as:

$$
\begin{equation*}
\frac{d \rho}{d t}=-\imath\left(H^{e f f} \rho-\rho H^{e f f}\right)+\gamma_{-} \rho_{00}|d\rangle\langle d| \tag{87}
\end{equation*}
$$

here $H^{e f f}=H-\frac{\gamma_{-}}{2} l|0\rangle\langle 0|$. This Hamiltonian anti-selfadjoint part $-\frac{\gamma-}{2} \imath|0\rangle\langle 0|$ models the loss population of $|0\rangle$ to "black state" i.e this black state gains population gain which is modeled by $\gamma_{-} \rho_{00}|d\rangle\langle d|$. Let's forget the black state in this modeling, the Schrodinger equation is obtained by the qubit governed by a non-self-adjoint Hamiltonian $H_{|0\rangle,|1\rangle}^{\text {eff }}=H_{|0\rangle,|1\rangle}-\frac{\gamma_{-}}{2} \imath|0\rangle\langle 0|$, this non-self-adjoint part of $H^{e f f},-\frac{\gamma_{-}}{2} \imath|0\rangle\langle 0|$, could be renamed by the loss operator since it has been modeling the wave function dissipation induced by the $|0\rangle$ loss population at the black state ${ }^{24} 25$. i.e If $\langle 0| H|\psi\rangle=\langle d| H|\psi\rangle=0$, then :

$$
\begin{equation*}
\frac{d \rho}{d t}=-\imath\left(H_{i 0}^{e f f} \rho_{0 j}+H_{i 1}^{e f f} \rho_{1 j}-H_{j 0}^{\bar{e} f f} \rho_{i 0}-H_{j 1}^{\bar{e} f f} \rho_{i 1}\right) \tag{88}
\end{equation*}
$$

$\forall i, j \in\{0,1\}$. We take ψ as solution of $\imath \dot{p s i}=H_{|0\rangle,|1\rangle}^{e f f}$, where $P=|\psi\rangle\langle\psi|$ obeys $\dot{P}=-\imath\left(H_{|0\rangle,|1\rangle}^{\text {eff }} P-P H_{|0\rangle,|1\rangle}^{e f f}\right)$, the population and the consistency $P_{i j}=\langle i| P|j\rangle$ obey the same above equation. So $\rho_{i j}=P_{i j}$ ($P^{2} \neq P$ for ψ is'nt normalized due to the $H_{|0\rangle,|1\rangle}^{\text {eff }}$ non-Hermitian character. A single qubit is had, the latter is forgotten by a semi-classical WKB approximations using in this thesis. In this case two qubit states is had, $\left|1_{0}\right\rangle$ and $\left|1_{1}\right\rangle\left(C^{2}\right.$ canonical basic formation is used in the different fibrations construction) and a black state $|\oslash\rangle$ of the void. In many articles of physical systems the modeling for a spontaneous evolution decreasing is described ${ }^{20}$, also for a finite vacuum state 2122 .

C. Teleportation fidelity

For starting Bob and Alice are at initially point x_{B} of M supposedly so far of black hole for setting M flat in x_{B} neighborhood. Let black hole moving with $|0\rangle=\binom{0}{1}|1\rangle=\binom{1}{0}$ but the geodesic is following by Alice reaching the horizon at x_{A} point. Alice teleports informations. We take $\tau_{B}=\tau_{A}=0$ for Alice leaving Bob; a tangled qubit pair in a bell state has had by them

$$
\begin{equation*}
\left.\left.\left.\left|\psi_{A B}^{0}\right\rangle\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{A} 0_{B}\right\rangle\right\rangle+\left|1_{A} 1_{B}\right\rangle\right\rangle\right) \in \Pi^{-1}\left(u_{A}^{0}\right) \otimes \Pi^{-1}\left(u_{A}^{0}\right) \tag{89}
\end{equation*}
$$

$\left(u_{A}^{0}\right) \in P_{x_{B}} M$ and $u_{B}^{0}=(1,0,0,0) \in P_{x_{B}} M$ the Bob and Alice quadri-verctor velocity. Then Bob and Alice belong are in differents total own qubit states spaces definitions. Firstly Bob's linear functions are in particular state $\langle 0|$ and $\langle 1|$, but Alice's linear functions are $\left\langle 0^{*}\right|$ and $\left\langle 1^{*}\right|$ because the black hole is not co-moved by her. The Alice's qubit state is $\left\langle a^{*} \mid b_{A}\right\rangle=\langle a| \bar{\sigma}_{A}\left|b_{A}\right\rangle u_{A A}^{0}=\delta_{a b}$
$(\forall a, b \in\{0,1\})$. It happens $\left|0_{A}\right\rangle=\sigma_{A} u_{A A}^{0}|0\rangle$ with $\left|1_{A}\right\rangle=$ $\sigma_{A} u_{A A}^{0}|0\rangle\left(\sigma_{A} u_{A A}^{0}=\left(\bar{\sigma}_{A} u_{A A}^{0}\right)^{-1}\right.$

$$
\begin{equation*}
\left.\rangle\rangle=\frac{1}{\sqrt{2}}\langle a| \sigma_{A}\left|b_{A}\right\rangle u_{A A}^{0} \Sigma^{a b}|a b\rangle\right\rangle \tag{90}
\end{equation*}
$$

for $z_{B}=0,\left|\varphi_{+}\left(z_{B}\right)\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\left|\varphi_{-}\left(z_{B}\right)\right\rangle=\frac{1}{\sqrt{2}}\binom{-1}{1}$

$$
\begin{equation*}
\left.\left|\psi_{A B}^{0}\right\rangle\right\rangle=\frac{1}{2} \Sigma^{a b} \Sigma_{i= \pm}\langle a| \sigma_{A}\left|b_{A}\right\rangle u_{A A}^{0} i^{a}\left|\phi_{-}\left(z_{B}\right)\right\rangle \otimes|b\rangle \tag{91}
\end{equation*}
$$

