ISSN: 2319-7064 SJIF (2020): 7.803

Quasiaffine Inverses of Linear Operators in Hilbert Spaces

J. M. Mwanzia¹, M. Kavila², J. M. Khalagai³

1,2 Department of Mathematics and Actuarial Sciences
 Kenyatta University
P.O BOX 43844 - 00100 Nairobi, Kenya
 ³School of Mathematics
 University of Nairobi.
P.O BOX 30197- 00100 Nairobi, Kenya

Abstract: Let H denote a complex Hilbert space and B(H) denote the Banach algebra of bounded linear operators on H. Given operators $A, B, X \in B(H)$, we define $R(A,B) : B(H) \rightarrow B(H)$ by R(A,B)X = AXB - X and $C(A,B) : B(H) \rightarrow B(H)$ by C(A,B)X = AX - XB. In this paper, we investigate properties of the operators $A, B \in B(H)$ satisfying R(A,B)X = 0 or R(B,A)Y = 0 or both where X and Y are one-one or have a dense range or both. In particular, the case R(A,B)X = 0 = R(B,A)Y is of special interest with respect to invertibility of the operator A under some classes of operators.

Mathematics subject classification: 47B20

Keywords: quasiaffinity, quasiaffine inverse and invertibility of operators

1. Introduction

The study of operator equations R(A, B)X = 0 and C(A, B)X = 0 has been considered by a number of authors among them: Khalagai and Sheth [6] showed that if two operators $A, B \in B(H)$ are such that $A^2B = BA^2$ then AB = BA if $\sigma(A) \cap \sigma(-A) = \emptyset$ or A is normal and $0 \notin W(A)$ or $\{A\}' = \{A^{2m}\}'$ for some positive integer m. Duggal [1] was able to show that if A is dominant and B^* is M-hyponormal such that C(A, B)X = 0 then $C(A^*, B^*)X = 0$ for some operator X. Khalagai and Nyamai [4] showed that if C(A, B)X = 0 implies $C(A^*, B^*)X = 0$ then A and B are normal if X is one-one or has a dense range. Hongke and Chuan [2] showed that subnormal (normal) operator with left (right) quasiaffine inverse is invertible. They also showed that given two operators A, B \in B(H) such that A and B* are dominant operators and X a quasiaffinity then, R(A, B)X = 0 implies $R(A^*, B^*)X = 0$. Khalagai and Otieno [5] showed that if B is a quasiaffine inverse of A then both A and B are quasiaffinities and that a quasi-invertible partial isometry is unitary. Khalagai [3] showed that a left (right) invertible operator with a right (left) quasiaffine inverse is invertible and that quasiaffine inverse of an operator can be the usual inverse of the operator given $\sigma(X) \cap \sigma(-X) = \emptyset$, where X is the implementing quasiaffinity. In this paper, we make a continuation of this study by showing among other results that a quasiaffine inverse can be the usual inverse of the operator under some conditions different from the one stated by Khalagai [3]. We also deduce some corollaries pertaining to these results and show that a quasinormal partial isometry with a dense range is unitary.

2. Notations and Terminology

In this paper, we denote the range of an operator A by Ran A and its closure by \overline{RanA} The kernel of operator A will be denoted by Ker A. The commutator of two operators A and B is defined by [A, B] = AB - BA and two operators A and B are said to commute if [A, B] = 0. $\{A\}' = \{B : [A, B] = 0\}$. The numerical range of an operator A is denoted by W(A) where $W(A) = \{\langle Ax, x \rangle : ||x|| = 1\}$. The spectrum of A will be denoted by $\sigma(A)$ where $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is not invertible}\}$ An operator $A \in B(H)$ is said to be a quasiaffinity if it is injective and has a dense range. An operator A is said to be:

Volume 10 Issue 11, November 2021 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SR211116150836 DOI: 10.21275/SR211116150836 1076

ISSN: 2319-7064 SJIF (2020): 7.803

Dominant, if to each $\lambda \in \mathbb{C}$ there corresponds a number $M_{\lambda} \leq 1$ such that for all $x \in H ||(A - \lambda)^*x|| \leq M_{\lambda}||(A - \lambda)x||$.

