International Journal of Science and Research (IJSR) ISSN: 2319-7064

SJIF (2020): 7.803

RGη-Closed Sets in Topological Spaces

Hamant Kumar¹, Naresh Kumar², Vimal Kumar³

^{1,2} Department of Mathematics, Veerangana Avantibai Government Degree College, Atrauli, Aligarh, U. P. (India)

³ Department of Mathematics, Government Degree College, Babrala-Gunnaur, Sambhal U. P. (India)

Abstract: In this paper, a new class of sets called regular generalized η -closed (briefly rg η -closed) sets is introduced and its properties are studied. The relationships among closed, α -closed, s-closed, η -closed, rg η -closed and their generalized closed sets are investigated. Several examples are provided to illustrate the behavior of these new class of sets.

2010 AMS Subject Classification: 54A05, 54A10

Keywords: η -closed, $g\eta$ -closed, $\pi g\eta$ -closed and $rg\eta$ -closed sets.

1. Introduction

Many investigations related to generalized closed sets have been published in various forms of closed sets. In 1937, Stone [12] introduced the notion of regular open sets. In 1963, Levine [7] introduced the concept of semi-open sets. In 1965, Njastad [11] introduced the concept of α -open sets. In 1968, the notion of π -open sets were introduced by Zaitsev [16] which are weaker form of regular open sets in topological spaces. In 1970, Levine [8] initiated the study of so called generalized closed (briefly g-closed) sets. In 1994, Maki et al. [9, 10] introduced the notion of α g-closed sets. In 2000, Dontchev and Noiri [4] introduced the notion of π g-closed sets. In 2007, Arockiarani and Janaki [2] introduced the notion of $\pi g\alpha$ -closed sets in topological spaces. In 2019, Subbulakshmi, Sumathi, Indirani [14, 15] introduced and investigated the notion of n-open and gnclosed sets. In 2019, Kumar and Sharma [5] introduced and investigated the notion of η -T_k (k = 0, 1, 2) and η -R_k (k = 0, 12) axioms in topological spaces. Recently, Kumar [6] introduced and investigated the notion of π gn-closed sets.

2. Preliminaries

Throughout this paper, spaces (X, \Im), (Y, σ), and (Z, γ) (or simply X, Y and Z) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by cl(A) and int(A) respectively. A subset A is said to be **regular open** [12] (resp. **regular closed** [12]) if A = int(cl(A)) (resp. A = cl(int(A)). The finite union of regular open sets is said to be **π-open** [16]. The complement of a π -open set is said to be **π-closed** [16].

Definition 2.1. A subset A of a topological space (X, \mathfrak{I}) is said to be

(i) **s-open** [**7**] if $A \subset cl(int(A))$.

(ii) α -open [11] if $A \subset int(cl(int(A)))$.

(iii) **\eta-open** [14] if $A \subset in(cl(int(A))) \cup cl(int(A))$.

(iv) **\eta-closed** [14] if $A \supset cl(int(cl(A))) \cup int(cl(A))$.

The complement of a s-open (resp. α -open, η -open) set is called **s-closed** (resp. α -closed, η -closed). The intersection

of all s-closed (resp. α -closed, η -closed) sets containing A, is called s-closure (resp. α -closure, η -closure) of A, and is denoted by s-cl(A) (resp. α -cl(A), η -cl(A)). The η -interior of A, denoted by η -int(A) is defined as union of all η -open sets contained in A. We denote the family of all η -open (resp. η -closed) sets of a topological space by η -O(X) (resp. η -C(X)).

Definition 2.2. A subset A of a space (X, \Im) is said to be

(1) generalized closed (briefly g-closed) [8] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \mathfrak{I}$.

(2) π **g-closed** [4] if cl(A) \subset U whenever A \subset U and U is π -open in X.

(3) rg-closed [4] if $cl(A) \subset U$ whenever $A \subset U$ and U is regular open in X.

(4) α -generalized closed (briefly α g-closed) [9, 10] if α -cl(A) \subset U whenever A \subset U and U $\in \mathfrak{I}$.