We take τ_{A}^{-1} the proper time when Alice travels to x_{A}. According adiabatic approximation; For $\tau_{A}=\tau_{A}^{-1}$ and $\tau_{B}>0$

$$
\begin{equation*}
\left.\left|\psi_{A B}^{1}\right\rangle\right\rangle=\frac{1}{2} \Sigma^{a b i}\langle a| \sigma_{A}\left|b_{A}\right\rangle u_{A A}^{0} i^{a} e^{i \varphi_{i}}\left|\phi_{-}\left(z_{B}\right)\right\rangle \otimes|b\rangle \tag{92}
\end{equation*}
$$

$\left.\left.\varphi_{i}=-\int_{0}^{\tau_{A}^{1}} \lambda_{i} d \tau+\imath \int_{\Gamma} A_{i}\right) .\left|\psi_{A B}^{1}\right\rangle\right\rangle$ is defined by two pproper times, one for Bob and other for Alice, with asynchronous clocks. Because evolution is inertial in the flat M part, Bob's qubits is trivial.

$$
\begin{equation*}
\left|\phi_{i}\left(z_{B}\right)\right\rangle=\Sigma_{c}\left\langle c^{*}\right| \phi_{i}\left(z_{B}\right)\left|c_{A}\right\rangle=\langle c| \bar{\sigma}_{C} \phi_{i}\left(z_{B}\right) u_{A C}^{1}\left|c_{A}\right\rangle \tag{93}
\end{equation*}
$$

where the four velocity for Alice at τ_{A}^{1} is $u_{A}^{1} \in T_{x_{A}} M$ is:

$$
\begin{equation*}
\left.\left.\left|\psi_{A B}^{1}\right\rangle\right\rangle=\frac{1}{\sqrt{2}} \Sigma_{b c} \chi_{b c}\left|c_{A} b\right\rangle\right\rangle \tag{94}
\end{equation*}
$$

Alice's quantum information is encoded by

$$
\begin{equation*}
\chi_{b c}=\frac{1}{\sqrt{2}} \Sigma_{a i}\langle a| \sigma_{A}\left|b_{A}\right\rangle u_{A A}^{0} i^{a} e^{\imath \varphi_{i}}\langle c| \bar{\sigma}_{C}| \rangle u_{A C}^{1} \tag{95}
\end{equation*}
$$

in the qubit $\left|\phi_{I}\right\rangle=\alpha\left|0_{A}\right\rangle+\beta\left|1_{A}\right\rangle$ with $\left(|\alpha|^{2}+|\beta|^{2}=1\right)$, $\left.\left.\left.\left|\psi_{A A B}^{1}\right\rangle\right\rangle\right\rangle=\left|\psi_{I}\right\rangle \otimes\left|\psi_{A B}^{1}\right\rangle\right\rangle$ in usual teleportation protocol operations is performed by Alice:

$$
\begin{equation*}
\left.\left.\left.\left.\left|\phi_{A A B}^{2}\right\rangle\right\rangle\right\rangle=\left(h_{A} \otimes i d \otimes i d\right)\left(c n o t_{A} \otimes i d\right)\left|\phi_{A B I}^{1}\right\rangle\right\rangle\right\rangle \tag{96}
\end{equation*}
$$

cnot_{A} and h_{A} are the CNOT and Hadamard for Alice's part. It happens

$$
\begin{align*}
\left.\left.\left.\left|\psi_{A A B}^{2}\right\rangle\right\rangle\right\rangle=\left|0_{A} 0_{A}\right\rangle\right\rangle & \otimes\left(\frac{\alpha \chi_{00}+\beta \chi_{10}}{2}|0\rangle\right. \tag{97}\\
& \left.+\frac{\alpha \chi_{01}+\beta \chi_{11}}{2}|1\rangle\right) \tag{98}\\
\left.\left|1_{A} 0_{A}\right\rangle\right\rangle & \otimes\left(\frac{\alpha \chi_{00}-\beta \chi_{10}}{2}|0\rangle\right. \tag{99}\\
& \left.+\frac{\alpha \chi_{01}-\beta \chi_{11}}{2}|1\rangle\right) \tag{100}\\
\left.\left|0_{A} 1_{A}\right\rangle\right\rangle & \otimes\left(\frac{\alpha \chi_{10}+\beta \chi_{00}}{2}|0\rangle\right. \tag{101}\\
& \left.+\frac{\alpha \chi_{11}+\beta \chi_{10}}{2}|1\rangle\right) \tag{102}\\
\left.\left|1_{A} 1_{A}\right\rangle\right\rangle & \otimes\left(\frac{\alpha \chi_{10}-\beta \chi_{00}}{2}|0\rangle\right. \tag{103}\\
& \left.+\frac{\alpha \chi_{11}-\beta \chi_{10}}{2}|1\rangle\right) \tag{104}
\end{align*}
$$

Alice takes a qubit measurement as $0_{A} 1_{A}$. Alice communicates it to Bob that she used the identity operation to performe her qubit. The message is received by Bob at τ_{B}^{3}. The state is for $\tau_{A}>\tau_{A}^{-1}$ and $\tau_{B}=\tau_{B}^{3}$

$$
\begin{aligned}
\left.\left.\left.\left|\psi_{A A B}^{3}\right\rangle\right\rangle\right\rangle=\left(U_{A} \otimes U_{A}\left|0_{A} 1_{A}\right\rangle\right\rangle\right) & \otimes\left(\left(\alpha \chi_{10}+\beta \chi_{00}\right)|0\rangle(105)\right. \\
& \left.+\left(\alpha \chi_{11}+\beta \chi_{10}\right)|1\rangle\right)(106)
\end{aligned}
$$