M-Hyponormal, if there exist a constant $M \leq M_{\lambda}$ such that for all $x \in H ||(A - \lambda)^*x|| \leq M||(A - \lambda)x||$. Quasinormal, if $AA^*A = A^*AA$.

Partial isometry, if $A = AA^*A$.

Isometric, if $A^*A = I$.

Co-Isometric, if $AA^* = I$.

Unitary, if $A^*A = AA^* = I$.

3. Results

Theorem 3.1.

Let A, $B \in B(H)$. If X and Y are quasiaffinities such that AXB = X and BYA = Y.

Then we have

$$(i) [A, XY] = 0$$

 $(ii) [B, YX] = 0$

Proof

- (i) From AXB = X we have by post multiplying each side by Y that AXBY = XY. This implies AXBYA = XYA. Since BYA = Y, we have XYA = AXBYA = AXY. Hence the result, XYA = AXY.
- (ii) From BYA = Y we have by post multiplying each side by X, BYAX = YX. This implies BYAXB = YXB. Since AXB = X, YXB = BYAXB = BYX. Hence the result, YXB = BYX.
- **Remark 3.2.** We note from the Theorem 3.1 above that if B is quasiaffine inverse of A then both operators commute with a product of the implementing quasiaffinities in a given order.

Corollary 3.3. Let
$$A$$
, $B \in B(H)$ be such that $AXB = X$ and $A^*XB^* = X$. Then we have (i) $[A, XX^*] = 0$. (ii) $[B, X^*X] = 0$.

Proof

Given AXB = X implies $A^*XB^* = X$, by taking adjoint both sides we have $BX^*A = X^*$. Thus, in the Theorem 3.1 above, we replace Y with X^* hence the proof carries through.

Corollary 3.4. Let A, $B \in B(H)$ be such that AXB = X where A and B * are dominant and X is a quasiaffinity. Then B is a quasiaffine inverse of A.

Proof

Since A and B* are dominant then AXB = X implies $A^*XB^* = X$. Taking adjoint gives $BX^*A = X^*$ where X^* is also a quasiaffinity. Hence B is a quasiaffine inverse of A.

Remark 3.5. We note that in Theorem 3 (ii) of Khalagai[3] the condition

Volume 10 Issue 11, November 2021

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1077

ISSN: 2319-7064 SJIF (2020): 7.803

 $\sigma(X) \cap \sigma(-X) = \emptyset$ can be replaced with a number of other conditions, which are less stringent by using the following results due to Khalagai and Sheth [6].

Theorem A. (Khalagai and Sheth [6]) Let $A, B \in B(H)$ be such that $[B, A^2] = 0$. Then [B, A] = 0 under any of the following conditions.

- (i) $\sigma(A) \cap \sigma(-A) = \emptyset$.
- (ii) A is normal and $0 \notin W(A)$
- $(iii)\{A\}' = \{A^{2m}\}'$ for some positive integer m.

Theorem 3.6. Let A, $B \in B(H)$ be such that AXB = X implies $A^*XB^* = X$ where X is self - adjoint. Then $B = A^{-1}$ under any of the following conditions: (i) $0 \notin W(X)$.

 $(ii)\{X\}' = \{X^{2m}\}'$ for some positive integer m and X is one one or has a dense range.

Proof

Given that AXB = X implies $A^*XB^* = X$, we have by Corollary 3.3 above $[A, XX^*] = 0 = [B, X^*X]$.

Since X is self-adjoint, then $X = X^*$ and $X^*X = X^2$. This implies $[A, X^2] = 0 = [B, X^2]$. By Theorem A above, each of conditions (i) and (ii) implies [A, X] = 0 and [B, X] = 0.