(5) π g α -closed [2] if α -cl(A) \subset U whenever A \subset U and U is π -open in X.

(6) gar-closed [13] if α -cl(A) \subset U whenever A \subset U and U is regular open in X.

(7) generalized semi-closed (briefly gs-closed) [1] if scl(A) \subset U whenever A \subset U and U $\in \mathfrak{I}$.

(8) **\pigs-closed** [3] if s-cl(A) \subset U whenever A \subset U and U is π -open in X.

(9) rgs-closed if s-cl(A) \subset U whenever A \subset U and U is regular open in X.

(10) generalized η -closed (briefly $g\eta$ -closed) [15] if η cl(A) \subset U whenever A \subset U and U $\in \mathfrak{I}$.

(11) $\pi g\eta$ -closed (briefly $g\eta$ -closed) [6] if η -cl(A) $\subset U$ whenever A $\subset U$ and is π -open in X.

(12) g-open (resp. π g-open, rg-open, α g-open, π g α -open, gar-open, gs-open, π gs-open, rgs-open, π g η -open) set if the complement of A is g-closed (resp. π g-closed, rg-closed, α g-closed, π g α -closed, gar-closed, gs-closed, π gs-closed, rgs-closed, π g η -closed).

3. Regular Generalized η-closed Sets

Definition 3.1. A subset A of a space (X, \mathfrak{T}) is said to be **regular generalized** η -closed (briefly rg η -closed) if η -cl(A) \subset U whenever A \subset U and U is regular open in X. The family of all rg η -closed subsets of X will be denoted by

Volume 10 Issue 11, November 2021

<u>www.ijsr.net</u>

rgη-C(X).

Theorem 3.2. Every closed set is $rg\eta$ -closed.

Proof. Let A be a closed set in X. Let U be a regular open set in X such that $A \subset U$. Since A is closed, that is, cl(A) = A, $cl(A) \subset U$. But we have η - $cl(A) \subset cl(A) \subset U$. Therefore η - $cl(A) \subset U$. Hence A is rg η -closed in X.

Theorem 3.3. For a topological space X the followings hold:

- (1) Every g-closed set is rgη-closed.
- (2) Every πg -closed set is rg η -closed.
- (3) Every rg -closed set is rgŋ-closed.
- (4) Every α -closed set is rg η -closed.
- (5) Every α g-closed set is rg η -closed.
- (6) Every $\pi g\alpha$ -closed set is rgn-closed.
- (7) Every gar-closed set is rgn-closed.
- (8) Every s-closed set is rgη-closed.
- (9) Every gs-closed set is rgn-closed.
- (10) Every π gs-closed set is rg η -closed.
- (11) Every rgs-closed set is rgn-closed.
- (12) Every η -closed set is rg η -closed.
- (13) Every $g\eta$ -closed set is $rg\eta$ -closed.
- (14) Every π g η -closed set is rg η -closed.

Proof.

(1) Let A be a g-closed set in X. Let U be a regular open set in X such that $A \subset U$. Since every regular open set is open and since A is g-closed, that is, $cl(A) \subset U$. But we have η - $cl(A) \subset cl(A) \subset U$. Therefore η - $cl(A) \subset U$. Hence A is rg η -closed in X.

(2) Let A be a π g-closed set in X. Let U be a regular open set in X such that A \subset U. Since every regular open set is π open and since A is π g-closed, that is, $cl(A) \subset U$. But we have η - $cl(A) \subset cl(A) \subset U$. Therefore η - $cl(A) \subset U$. Hence A is rg η -closed in X.

(3) Let A be a rg-closed set in X. Let U be a regular open set in X such that $A \subset U$. Since A is rg-closed, that is, $cl(A) \subset U$. But we have η - $cl(A) \subset cl(A) \subset U$. Therefore η - $cl(A) \subset U$. Hence A is rg η -closed in X.

(4) Let A be a α -closed set in X. Let U be a regular open set in X such that $A \subset U$. Since A is α -closed, that is, α -cl(A) = A, α -cl(A) \subset U. But we have η -cl(A) $\subset \alpha$ -cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg η -closed in X.