With U_{A} the operator evolution for Alice's qubits after τ_{A}^{-1}.
$d x$ the tetrad fields, we obtain the components of the Lorentz connection from:

$$
\begin{gather*}
W_{u}^{A B}=e_{u}^{A} \partial_{\rho} e^{u B}+e_{u}^{A} \Gamma_{\rho \nu}^{u} e^{B v} \tag{111}\\
W^{A B}=\omega_{u}^{A B} e^{u} \tag{112}
\end{gather*}
$$

$W^{01}=-g_{00,1} d t=-A d t$ is only nonzero ; It happens that $z^{1}=$ $-l A \dot{t}$ and $z^{2}=z^{2}=0$

$$
H=\frac{-\imath A \dot{t}}{2}\left(\begin{array}{ll}
0 & 1 \tag{113}\\
1 & 0
\end{array}\right)
$$

with $\lambda_{ \pm}= \pm \frac{-l A \hat{t}}{2}$ the eigvalues and

$$
\begin{equation*}
\left|\varphi_{-}\right\rangle=\frac{1}{\sqrt{2}}\binom{-1}{1} ;\left|\varphi_{+}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{1} \tag{114}
\end{equation*}
$$

are the eigvectors, $A_{ \pm}=N_{ \pm}=0$ for flat space-time. If the qubit is moving in the x direction with $\sigma_{x} \phi_{ \pm}= \pm \phi_{ \pm}: \varphi_{+}$as positive helicity state of spin parallel to the linear moment. φ_{-} as negative helicity state of anti-parallel spin at linear moment

$$
\begin{equation*}
\ddot{x}+\Gamma_{u v}^{\beta} \dot{x}^{u} \dot{x}^{v}=0 \tag{115}
\end{equation*}
$$

$$
\begin{gather*}
\ddot{t}+2 \Gamma_{01}^{0} \dot{x} \dot{x}=0 \\
\ddot{x}+\Gamma_{00}^{1} \dot{t}^{2}+\Gamma_{11}^{1} \dot{x}^{2}=0 \tag{117}
\end{gather*}
$$

$$
\begin{equation*}
F(\alpha, \beta)=\frac{\left||\alpha|^{2} \chi_{10}+\bar{\alpha} \beta \chi_{00}+\alpha \bar{\beta} \chi_{11}+|\beta|^{2} \chi_{10}\right|}{\sqrt{\left|\alpha \chi_{10}+\beta \chi_{00}\right|^{2}+\left|\alpha \chi_{11}+\beta \chi_{10}\right|^{2}}} \tag{108}
\end{equation*}
$$

the black hole induces a decoherence which degrades the fidelity of teleportation,encoding in $\chi_{b c}$. With a Alice's constant four velocity in a flat space-time:

$$
\begin{equation*}
\chi_{b c}=\Sigma_{a}\langle c| \sigma_{A}|a\rangle\langle a| \bar{\sigma}_{C}|b\rangle u_{A A}^{0} u_{A C}^{1}=\delta_{c b} \tag{109}
\end{equation*}
$$

It happens $\mathrm{F}=1$.

III. RESULTS

A. Rindler's Black Hole

Now we are going to apply the models that we developped in the previous section. For comparing with the Fuentes-Schuller-Mann model ${ }^{26}$, the Rindler's space-time case is considered

$$
\begin{equation*}
d \tau^{2}=(A x)^{2} d t^{2}-d x^{2} \tag{110}
\end{equation*}
$$

$d \tau^{2}=\frac{-d s}{c^{2}}$ that corresponds with the acceleration parameter $\frac{1}{A}$ to a flat space-time seen in a uniformly accelerated noninertial frame $A=\frac{1}{2 R_{s}}, R_{s}=2 G M$. For $e^{0}=A x d t$ and $e^{1}=$
fermion to this thermal bath for the matrix density ρ_{+}(for $\left|1_{k, s}\right\rangle=\left|\phi_{+}\right\rangle$or $|\emptyset\rangle$ obeys the main equation ${ }^{23}$

$$
\begin{array}{r}
\frac{d \rho_{+}}{d \tau}=-\frac{\gamma}{2}(1-\bar{n})\left\{c_{+}^{+} c_{+}, \rho_{+}\right\}+\gamma(1-\bar{n}) c_{+} \rho_{+} c_{+}^{+} \\
-\frac{\gamma}{2}(1-\bar{n})\left\{c_{+} c_{+}^{+}, \rho_{+}\right\} \\
+\gamma \bar{n} c_{+}^{+} c_{+} \rho_{+} \tag{126}
\end{array}
$$

the operators fermionic annihilation and creation on the positive helicity mode $c_{+}^{ \pm}\left(c_{+}=|\emptyset\rangle\left\langle 1_{k, s}\right|, \gamma\right.$ as the bath spectal density, $\left.c_{+}^{+}=\left|1_{k, s}\right\rangle\langle\emptyset|\right) \bar{n}=\frac{1}{e^{\frac{\omega}{k_{B} T}}+1}$. With assumptions $\gamma(1-\bar{n}) \simeq \frac{\gamma_{0} \omega}{4 k_{B} T}$ is constant ${ }^{27}$. Due to \bar{n} very low (the Unruh temperature is very low), the $\left|1_{k, s}\right\rangle=|\emptyset\rangle$ dissipation dominates the main equation matching the above equation;projecting on $\left|1_{k,+}\right\rangle\left\langle 1_{k,+}\right|$ and for neglecting the quantum jumps and the \bar{n} terms ${ }^{1019}{ }^{28}$, we have:

$$
\begin{equation*}
H_{+}^{e f f}=-\frac{\imath \gamma_{0} \omega}{4 k_{B} T}\left|\phi_{+}\right\rangle\left\langle\phi_{+}\right| \tag{127}
\end{equation*}
$$