Consequently, $[A^*, X] = 0$ and $[B^*, X] = 0$. Now from AXB = X, we have ABX = X implying (AB - I)X = 0. Since $0 \notin W(X)$ then X has a dense range. Thus, AB - I = 0. That is AB = I. Also, from $A^*XB^* = X$ taking adjoint, we have BXA = X.

If [A, X] = 0, then BAX = X. That is (BA - I)X = 0. Since X has a dense range then $BA - I = 0 \Leftrightarrow BA = I$. For part (ii) since X has a dense range or is one-one, we also have that (AB - I)X = 0 and (BA - I)X = 0. That is:

 $AB = I \text{ and } BA = I. \text{ Hence } B = A^{-1}.$

Remark 3.7. It follows that if X is a quasiaffinity in Theorem 3.6 above then the quasi-affine inverse B of A is the same as the inverse of A under any of the two conditions.

Corollary 3.8. [Khalagai[3] Theorem 3(ii)] Let A, $B \in B(H)$ be such that A and B^* are dominant satisfying the equation AXB = X and X is self-adjoint and a quasiaffinity. Then B is the quasi-affine inverse of A which is equal to A^{-1} under any of the following conditions:

(i) $0 \notin W(X)$. (ii) $\{X\}' = \{X^{2m}\}'$ for some positive integer m and X is one one or has a dense range.

Proof

We first note that if A and B^* are dominant operators then AXB = X implies $A^* X B^* = X$ and by tracing the proof of Theorem 3.6 above the results are obtained.

Corollary 3.9. Let $A, B \in B(H)$. If R(A, B)X = 0 implies $R(A^*, B^*)X = 0$ with X being a quasiaffinity then:

- (i) A is co-isometric if and only if B is isometric.
- (ii) A is isometric if and only if B is co-isometric.

Volume 10 Issue 11, November 2021

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1078

ISSN: 2319-7064 SJIF (2020): 7.803

Proof

To proof (i) If AXB = X and $A^*XB^* = X$ then $X = AXB = AA^*XB^*B$. That is $X = AA^*XB^*B$. If B is isometric then $B^*B = I$ and $X = AA^*XB^*B = AA^*X$. This implies $X - AA^*X$ and $(I - AA^*)X = 0$. Since X has a dense range then $I - AA^* = 0$ and $AA^* = I$. Similarly, we have $X = AA^*XB^*B$. Substituting $AA^* = I$ we have $X = XB^*B$ and $X - XB^*B = 0$. This implies $X(I - B^*B) = 0$. Since X is injective then $I - B^*B = 0$ implying $B^*B = I$.

To Proof (ii), We rearrange the equations AXB = X and $A^*XB^* = X$ so that $X = A^*XB^* = A^*AXBB^*$ implying $X = A^*AXBB^*$. If B is co-isometric then $BB^* = I$ and $X = A^*AXBB^* = A^*AX$. This implies $X - A^*AX = 0$ and $(I - A^*A)X = 0$. Since X has a dense range then $I - A^*A = 0 \Leftrightarrow A^*A = I$. Also, $X = A^*AXBB^*$. Substituting $A^*A = I$ we obtain $X = XBB^* \Leftrightarrow X - XB^*B = 0$. This implies $X(I - BB^*) = 0$. Since X is injective then $I - BB^* = 0$ implying $BB^* = I$.

Corollary 3.10. Let $A, B \in B(H)$. If R(A, B)X = 0 implies $R(A^*, B^*)X = 0$ with X being a quasiaffinity then A is unitary if and only if B is unitary.

Proof

If A is unitary then its isometric and co-isometric. From Corollary 3.9, B is co-isometric and isometric thus unitary. Similarly, if B is unitary, it is-isometric and co - isometric thus by Corollary 3.9, A is co-isometric and isometric.