(5) Let A be a α g-closed set in X. Let U be a regular open set in X such that $A \subset U$. Since every regular open set is open and since A is α g-closed, that is, α -cl(A) \subset U. But we have η -cl(A) $\subset \alpha$ -cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg\eta-closed in X.

(6) Let A be a $\pi g\alpha$ -closed set in X. Let U be a regular open set in X such that $A \subset U$. Since every regular open set is π open and since A is $\pi g\alpha$ -closed, that is, α -cl(A) \subset U. But we have η -cl(A) $\subset \alpha$ -cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg\eta-closed in X. (7) Let A be a gar-closed set in X. Let U be a regular open set in X such that $A \subset U$. Since A is gar-closed, that is, α -cl(A) \subset U. But we have η -cl(A) $\subset \alpha$ -cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg\eta-closed in X.

(8) Let A be a s-closed set in X. Let U be a regular open set in X such that $A \subset U$. Since A is s-closed, that is, s-cl(A) = A, s-cl(A) \subset U. But we have η -cl(A) \subset s-cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg η -closed in X.

(9) Let A be a gs-closed set in X. Let U be a regular open set in X such that $A \subset U$. Since every regular open set is open and since A is gs-closed, that is, $s-cl(A) \subset U$. But we have η -cl(A) \subset s-cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg\eta-closed in X.

(10) Let A be a π gs-closed set in X. Let U be a regular open set in X such that A \subset U. Since every regular open set is π open and since A is π gs-closed, that is, s-cl(A) \subset U. But we have η -cl(A) \subset s-cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg\eta-closed in X.

(11) Let A be a rgs-closed set in X. Let U be a regular open set in X such that $A \subset U$. Since A is rgs-closed, that is, scl(A) \subset U. But we have η -cl(A) \subset s-cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg\eta-closed in X.

(12) Let A be a η -closed set in X. Let U be a regular open set in X such that $A \subset U$. Since A is η -closed, that is, η cl(A) = A, η -cl(A) \subset U. But we have η -cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg η -closed in X.

(13) Let A be a $g\eta$ -closed set in X. Let U be a regular open set in X such that $A \subset U$. Since every regular open set is open and since A is $g\eta$ -closed, that is, η -cl(A) \subset U. But we have η -cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg η closed in X.

(14) Let A be a $\pi g\eta$ -closed set in X. Let U be a regular open set in X such that A \subset U. Since every regular open set is π open and since A is $\pi g\eta$ -closed, that is, η -cl(A) \subset U. But we have η -cl(A) \subset U. Therefore η -cl(A) \subset U. Hence A is rg η closed in X.

Remark 3.4: From the above definitions, theorems and known results the relationship between $rg\eta$ -closed sets and some other existing generalized closed sets are implemented in the following figure:

$closed \Rightarrow \qquad $		πg -closed	\Rightarrow rg-closed \Downarrow
$\substack{\alpha\text{-closed} \Rightarrow \\ \downarrow}$	αg-closed ↓	$\Rightarrow \pi g \alpha$ -clo \Downarrow	sed \Rightarrow gar-closed \Downarrow
$\stackrel{\text{s-closed}}{\Downarrow} \Rightarrow$	gs-closed = ↓	⇒ πgs-close ↓	$d \Rightarrow rgs\text{-closed}$
η -closed \Rightarrow	gη-closed	$\Rightarrow \pi g \eta$ -clo	sed \Rightarrow rg η -closed

Where none of the implications is reversible as can be seen from the following examples:

Volume 10 Issue 11, November 2021

Example 3.5: Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then $A = \{a, b, c\}$ and $B = \{a, b, d\}$ are π g-closed as well as π g η -closed sets. A and B are also rg η -closed sets but not closed.

Example 3.6: Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$. Then $A = \{c\}$ is $\pi g\alpha$ -closed as well as $\pi g\eta$ -closed. It is also $rg\eta$ -closed set. But it is neither closed nor g-closed. It is not πg -closed.

Example 3.7: Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, \{c\}, \{d\}, \{c, d\}, \{b, c, d\}, X\}$. Then $A = \{b\}$ is g-closed, α g-closed, $g\eta$ -closed, $\pi g \alpha$ -closed, $\pi g \eta$ -closed. It is also rg η -closed set. But it is not closed.