As solution

$$
\begin{equation*}
x(\tau)=\sqrt{5 A^{2} K^{2}(\beta+\tau)^{2}-1} \tag{128}
\end{equation*}
$$

where $\beta=-\frac{\sqrt{x(0)^{2}+1}}{A K \sqrt{5}}$

$$
\begin{align*}
& e^{\frac{A K}{2} \int_{0}^{\tau} \frac{d \tau}{x^{2}}} \\
& C=\int_{0}^{\tau} \frac{d \tau}{5 A^{2} K^{2}(\beta+\tau)^{2}-1}=\frac{1}{2} \ln \left[\left(\frac{\sqrt{5} A K(\beta+\tau)-1}{\sqrt{5} A K(\beta+\tau)+1}\right)\left(\frac{1+\sqrt{5} A K \beta}{(1-\sqrt{5} A K \beta)}\right]\right. \tag{130}
\end{align*}
$$

where $e^{\frac{A K}{4} C} \simeq C^{\frac{A K}{4}}=C^{\frac{1}{4}}$ with $\mathrm{AK}=1$

$$
\begin{equation*}
e^{\frac{A K}{2} \int_{0}^{\tau} \frac{d \tau}{x^{2}}}=\left[\left(\frac{\sqrt{5} A K(\beta+\tau)-1}{\sqrt{5} A K(\beta+\tau)+1}\right)\left(\frac{1+\sqrt{5} A K \beta}{(1-\sqrt{5} A K \beta)}\right]\right. \tag{131}
\end{equation*}
$$

With $\tau_{H}=-\frac{1}{\sqrt{5} A K}-\beta$ a qubit reaching the horizon time; It happens $\lim _{\tau \rightarrow \tau_{H}} e^{\frac{A K}{2} \int_{0}^{\tau} \frac{d \tau}{x^{2}}}=0$.

B. Symmetry Spherical Black Hole

The Schwarschild is defined as

$$
\begin{equation*}
d \tau=T^{2}(r) d t^{2}-R^{-2} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta\right) d \varphi^{2} \tag{132}
\end{equation*}
$$

where $T=R=\sqrt{1-\frac{R_{s}}{r}}$, with R_{s} the radius. The contravariant vectors are $e^{0}=T d t, e^{1}=R^{-1} d t, e^{2}=r d \theta, e^{3}=r \sin \theta d \varphi$. It happens for lorentz connection

$$
\begin{gather*}
W_{u}^{A B}=e_{u}^{A} \partial_{\rho} e^{B u}+e_{v}^{A} \Gamma_{\rho \nu}^{u} e^{B v} \tag{133}\\
W^{A B}=W_{u}^{A B} e^{u} \tag{134}
\end{gather*}
$$

FIG. 2. Rindler's average time-space teleportation fidelity

$$
\begin{equation*}
\Gamma_{01}^{0}=\frac{1}{2} \frac{1}{T^{2} d t^{2}} 2 T^{\prime} T d t d r \tag{135}
\end{equation*}
$$

$W^{01}=T^{\prime} R d t W^{12}=R d \theta, W^{13}=R \sin \theta d \varphi$ and $W^{23}=$ $\cos \theta d \varphi$ are the non-zero components. Because of the spherical symmetry we must restrain to $\theta=\pi / 2$ plan

$$
\begin{gathered}
\ddot{t}+2 \Gamma_{01}^{0} \dot{t} \dot{r}=0 \\
\ddot{r}+\Gamma_{00}^{1} \dot{t}^{2}+\Gamma_{11}^{1} \dot{r}^{2}+\Gamma_{22}^{1} \dot{\theta}^{2}+\Gamma_{33}^{1} \dot{\varphi}^{2}=0 \\
\ddot{\theta}+\Gamma_{22}^{2} \dot{\theta} \dot{r}+\Gamma_{21}^{2} \dot{\theta} \dot{r}+\Gamma_{33}^{2} \dot{\varphi}^{2}=0 \\
\ddot{\varphi}+2 \Gamma_{13}^{3} \dot{\varphi} \dot{r}+2 \Gamma_{23}^{3} \dot{\theta} \dot{\varphi}=0 \\
\ddot{t}+2 \frac{T^{\prime}}{T} \dot{t} \dot{r}=0
\end{gathered}
$$

$$
\ddot{r}+T^{\prime} R^{2} T \dot{t}^{2}+\frac{R^{\prime}}{R} \dot{r}^{2}+R^{2} r \dot{\varphi}^{2}=0
$$

$$
\begin{equation*}
\ddot{\varphi}+\frac{2}{r} \dot{\varphi} \dot{r}=0 \tag{142}
\end{equation*}
$$

The prime integrals are defined by the first and last equations

$$
\begin{align*}
& T^{2} \dot{t}=E \tag{143}\\
& r^{2} \dot{\varphi}=L \tag{144}
\end{align*}
$$

E: energy and L:angular momentum per unit of mass; It happens $z^{1}=\imath \omega^{01}=-\imath \frac{T^{\prime} R}{T^{2}} E, z^{2}=-\frac{\imath}{2} 2 \omega^{13}=\imath R \dot{\varphi}=\frac{\imath R}{r^{2}} L$ and $z^{3}=0$

$$
H=\frac{1}{2}\left(\begin{array}{cc}
0 & -\imath \frac{T^{\prime} R}{T^{2}} E-\frac{\imath R}{r^{2}} L \tag{145}\\
-\imath \frac{T^{\prime} R}{T^{2}} E+\frac{\imath R}{r^{2}} L & 0
\end{array}\right)
$$

where $\lambda_{ \pm}= \pm \sqrt{\left(r R^{2} L\right)-\left(\frac{T^{\prime} R}{T^{2}} E\right)^{2}}$.
With $\lambda_{ \pm} \in R$ if $\left.r R^{2} L\right)-\left(\frac{T^{\prime} R}{T^{2}} E\right)^{2} \geq 0 \Rightarrow L \geq \frac{T^{\prime} r^{2}}{T^{2}} E\left(M_{W, L, E}=\right.$ $\left\{(r L E, \phi) ; \phi \in[0,2 \pi]\right.$ and $\left.\left.\frac{T_{\left(r_{L E}^{2}\right)}^{\prime} r_{L E}}{T_{\left(r_{L E}\right)}^{2}}=\frac{L}{E}\right\}\right)$. Note that dynamic decoherence disappears for Schwarzchild's case

$$
\begin{equation*}
T^{\prime}=\frac{R_{S}}{2 \sqrt{1-\frac{R_{s}}{r}}} \tag{146}
\end{equation*}
$$