Corollary 3.11. Let $A, B \in B(H)$ with A and B^* dominant. If R(A, B)X = 0 where X is a quasiaffinity, then A is unitary if and only if B is unitary.

Proof

If A and B* are dominant then R(A, B)X = 0 implies $R(A^*, B^*)X = 0$. From Corollary 3.10 the results follow.

Theorem 3.12

Let A, $B \in B(H)$ be such that

R(A, B)X = 0 or R(B, A)Y = 0. If there exist an operator $B_1 \in B(H)$ such that:

- (i) $R(A, B_1)X = 0$ where A and X are one to-one then $B_1 = B$
- (ii) $R(B_1, A)Y = 0$ where A and Y have a dense range then $B_1 = B$.

Proof

(i) If R(A, B)X = 0 and $AXB_1 = X$ then $AXB = AXB_1 = X$. Thus, $AXB_1 - AXB = 0$. If A and X are oneto-one then, $A(XB_1 - XB) = 0$ implies $X(B_1 - B) = 0$ and

 $B_1 - B = 0$. Thus, $B_1 = B$.

(ii) If R(B, A)Y = 0 and $R(B_1, A)Y = 0$ then $BYA = B_1YA = Y$. Thus, $BYA - B_1YA = 0$ and $(BY - B_1Y)A = 0$. If A and Y have a dense range then $(B - B_1)Y = 0$ and $(B - B_1) = 0$. Thus $B_1 = B$.

Theorem B. (Khalagai and Otieno [5] Theorem 1) Let $A \in B(H)$. If B is a quasiaffine inverse of A then both A and B are quasiaffinities.

Corollary 3.13. Let A, $B \in B(H)$ be such that B is quasiaffine inverse of A where X and Y are the implementing quasiaffinities. If there exist operator $B_1 \in B(H)$ such that $R(A, B_1)X = 0$ and $R(B_1, A)Y = 0$ then $B_1 = B$.

Volume 10 Issue 11, November 2021

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1079

ISSN: 2319-7064 SJIF (2020): 7.803

Proof

From Theorem B above both A and B are quasiaffinities. This implies A and B are one-toone and have dense range. By tracing Theorem 3.12 proof follows through.

Remark 3.14 We note from Theorem 3.12 and Corollary 3.13 above that a quasiaffine inverse is indeed unique.

Theorem 3.15. Let $A, B, X \in B(H)$ satisfy R(A, B)X = 0. If X has dense range and A is quasinormal partial isometry then A is unitary.

Proof

If A is quasinormal partial isometry then $A = AA^*A = A^*AA$. If X = AXB then

$$X = AXB = AA^*AXB = A^*AAXB = AA^*X.$$

This means $X = AA^*X$ and $(I - AA^*)X = 0$. If X has a dense range then $I - AA^* = 0$ implying $AA^* = I$. Similarly, $X = A^*AAXB = A^*AX$ implying $X = A^*AX$ and

$$(I - A^*A)X = 0$$
. If X has a dense range then $I - A^*A = 0$ and $A^*A = I$. Thus, $A^*A = AA^* = I$.

Corollary 3.16. Let $A, B, X \in B(H)$ satisfy R(A, B)X = 0. If X is a quasiaffinity and A is quasinormal partial isometry then A is unitary.

Proof

If X is a quasiaffinity then X has a dense range. By tracing Theorem 3.15 the results follows.

Corollary 3.17. Let $A, B \in B(H)$. If a quasiaffine inverse B of A is quasinormal partial isometry then it is unitary.

Proof

If B is a quasiaffine inverse of A then there exist quasiaffinities X and Y such that

R(A, B)X = 0 and R(B, A)Y = 0. If B is a quasinormal partial isometry and R(B, A)Y = 0 then by Corollary 3.16 the proof carries through.

Remark 3.18. Khalagai and Otieno [5] showed that if a partial isometry is a quasiaffinity then it is unitary. In Corollary 3.19, we extend the result to a quasinormal partial isometry with a dense range and notice that it is indeed invertible.