Example 3.8: Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$. Then $A = \{a, b\}$ is $\pi g \alpha$ -closed as well as $\pi g \eta$ -closed. It is also $rg \eta$ -closed set. But it is neither closed nor αg -closed set.

Example 3.9: Let $X = \{a, b, c\}$ and $\Im = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Then $A = \{c\}$ is η -closed as well as $\pi g \eta$ -closed. It is also rg η -closed set. But it not α -closed.

Example 3.10: Let $X = \{a, b, c\}$ and $\Im = \{\phi, \{a\}, \{b, c\}, X\}$. Then $A = \{a, b\}$ is gn-closed as well as π gn-closed. It is also rgn-closed set. But it is not closed.

Example 3.11: Let $X = \{0, 1\}$ and $\Im = \{\phi, \{0\}, X\}$. The topological space (X, \Im) is called the Sierpinski space. Then the set $A = \{0\}$ rg-closed as well as rg η -closed sets but not closed.

Example 3.12. Let $X = \{a, b, c, d, e\}$ and $\Im = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then

- 1) **\eta-closed sets** are ϕ , {e}, {a, b}, {c, d}, {a, b, e}, {c, d, e} X.
- gη-closed sets are φ, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, e}, {b, e}, {c, d}, {c, e}, {d, e}, {a, b, e}, {a, c, e}, {a, d, e}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}, X.
- 3) $\pi g\eta$ -closed sets are ϕ , {a}, {b}, {c}, {d}, {e}, {a, b}, {a, e}, {b, e}, {c, d}, {c, e}, {d, e}, {a, b, e}, {a, c, e}, {a, d, e}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}, X.
- 4) rgη-closed sets are φ, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e}, {c, d}, {c, e}, {d, e}, {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c}, {a, b, d}, {a, c, d}, {a, c, c}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, d}, {a, b, c}, {a, b, d, e}, {a, c, d, e}, {b, c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c}, {b, c, d}, {b, c, d}, {a, b, c}, {b, c, d}, {c, d}, {b, c, d},

4. Characteristics of rgη-Closed Sets

Theorem 4.1: If A is regular open and $rg\eta$ -closed, then A is η -closed and hence clopen.

Proof: If A is regular open and $\pi g\eta$ -closed, then η -cl(A) \subset A. This implies A is η -closed. Hence A is clopen, since every η -closed (regular) open set is (regular) closed.

Theorem 4.2: If A and B are rgη-closed sets in X then $A \cup B$ is an rgη-closed set in X.

Proof: Let A and B be rg η -closed sets in X and U be any regular open set containing A and B. Therefore η -cl (A) \subset U, η -cl(B) \subset U. Since A \subset U, B \subset U then A \cup B \subset U. Hence η -cl(A \cup B) = η -cl(A) \cup η -cl(B) \subset U. Therefore A \cup B is rg η -closed set in X.

Theorem 4.3: A set A is $rg\eta$ -closed set iff η -cl(A) – A contains no non-empty regular closed set.

Proof: Necessity: Let F be a regular closed set in X such that $F \subset \eta$ -cl(A) – A. Then $A \subset X - F$. Since A is an rg η -closed set and X – F is regular open then η -cl(A) $\subset X - F$. (i.e $F \subset X - \eta$ -cl(A)). Then $F \subset (X - \eta$ -cl(A)) $\cap \eta$ -cl(A) – A. Therefore $F = \phi$.

Sufficency: Let us assume that η -cl(A) – A contains no non empty regular closed set. Let A \subset U and U be regular-open. Suppose that η -cl(A) is not contained in U, then η -cl(A) \cap U^c is non empty regular closed set of η -cl(A) – A which is a contradiction. Therefore η -cl(A) \subset U. Hence A is an rg η -closed set.

Theorem 4.4: The intersection of any two subsets of $rg\eta$ -closed sets in X is a $rg\eta$ -closed set in X.