$\left(1-\frac{R_{s}}{r}\right)^{\frac{3}{2}} L \geq \frac{R_{s}}{2} E$ i.e if $\frac{R_{s}}{2 L} E<1$ so $r>r_{L E}=\frac{R_{s}}{\left[1-\left(\frac{R_{s}}{2 L} E\right)^{\frac{3}{2}}\right]}$. It happens that the qubit following the strongly rotating geodesic (L wide) is subjected to dynamic decoherence and far from the complex magnetic monopole(i.e radius sphere is $R_{L E} \geq R_{S}$). $A_{ \pm}=\frac{1}{2} \frac{z^{1} d z^{2}-z^{2} d z^{1}}{\xi\left(\xi+z^{3}\right)}$ is defined as the geometric phase generators
$A_{ \pm}=\frac{1}{2} \frac{\left[\left(\frac{T^{\prime} R E}{T^{2}}\left(\frac{R d r L}{r^{2}}-2 R \frac{d r}{r^{3}}\right)-\frac{R L}{2}\left(\frac{T^{\prime \prime} R E d r}{T^{2}}-2 \frac{\left(T^{\prime}\right)^{2} R E d r}{T^{3}}+\frac{T^{\prime} R^{\prime} E d r}{T^{2}}\right)\right]\right.}{\frac{\left(T^{\prime}\right)^{2} R^{2} E^{2}}{T^{4}}-\frac{R^{2} L^{3}}{r^{4}}}$
$A_{ \pm}= \pm \frac{1}{2} \frac{u v w^{\prime}-u^{\prime} v w-u v^{\prime} w}{w^{2} L^{2}-u^{2} v^{2} E^{2}} L E d r \quad \in \quad \Omega^{1}(M, R)(\quad$ with Schwarzschild case $\left.u=\frac{T^{\prime}}{T}, v=\frac{R}{T}, w=\frac{R}{r^{2}}\right), \quad A_{ \pm}=$ $\pm \frac{E L}{2} \frac{R_{s}^{2}}{\left(1-\frac{R_{s}}{r}\right)^{3} r^{2} L^{2}-\frac{R_{s}^{2} r E^{2}}{4\left(1-\frac{R_{s}}{r}\right)}}$. Always the Geometric decoherence appears except for a circular orbits $(\mathrm{r}=\mathrm{cst})$ and radial geodesic $(\mathrm{L}=0)$. In other ways the adiabatic non-coupling $N_{ \pm}$

$$
\begin{gather*}
M_{ \pm}=\left|\frac{\left\langle\varphi_{-}^{*}(z(\tau))\right| \dot{H}(z(\tau))\left|\varphi_{+}(z(\tau))\right\rangle}{\lambda_{+}-\lambda_{-}}\right|= \pm \frac{\dot{\lambda}}{\lambda} \tag{148}\\
N_{ \pm}=\left|\frac{(w L-u E)\left(u^{\prime} w-u w^{\prime}\right)}{4\left(w^{2} L^{2}-u^{2} E^{2}\right)^{\frac{3}{2}}}\right| L E|\dot{r}| \tag{149}
\end{gather*}
$$

Where the adiabatic approximation validity for circular orbits and radial geodesics is ensured without any speed indication.

1. Radial geodesic (Schwarzschild metric)

The radial geodesics equation is

$$
\begin{gather*}
\ddot{r}+\frac{R^{\prime}}{R} \dot{r}=0 \tag{150}\\
\Longrightarrow \ddot{r}+\frac{R_{s}}{r}=0 \tag{151}\\
U_{1}=\dot{r} \tag{152}\\
d U_{1}=U_{2} \tag{153}\\
\rightarrow \int\left(\int r d r\right) d r=\int\left(\int \frac{-R_{s}}{2} d \tau\right) d \tau \tag{154}
\end{gather*}
$$

It happens: $r^{3}=-\frac{3}{2} \sqrt{R_{s}}(\tau)^{2}+\left(\sqrt{r_{0}^{3}}\right)^{2}$ i.e $r=\left(-\frac{3}{2} \sqrt{R_{s}}(\tau)^{2}+\right.$ $\left.\left(\sqrt{r_{0}}\right)^{\frac{3}{2}}\right) \frac{2}{3}$, by taking $A \tau \sqrt{r_{0}} \simeq 0$; the event horizon is reached at $\tau_{H}=\frac{r_{0}^{\frac{3}{2}}-R_{s}^{\frac{3}{2}}}{\frac{3}{2} R_{s}}$.Due to the decoherence induced by the gravitational field as well as quantum teleportation fidelity drops if Alice closes to the event horizon like Rindler's space-time ($\left.M_{W, L=0, E}=\{(+\infty, \phi) ; \phi \in[0,2 \pi]\}\right)$ contains radial geodesics

2. Schwarzschild Circular orbits

Which is defined by $r=r_{0}=$ constante; with $\phi=\frac{L}{r_{0}} \tau+\phi_{0}$ we obtain:

$$
\begin{equation*}
R^{2} r \dot{\varphi}^{2}=-T^{\prime} R^{2} T(d t)^{2} \tag{155}
\end{equation*}
$$