Corollary 3.19. Let $A \in B(H)$ be a quasinormal partial isometry. If A has a dense range then A is unitary.

Proof

If A is a quasinormal partial isometry then $A = AA^*A = A^*$ AA. This means $A - AA^*A = 0$ and $(I - AA^*)A = 0$. Since A has a dense range then, $I - AA^* = 0$. That is $AA^* = I$. Also, $A = A^*AA$ and $A - A^*AA = 0$. This implies $(I - A^*A)A = 0$. Since A has a dense range then $I - A^*A = 0$ and $A^*A = I$. Thus, $A^*A = AA^* = I$.

Theorem 3.20. Let $A, B \in B(H)$ such that R(A, B)X = 0 for a quasiaffinity X. If: (i) A isometric operator then $C(A^*, B)X = 0$. (ii) $C(A^*, B)X = 0$ then A is co-isometric.

Volume 10 Issue 11, November 2021

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SR211116150836 DOI: 10.21275/SR211116150836 1080

ISSN: 2319-7064 SJIF (2020): 7.803

Proof

- (i) If R(A, B)X = 0 and given that A is isometric then $XB = A^*AXB = A^*X$. This implies $A^*X = XB$ hence $C(A^*, B)X = 0$.
- (ii) If $A^*X = XB$ then multiplying both sides by A from the left we have

 $AA^*X = AXB = X$. Thus, $AA^*X = X \Leftrightarrow AA^*X - X = 0 \Leftrightarrow (AA^* - I)X = 0$. Since X has a dense range then $AA^* - I = 0 \Leftrightarrow AA^* = I$.

Corollary 3.21. Let A, $B \in B(H)$ such that R(A, B)X = 0 where X is one-to-one. If:

- (i) B is co-isometric operator then $C(A, B^*)X = 0$.
- (ii) $C(A, B^*)X = 0$ then B is isometric.

Proof

Following the steps of Theorem 3.20, we multiply AXB = X by B^* from the right we have $AXBB^* = XB^*$. Since B is co-isometric then $BB^* = I$ and $AX = XB^*$ also multiplying $AX = XB^*$ by B from the right we obtain $AXB = XB^*B$. Since AXB = X then $XB^*B = AXB = X$. Thus $XB^*B = X$ and $X - XB^*B = 0$. Since X is one-to-one, then $X(I - B^*B) = 0$ implies $I - B^*B = 0$ and $B^*B = I$

Theorem 3.22.

Let $A, B \in B(H)$ be such that C(A, B)

- B)X = 0 for some operator X. If:
- (i) A is a one-to-one partial isometry then $R(A^*, B)X = 0$.
- (ii) B is a partial isometry with a dense range then $R(A, B^*)X = 0$.

Proof.

If A is a partial isometry then $A = AA^*A$ and C(A, B)X = 0. It follows that

 $AX = AA^*AX = AA^*XB$. Thus, $AX = AA^*XB$ and $AX - AA^*XB = 0$. This implies $A(X - A^*XB) = 0$ and since A is one-to-one then, $X - A^*XB = 0$ and $A^*XB = X$. That is $R(A^*, B)X = 0$. Similarly, If B is a partial isometry and C(A, B)X = 0 then it follows that $XB = XBB^*B = AXB^*B$. Thus, $XB = AXB^*B$. This implies $(X - AXB^*)B = 0$. Since B has a dense range then, $X - AXB^* = 0$ and $AXB^* = X$. That is $R(A, B^*)X = 0$.

Corollary 3.23. Let $A, B \in B(H)$ be such that A^* is dominant and B is M-hyponormal operator satisfying $C(A^*, B^*)X = 0$ for some operator X. If:

- (i) A is a one-to-one partial isometry then $R(A^*, B)X = 0$.
- (ii) B is a partial isometry with a dense range then $R(A, B^*)X = 0$.