Proof: Let A and B be two subsets of a rg η -closed set. Assume A, B \subset U, where U is regular-open. Then η -cl(A) \subset U, η -cl(B) \subset U. Therefore η -cl(A \cap B) \subset U. Since A and B are rg η - closed sets, A \cap B is a rg η -closed set.

Theorem 4.5: If A is an $g\eta$ -closed set in X and $A \subset B \subset \eta$ cl(A), then B is a $rg\eta$ -closed set in X.

Proof: Since $B \subset \eta$ -cl(A), we have η -cl(B) $\subset \eta$ -cl(A) then η -cl(B) $- B \subset \eta$ -cl(A) - A. By **Theorem 3.2**, η cl(A) - A contains no non empty regular closed set. Hence η -cl(B) - B contains no non empty regular closed set. Therefore B is a rg η -closed set in X.

Theorem 4.6: Let $A \subset Y \subset X$ be a rg η -closed set in X. Then A is a rg η -closed set relative to Y.

Proof: Give that $A \subset Y \subset X$ and A is a rg η -closed set in X. To prove that A is a rg η -closed set relative to Y, let us assume that $A \subset Y \cap U$, where U is regular open in X. Since A is an rg η -closed set, $A \subset U$ implies η -cl(A) $\subset U$. It follows that $Y \cap \eta$ -cl(A) $\subset Y \cap U$. That is A is a rg η -closed set relative to Y.

Theorem 4.7: If A is both regular open and rgη-closed set in X then A is a regular closed set.

Proof: Since A is a regular open and rg η -closed set in X, η -cl(A) \subset U. But A $\subset \eta$ -cl(A). Therefore A = η -cl(A). Therefore A is a regular closed set.

Volume 10 Issue 11, November 2021

<u>www.ijsr.net</u>

Theorem 4.8: For $x \in X$, the set $X - \{x\}$ is rg η -closed or regular open.

Proof: Suppose that $X - \{x\}$ is not regular open, then X is the only regular open set containing $X - \{x\}$. (i.e η -cl(X - $\{x\}) \subset X$). Then $X - \{x\}$ is a rg η -closed set in X.

Definition 4.9: Let (X, \mathfrak{I}) be a topological space, $A \subset X$ and $x \in X$. Then x is said to be a η -limit point of A iff every η -open set containing x contains a point of A different from x, and the set of all η -limit points of A is said to be the η - derived set of A and is denoted by $D_{\eta}(A)$.

Usual derived set of A is denoted by D(A).

The proof of the following result is analogous to the well known ones.

Lemma 4.10: Let (X, \mathfrak{I}) be a topological space and $A \subset X$. Then η -cl $(A) = A \cup D_{\eta}(A)$.

Theorem 4.11: Let A and B be rg η -closed sets in (X, \Im) such that $D(A) \subset D_{\eta}(A)$ and $D(B) \subset D_{\eta}(B)$. Then $A \cup B$ is rg η -closed.

Proof: For any set $E \subset (X, \mathfrak{I})$, $D_{\eta}(E) \subset D(E)$. Therefore $D_{\eta}(A) = D(A)$ and $D_{\eta}(B) = D(B)$. That is $cl(A) = \eta$ -cl(A) and $cl(B) = \eta$ -cl(B).

Let $A \cup B \subset U$ where U is regular open. Then $A \subset U$ and B $\subset U$. Since A and B rg η -closed η -cl(A) $\subset U$ and η -cl(B) $\subset U$. Now, cl(A \cup B) = cl(A) \cup cl(B) = η -cl(A) $\cup \eta$ -cl(B) $\subset U$. But η -cl(A \cup B) \subset cl(A \cup B). So η -cl(A \cup B) \subset U and hence A \cup B is rg η -closed.

Theorem 4.12: If A is rg η -closed and B is any set A \subset B \subset η -cl(A), then B is rg η -closed.

Proof: Let $B \subset U$ where U is regular open. Then $A \subset B$ implies $A \subset U$. Since A is $\pi g\eta$ -closed, η -cl(A) $\subset U$. $B \subset \eta$ -cl(A) implies η -cl(B) $\subset \eta$ -cl(A). Thus η -cl(B) $\subset U$ and shows that B is rg\eta-closed.