FIG. 3. Representation of the Fidelity of teleportation

$$
\begin{equation*}
\Longrightarrow R^{2} r \frac{L^{2}}{r_{0}^{2}}(d t)^{2}=-T^{\prime} R^{2} T(d t)^{2} \tag{156}
\end{equation*}
$$

$$
\begin{equation*}
\Longrightarrow L^{2}=-\frac{R_{s} r_{0}^{2}}{r} \tag{157}
\end{equation*}
$$

and the metric allows

$$
\begin{equation*}
d \tau=T^{2} \frac{E^{2}}{T^{4}}-r^{2} \frac{L^{2}}{r^{4}} \tag{158}
\end{equation*}
$$

$d \tau=1$ so $E^{2}=T\left(r_{0}\right)^{2}\left(1+\frac{L^{2}}{r_{0}^{2}}\right)$. The difference in quadrivector velocity between Alice and Bob causes the effect in circular orbits (that shows the fidelity almost uniform with respect to r_{0} and τ_{A}^{1}), there is'nt decoherence for each r_{0}, $\xi \in R\left(M_{W, r_{0}}=\left\{\left(3 R_{s}, \phi\right) \in[0,2 \pi]\right\}\right)$, the photon sphere is created by the circular orbits outsiding the complex magnetic monopole). In this situation a phase difference φ_{+}and φ_{-} is generated by the adiabatic transport inducing few interference in the quantum teleportations which explains the short oscillations of fidelity.

ISSN: 2319-7064
SJIF (2020): 7.803

$e^{0} e^{3}=\frac{2 R_{s} \operatorname{arsin}^{2} \theta}{c \rho^{2}} d t d \varphi$

$$
\begin{equation*}
e^{1}=\frac{\rho^{2}}{c \sqrt{\Delta}} d r \tag{163}
\end{equation*}
$$

$$
\begin{equation*}
e^{2}=\frac{\rho}{c} d \theta \tag{164}
\end{equation*}
$$

FIG. 4. Teleport Fidelity for reaching geodesics almost the event horizon

$$
\begin{gather*}
e^{3}=\left(r^{2}+a^{2}+\frac{2 R_{s} a r \sin ^{2} \theta}{\rho^{2}}\right)^{\frac{1}{2}} \frac{\sin \theta}{c} d \varphi \tag{165}\\
e_{0}=\frac{\iota \Sigma}{c \rho \Delta^{\frac{1}{2}}} \frac{d}{d t} \tag{166}\\
e_{03}=\sqrt{\frac{R_{s} r a}{c \Delta \rho^{2}}} \frac{d^{2}}{d t d \varphi} \tag{167}
\end{gather*}
$$

3. Geodesic reaching the event horizon

Let take the geodesic starting far enough horizon and traveling there by adiabatic approximation. Here $\xi \rightarrow{ }^{r \rightarrow R_{s}}+l \infty, e^{\frac{1}{2} \int H^{-\varepsilon} \xi d \tau} \simeq 0 \quad \tau_{H}$ is taken to being the necessary time reaching event horizon with $\xi \ll$ 1). Foreover $\varphi_{+} \longrightarrow^{r \rightarrow R_{s}} \frac{1}{2}\binom{1}{1}, \varphi_{-} \longrightarrow^{r \rightarrow R_{s}} \frac{1}{2}\binom{-1}{1}$ and $\left(u^{A}\right)_{A \in\{t, r, \theta, \varphi\}}=\left(\frac{E}{T},-\sqrt{\frac{E^{2}}{T^{2}}-1-\frac{L^{2}}{r^{2}}}, 0, \frac{L}{r}\right)$, where teleportation fidelity for geodesics reaching almost the event horizon is estimated, as well as the above figure shows Teleportation fidelity oscillates with Alice's relative angular position as soon as she arrived to the event horizon (Schrödinger's cat Teleportation, do'nt occurs oscillation for $|0\rangle$ or $|1\rangle$ teleportation . There is small dependence of E and L on 1 at exception for the few values of these first integrals.

$$
\begin{equation*}
e_{1}=\imath \frac{\Delta \frac{1}{2}}{\rho} \frac{d}{d r} \tag{168}
\end{equation*}
$$

$$
\begin{equation*}
e_{3}=\sqrt{\frac{a^{2} \sin ^{2} \theta-\Delta}{\rho^{2} \Delta \sin ^{2} \theta}} \frac{d}{d \varphi} \tag{170}
\end{equation*}
$$

The non-zero Lorentz connections are as follows

$$
\begin{equation*}
\omega^{01}=\frac{\Sigma^{2} G^{\prime} G}{c^{2} \rho^{3} \Delta^{\frac{1}{2}}} d t \tag{171}
\end{equation*}
$$

where $G=\sqrt{1-\frac{R_{s} r}{\rho^{2}}}$

$$
\begin{equation*}
\omega^{12}=\frac{\imath \rho^{\prime}}{\rho c^{2}} d \theta \tag{172}
\end{equation*}
$$

$$
\begin{equation*}
\omega^{13}=\frac{1}{2} \frac{K^{\prime}}{\rho c^{2}} \sqrt{\frac{a^{2} \sin ^{2} \theta-\Delta}{\rho^{2} \Delta \sin \theta}} d \varphi \tag{173}
\end{equation*}
$$

with $K=\left(r^{2}+a^{2}+\frac{2 R_{s} a r \sin ^{2} \theta}{\rho^{2}}\right) \frac{\sin ^{2} \theta}{c^{2}}$

$$
\begin{equation*}
\omega^{23}=\frac{l^{2} l^{\prime}}{c} d \varphi \tag{174}
\end{equation*}
$$

with $l=\sqrt{\frac{a^{2} \sin ^{2} \theta-\Delta}{\rho^{2} \Delta \sin \theta}}$ in the equatorial plan $\theta=\frac{\Pi}{2}$