Proof

If A^* is dominant and B is M-hyponormal operator then $C(A^*, B^*)X = 0$ imply C(A, B)X = 0. Thus, by **Theorem 3.22** the proof follows through.

Theorem 3.24.

Let A, B, $X \in B(H)$ be such that C(A, B)X = 0 imply

 $C(A^*, B^*)X = 0$. If X is a quasiaffinity then A and B are unitary operators under each of the following conditions:

- (i) A is a one-to-one partial isometry.
- (ii) B is a partial isometry with a dense range.

Volume 10 Issue 11, November 2021

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1081

ISSN: 2319-7064 SJIF (2020): 7.803

Proof

To proof (i): If C(A, B)X = 0 then $X = A^*XB$ and $C(A^*, B^*)X = 0$. Thus, $X = A^*XB = XB^*B$ implying $X = XB^*B$ and $X - XB^*B = 0$ and $X(I - B^*B) = 0$. Since X is one-to-one then $I - B^*B = 0$ implies $B^*B = I$. Since B is normal then $I = B^*B = BB^*$. Similarly, $X = A^*XB = A^*AX$ implying $X = A^*AX$ and $X - A^*AX = 0$. Thus, $(I - A^*A)X = 0$. Since X has a dense range then $I - A^*A = 0$ and $A^*A = I$. Since C(A, B)X = 0 implies $C(A^*, B^*)X = 0$ and X has a dense range then X is normal implying $X = A^*A = AA^* = I$.

To proof (ii): If B is a partial isometry with a dense range and C(A, B)X = 0 then $X = AXB^*$. Since C(A, B)X = 0 imply $C(A^*, B^*)X = 0$ then $X = AXB^* = XBB^*$ and $X = XBB^*$ Thus $X - XBB^* = 0$ and $X(I - BB^*) = 0$. Since X is one-to-one then $I - BB^* = 0$ and $BB^* = I$. B is normal implying $I = BB^* = B^*B$. Similarly,

 $X = AXB^* = AA^*X$ implying $X = AA^*X$ and $X - AA^*X = 0$. Thus, $(I - AA^*)X = 0$. Since X has a dense range then $I - AA^* = 0$ and $AA^* = I$. Since A is normal then $A^*A = AA^* = I$.

Corollary 3.25.

Let A, $B \in B(H)$ be such that A is dominant and B^* is

M-hyponormal satisfying

- C(A, B)X = 0. If X is a quasiaffinity then A and B are unitary operators under each of the following conditions:
- (i) A is a one-to-one partial isometry.
- (ii)B is a partial isometry with a dense range.

Proof

If A is dominant and B^* is M-hyponormal operator then C(A, B)X = 0 implies $C(A^*, B^*)X = 0$. By tracing Theorem 3.24 the proof carries through.

References

- [1] Duggal B.P., On dominant operators, Arch. Maths. 46 (1986), 353-359.
- [2]**Hong** Ke D. and **Chuan** H.J., Quasiaffine inverses of linear operators, Acta Math. Sinica, 28 (5) (1985), 663-669.
- [3]Khalagai J.M., On quasiaffine inverse of operators, Kenya J. Sci. Tech. Series A 10 (2) (1996), 107-116.
- [4]**Khalagai** J.M and **Nyamai** B., On Quasiaffinity and Quasisimilarity of Operators, Kenya J. Sci. Tech. Series A (2006), 14-17.
- [5]**Khalagai** J.M and **Otieno** M.O.A.E., On quasiaffine inverse of partial isometries, Bull. Of the Allahabad Math. Soc.15 (2000), 35-40.
- [6]**Khalagai** J.M and **Sheth** I.H, On the Operator equation AH = KA, Mathematics Today. (1987)5,29-36.

Volume 10 Issue 11, November 2021 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SR211116150836 DOI: 10.21275/SR211116150836 1082