Regular Generalized η-open Sets and Regular Generalized η-Neighbourhoods

In this section new class of sets called regular generalized η open (briefly rg η -open) sets and regular generalized η neighborhoods (briefly rg η -nhd) in topological spaces are introduced and we study some of their properties.

Definition 5.1:Let (X, \Im) be a topological space. A subset A of X is called **regular generalized** η **-open** (briefly **rg** η **-open**) iff its complement is rg η -closed set. We denote the family of all rg η -open sets of a topological space by **rg** η **-O(X)**.

Theorem 5.2: If A and B are $rg\eta$ -open sets in a space X, then $A \cup B$ is also a $rg\eta$ -open set in X.

Proof: If A and B are rg η -open sets in a space X, then A^c and B^c are rg η -closed sets in X. By **Theorem 3.1** $A^c \cup B^c$ is

a rg η -closed set in X (i.e $A^c \cup B^c = (A \cap B)^c$ is a rg η -closed set in X). Therefore $A \cup B$ is a rg η -open set in X.

Remark 5.3: The union of two $rg\eta$ -open sets in X is generally not a $rg\eta$ -open set in X.

Example 5.4: Let $X = \{a, b, c\}$ with $\Im = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. The set $A = \{a\}$ and $B = \{b\}$ are rg η -open sets but $A \cup B = \{a, b\}$ is not a rg η -open set in X.

Remark 5.5: If A and B are $rg\eta$ -open sets in X, then $A \cap B$ is not a $rg\eta$ -open set in X.

Example 5.6: Let $X = \{a, b, c\}$ with $\Im = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. The set $A = \{a, c\}$ and $B = \{b, c\}$ are rg η -open sets but $A \cap B = \{c\}$ is not a rg η - open set in X.

Theorem 5.7: If $int(B) \subset B \subset A$ and A is $rg\eta$ -open set in X, then B is rg-open in X.

Proof: Suppose that $int(B) \subset B \subset A$ and A is rgη-open in X then $A^c \subset B^c \subset A^c$. Since A^c is a rgη-closed set in X by **Theorem 5.2**, B is a rgη-open sets in X.

Definition 5.8: Let x be a point in a topological space X. A subset N of X is said to be a **rgη-nhd** of x iff there exists a rgη-open set G such that $x \in G \subset N$.

Definition 5.9: A subset N of space X is called a **rgη-nhd** of $A \subset X$ iff there exists a rgη-open set G such that $A \subset G \subset N$.

Theorem 5.10: Every nhd N of $x \in X$ is a rg η -nhd of x.

Proof: Let N be a nhd point of $x \in X$. To prove that N is a rg η -nhd of x, by definition of nhd, there exists an open set G such that $x \in G \subset N$. Hence N is a rg η -nhd of x.

Remark 5.11: In general, a rg η -nhd of $x \in X$ need not be a nhd of $x \in X$ as seen from the following example.

Example 5.12: Let $X = \{a, b, c\}$ with $\Im = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then $rg\eta$ -O(X) = $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. The set $\{a, c\}$ is $rg\eta$ -nhd of point b, since the $rg\eta$ -open set $\{b\}$ is such that $b \in \{b\} \subset \{a, b\}$. However, the set $\{a, b\}$ is not a nhd of the point b, since no open set G exists such that $b \in G \subset \{a, c\}$.

Remark 5.13: The rg η -nhd N of $x \in X$ need not be a rg η -open in X.

Example 5.14: Let $X = \{a, b, c\}$ with $\Im = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then $rg\eta$ -O(X) = $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. The set $\{c\}$ is a $rg\eta$ -open set, but it is a $rg\eta$ -nhd of $\{c\}$. Since $\{c\}$ is a $rg\eta$ -open set such that $c \in \{c\} \subset \{b, c\}$.

Theorem 5.15: If a subset N of a space X is $rg\eta$ -open, then N is $rg\eta$ -nhd of each of all its points.