$$
\begin{gather*}
d \tau=-\left(1-\frac{R_{s}}{r}\right) d t^{2}-\frac{2 R_{s} a}{c r} d t d \varphi+\frac{r^{2}}{c^{2} \Delta} d r^{2}+\left(r^{2}+a^{2}+\frac{2 R_{s} a}{r}\right) \frac{1}{c^{2}} d \varphi^{2} \\
e^{0}= \tag{176}\\
(175)
\end{gather*}
$$

$$
\begin{equation*}
e^{0} e^{3}=\frac{2 R_{s} a}{c r} d t d \varphi \tag{177}
\end{equation*}
$$

$$
\begin{equation*}
e^{1}=\frac{r^{2}}{c \sqrt{\Delta}} d r \tag{178}
\end{equation*}
$$

$$
\begin{equation*}
e^{2}=\left(r^{2}+a^{2}+\frac{2 R_{s} a}{r}\right)^{\frac{1}{2}} \frac{1}{c} d \varphi \tag{179}
\end{equation*}
$$

$$
\begin{equation*}
e_{0}=\frac{\imath \Sigma}{c r \Delta^{\frac{1}{2}}} \frac{d}{d t} \tag{180}
\end{equation*}
$$

$$
\begin{equation*}
e_{02}=\sqrt{\frac{R_{s} a}{c \Delta r}} \frac{d^{2}}{d t d \varphi} \tag{181}
\end{equation*}
$$

$$
\begin{equation*}
e_{1}=t \frac{\Delta \frac{1}{2}}{r} \frac{d}{d r} \tag{182}
\end{equation*}
$$

$$
\begin{equation*}
e_{2}=\sqrt{\frac{a^{2}-\Delta}{r^{2} \Delta}} \frac{d}{d \varphi} \tag{183}
\end{equation*}
$$

like $g_{i j}=n_{i j} e^{i} e^{j}$ are only r and $\theta, \frac{\partial L}{\partial t}=\frac{\partial L}{\partial \varphi}$ and so

$$
\begin{align*}
& P_{0}=\frac{\partial L}{\partial \dot{t}}=E c^{2} \tag{184}\\
& P_{2}=\frac{\partial L}{\partial \dot{\varphi}}=-L \tag{185}
\end{align*}
$$

en effet

$$
\begin{gather*}
P_{0}=g_{t t} \dot{t}+g_{t \varphi} \dot{\varphi}=-c^{2}\left(1-\frac{R_{s}}{r}\right) \dot{t}+\frac{R_{s} a c}{r} \dot{\varphi}=E c^{2} \tag{186}\\
P_{2}=g_{t \varphi} \dot{t}+g_{\varphi \varphi} \dot{\varphi}=\frac{R_{s} a c}{r} \dot{t}+\left(r^{2}+a^{2}+\frac{2 R_{s} a}{r}\right) \dot{\varphi}=-L \tag{187}
\end{gather*}
$$

we get the following system

$$
\left(\begin{array}{cc}
g_{t t} & g_{t \varphi} \tag{188}\\
g_{t \varphi} & g_{\varphi \varphi}
\end{array}\right)\binom{\dot{t}}{\dot{\varphi}}=\binom{E c^{2}}{-L}
$$

Noticing that

$$
\begin{equation*}
\Delta c^{2}=-\left(g_{t t} g_{\varphi \varphi}-g_{t \varphi}^{2}\right) \tag{189}
\end{equation*}
$$

we obtain

$$
\begin{gather*}
\dot{t}=-\frac{1}{\Delta}\left[\left(r^{2}+a^{2}+\frac{2 R_{s} a}{r}\right) E+\frac{R_{s} a^{2} c}{r} L\right] \tag{190}\\
\dot{\varphi}=\frac{1}{\Delta}\left[\frac{R_{s} a^{2} c}{r} E-\left(1-\frac{R_{s}}{r}\right) L\right] \tag{191}
\end{gather*}
$$

Therefore

$$
\begin{gather*}
z^{1}=-v \omega^{01} \tag{192}\\
z^{2}=-v \omega^{13} \tag{193}\\
z^{1}=\imath \frac{\Sigma^{2} G^{\prime} G}{c^{2} \rho^{3} \Delta^{\frac{3}{2}}}\left[\left(r^{2}+a^{2}+\frac{2 R_{s} a}{r}\right) E+\frac{R_{s} a^{2} c}{r} L\right] \tag{194}\\
z^{2}=\imath \frac{1}{2} \frac{K^{\prime}}{\rho \Delta c^{2}} \sqrt{\frac{a^{2} \sin ^{2} \theta-\Delta}{\rho^{2} \Delta \sin \theta}}\left[\frac{R_{s} a^{2} c}{r} E-\left(1-\frac{R_{s}}{r}\right) L\right] \tag{195}\\
z^{3}=0 \tag{196}
\end{gather*}
$$

that is $z^{1}=A E+B L$ with

$$
\begin{gather*}
A=\imath \frac{\Sigma^{2} G^{\prime} G}{c^{2} \rho^{3} \Delta^{\frac{3}{2}}}\left(r^{2}+a^{2}+\frac{2 R_{s} a}{r}\right) E \tag{197}\\
B=\imath \frac{\Sigma^{2} G^{\prime} G}{c^{2} \rho^{3} \Delta^{\frac{3}{2}}} \frac{R_{s} a^{2} c}{r} L \tag{198}
\end{gather*}
$$

and $z^{2}=C E-D L$ with

$$
\begin{equation*}
C=\imath \frac{1}{2} \frac{K^{\prime}}{\rho \Delta c^{2}} \sqrt{\frac{a^{2} \sin ^{2} \theta-\Delta}{\rho^{2} \Delta \sin \theta}} \frac{R_{s} a^{2} c}{r} E \tag{199}
\end{equation*}
$$

$$
\begin{equation*}
D=\imath \frac{1}{2} \frac{K^{\prime}}{\rho \Delta c^{2}} \sqrt{\frac{a^{2} \sin ^{2} \theta-\Delta}{\rho^{2} \Delta \sin \theta}}\left(1-\frac{R_{s}}{r}\right) L \tag{200}
\end{equation*}
$$

$$
H=\frac{1}{2}\left(\begin{array}{cc}
0 & (A-C) E+(B-D) L \tag{201}\\
(A-C) E+(B-D) L & 0
\end{array}\right)
$$

Volume 10 Issue 12, December 2021
let $W=(A-C)^{2} E^{2}, Q=(A-C)(B-D) E L, S=(B-D)^{2} L^{2}$, $Z=(A-C)(B-D) E L$

$$
\begin{equation*}
\lambda_{ \pm}= \pm \frac{1}{2} \sqrt{W-Q+S-Z} \tag{202}
\end{equation*}
$$

$\lambda \in R$ if $(A-C)^{2} E^{2}+(B-D)^{2} L^{2} \geq(A-C)(B-D) E L$ This condition being verified

$$
\begin{equation*}
\Rightarrow L \geq-\frac{E(A-C)}{(B-D)} \tag{203}
\end{equation*}
$$

$\left(M_{W, L, E}=\left\{\left(\left(r_{L E}, \phi\right), \phi \in[0,2 \pi]\right\}\right)\right.$, the geodesics are strongly rotating in the Kerr metric from where the qubit is subjected to a dynamic decoherence. The geometric phase generators are

$$
\begin{gather*}
A_{ \pm}= \pm \frac{1}{2} \frac{z^{1} d z^{2}-z^{2} d z^{1}}{\left(z^{1}\right)^{2}+\left(z^{2}\right)^{2}} \tag{204}\\
A_{ \pm}= \pm \frac{1}{2} \frac{\left[(A E+B L)\left(C^{\prime} E-D^{\prime} L\right)-(C E-D L)\left(A^{\prime} E+B^{\prime} L\right)\right.}{(A E+B L)^{2}+(C E-D L)^{2}} \tag{205}
\end{gather*}
$$

Geometric coherence is always present. Moreover it comes that $N_{ \pm} \ll 1$, which induces the validity of the adiabatic approximation in the Kerr metric.

REFERENCES

${ }^{1}$ A. F and M. M, ".," J. Phys. A: Math. Theor. 45 485302, 2012.
${ }^{2}$ B. D. E, S. C, W. A, B. V, O. D. K. L, and F. I, ".," New J. Phys. 16053041 , 2014.
${ }^{3}$ P. M. C, T. M, and W. H. F, ".," Ann. Phys. 327 1078, 2012.
${ }^{4}$ V. D., ".," ., .
${ }^{5}$ M. R. B. A. P. M, F.-S. I, and T. T. E, ".," Phys. Rev. A 74 032326, 2006.
${ }^{6}$ L. T. E and C. C. K, ".," Phys. Rev. X 4 041001, 2014.
${ }^{7}$ R. F. L. T. E and M. N, ".," Phys. Rev. Lett. 113 250401, 2014.
${ }^{8}$ M. N, "Non-hermitian quantum mechanics," Cambridge : Cambridge University Press, 2011.
${ }^{9}$ S. S. S. G. A and R. D. S, ".," Phys. Rev. E $86011138,2012$.
${ }^{10}$ D.Viennot and O.Morro, ".," Class. Quantum Grav. 29 224008, 2017.
${ }^{11}$ R. C and V. F, "Covariant loop quantum gravity," Cambridge : Cambridge UniversityPress, 2015.
${ }^{12}$ B. D and D. E, ".," Phys. Rev. D $86086001,2012$.
${ }^{13}$ S.-G. P. de Badyn M H, K. J. L, and Y. K. H-C, ".," Phys.JHEP11(2015)089J. High Energy, 2015.
${ }^{14}$ V. P, ".," Int. J. Mod. Phys. A 19 227, 2004.
${ }^{15}$ de Alwis S P, ".," Phys. Rev. D 59 044029, 1999.
${ }^{16}$ V. D and L. J. J, ".," Phys. A : Math. Theor. 44 365301, 2011.
${ }^{17}$ V. D and L. J. J, "Phys. a : Math. theor. 45 365305," ., 2012.
${ }^{18}$ L. P, ".," Phys. Rev. D 84 125020, 2011.
${ }^{19}$ D. M. J. B. L and L. P, ".," Class. Quantum Grav. 29 224008, 2012.
${ }^{20}$ N. A. I and de la Cruz F A. J, ".," Phys. A : Math. Theor. 41 485304, 2008.
${ }^{21}$ M.-D. H and M. A. J, ".," Math. Phys. 49 082105, 2008.
${ }^{22}$ J. G. V. D and K. J. P. J, ".," Phys. A : Math. Theor. 41 145303, 2008.
${ }^{23}$ J. H. R. V. D. D. G, ".,"" Guérin S and J. G. Phys. Rev. A 82 022109, 2010.
${ }^{24}$ W. G. Unruh, "Notes on black hole evaporation," Phys.Rev. D 14, (1976), 870892, .
${ }^{25}$ W. G. Unruh, "Experimental black hole evaporation," Phys. Rev. Lett. 46, (1981), 13511353.,
${ }^{26}$ B. Schutz, "Geometrical methods of mathematical physics," Cambridge University Press, 1980.
${ }^{27}$ B. H. P and P. F, ".," The Theory of Open Quantum Systems. New York : Oxford University Press, 2002.
${ }^{28}$ S. Carroll, "Spacetime and geometry: An introduction to general relativity," Addison Wesley(Pearson Education), San Fransisco, 2004.

[^0]: ${ }^{\text {a) }}$ Also at Physics Department, Joseph KI ZERBO University.