Volume 10 Issue 11, November 2021 www.ijsr.net

Proof: Suppose N is rg η -open. Let $x \in N$ be an arbitrary point. We claim that N is a rg η -nhd of x. Since N is a rg η -open set and $x \in N \subset N$, it follows that N is a rg η -nhd of all of its points.

Remark 5.16: In general, a rg η -nhd of $x \in X$ need not be a nhd of $x \in X$ as seen from the following example.

Example 5.17: Let $X = \{a, b, c\}$ with $\mathfrak{I} = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then $rg\eta$ -O(X) = $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. The set $\{a, b\}$ is a $rg\eta$ -nhd of b, since the $rg\eta$ -open set $\{b\}$ is such that $b \in \{b\} \subset \{a, b\}$. Also the set $\{a, b\}$ is a $rg\eta$ -nhd point of $\{b\}$, since the $rg\eta$ -open set $\{b\}$ is such that $b \in \{b\} \subset \{a, b\}$. Also the set $\{a, b\}$ is a $rg\eta$ -nhd of each of its points). However the set $\{a, b\}$ is not a $rg\eta$ -open set in X.

Theorem 5.18: Let X be a topological space. If F is a rgnclosed subset of X and $x \in F^c$ then there exists a rgn-nhd N of x such that $N \cap F = \phi$.

Proof: Let X be an rg η -closed subset of X and $x \in F^c$. Then F^c is a rg η -open set of X. So by **Theorem 5.15** F^c contains a rg η -nhd of each of its points. Hence there exists a rg η -nhd N of x such that $N \cap F^c$. (i.e $N \cap F = \phi$).

5. Conclusion

The regular generalized η -closed set is defined and proved that the class forms a topology. The rg η -closed set can be used to derive a new decomposition of unity, closed map and open map, homeomorphism, closure and interior and new separation axioms. This idea can be extended to bitopological and fuzzy topological spaces.

References

- S. P. Arya and T. M. Nour, Characterizations of snormal spaces, Indian J. Pure Appl. Math., 21(1990), 717-719.
- [2] Arockiarani and C. Janaki, πgα-closed set and Quasi αnormal spaces, Acta Ciencia Indica Vol. XXXIII M. no. 2, (2007), 657-666.
- [3] A. Aslim, A. Caksu Guler and T. Noiri, On π gs-closed sets in topological spaces, Acta Math. Hungar., **112**(2006), 275-283.
- [4] J. Dontchev and T. Noiri, Quasi-normal spaces and πgclosed sets, Acta Math. Hungar. 89 (2000), no. 3, 211-219.
- [5] H. Kumar and M. C. Sharma, η-separation axioms in topological spaces, Jour. of Emerging Tech. and Innov. Res. Vol. 8, Issue 5, (2021), 516-524.
- [6] H. Kumar, $\pi g\eta$ -closed sets and some related topics, Jour. of Emerging Tech. and Innov. Res. Vol. 8, Issue 6, (2021), 367-374.
- [7] N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), **19**(1970), 89-96.
- [9] H. Maki, K. Balachandran, and R. Devi, Associated

Volume 10 Issue 11, November 2021

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR211120142704

topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math. 15 (1994), 51–63.

- [10] H. Maki, R. Devi and K. Balachandran, Generalized αclosed sets in topology, Bull. Fukuoka Univ. Ed., Part-III, 42(1993), 13-21.
- [11] O. Njastad, On some class of nearly open sets, Pacific. J. Math., 15(1965), 961-970.
- [12] M. H. Stone, Application of the theory of boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.
- [13] S. Sekar and G. Kumar, On gαr-closed sets in topological spaces, Int. Jour. of Pure and Appl. Maths. Vol. 108, 4(2016), 791-800.
- [14] D. Subbulakshmi, K. Sumathi, K. Indirani, η-open sets in topological spaces, International Jour. of Innovative and Exploring Engineering, Vol. 8, Issue 10S, 2019, 276-282.
- [15] D. Subbulakshmi, K. Sumathi, K. Indirani, gηcontinuous in topological spaces, International Jour. of Innovative and Exploring Engineering, Vol. 8, Issue 3, 2019, 677-282.
- [16] V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR, 178(1968), 778-779.