
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Comprehensive Study of Various Sorting

Algorithms

Cherukuri Nischay Sai

Bachelor’s Student, Computer Science Engineering (CSE) Malla Reddy College of Engineering, Maisamaguda, Hyderabad

Abstract: Sorting is a vital data structure activity that facilitates finding, organizing, and locating information. This research paper

presents the primary sorting algorithm types, implementation of algorithms, examples, advantages, disadvantages are discussed. Sorting is

regarded as a basic process in computer science since it serves as an intermediary step in a variety of activities. Finally, several sorting

algorithms are compared with their practical efficiency, and values are recorded in tabular and graphical form. This paper aims to conduct

a review of several sorting algorithms and evaluate the various performance variables among them.

Keywords: Bubble sort, Selection sort, Insertion sort, Merge sort, Quicksort, Heap sort, Counting sort, Bucket sort, Radix sort

1. Introduction

Sorting is also called the ordering of the data that arranges the

elements of a list in a particular order, either ascending order

or descending order. The output is the reordering of the input

or permutation. Sorting algorithm can be considered one of the

fundamental tasks in many computer applications under

searching in an ordered list takes less time when compared

with an unsorted list. we can optimize searching to a high

level if the data is in sorted order

A real-life scenario example of sorting is Dictionary where it

stores the words in alphabetical order, so searching of any

words becomes simple

2. Sorting Algorithms Classification:

Sorting algorithms are classified based on the following

parameters

 By the number of comparisons:

In this method, sorting algorithms are categorized based on

the number of comparisons. For comparison-based sorting

algorithms, the best case is O(nlogn), and the worst case is

O(). Comparison-based sorting algorithms need at least

O(nlogn) comparisons for most inputs.

 By memory usage:

There are two kinds of memory usage patterns, such as "In-

place" sorting in which the algorithm needs constant

memory size, i.e., O(1) beyond the items being stored. In

contrast, other sorting methods use additional memory

space according to the input size called "out-place" sorting.

In-place sorting is slower than the sorting algorithms that

use extra memory. Sometimes O(logn) additional memory

is considered for "in-place.

 By recursion:

Sorting algorithms are classified as recursive or non-

recursive. Quicksort is the example for recursive, while

insertion and selection sort is an example for non-

recursive. Merge sort is an algorithm that uses both.

 By stability:

A stable sorting algorithm maintains the relative order of

elements with equal keys (equivalent elements retain their

relative positions even after sorting. For instance, a sorting

algorithm is stable whenever there are two elements A[0]

and A[1] with the same value and with A[0] is shown up

before A[1] in the unsorted list, A[0] will also show up

before A[1] in the sorted list.

 By adaptability:
In some sorting algorithms, the complexity changes based

on the pre-sorted input, i.e., a pre-sorted list of input affects

the running time. The algorithms that take this adaptability

into account are called adaptive algorithms. For instance,

Quicksort is the adaptive algorithm in which time

complexity depends upon the initial input sequence. If the

input is already sorted, then time complexity will be O(),

and if the input is not sorted then time complexity will be

O(nlogn).

 Internal sorting:

Internal sorting algorithms are sorting algorithms that sort

using main memory or primary memory. This type of

algorithm presumes high-speed random access to all

memory. Some of the common algorithms that use internal

sorting are insertion Sort, Bubble Sort, and Quicksort.

 External Sorting:

Sorting algorithms that utilize external memory or

secondary memory during the sorting come under this

category. External sorting algorithms are comparatively

slower than internal sorting algorithms. Merge sort uses

external sorting.

3. Various Sorting Algorithms

Sorting algorithms are divided into two different categories:

Paper ID: SR211114140358 DOI: 10.21275/SR211114140358 1044

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Comparison sort:
In this type, the elements are sorted by comparing them with

one another

Comparison based algorithms

1) Bubble sort

2) Selection sort

3) Insertion sort

4) Merge sort

5) Quicksort

6) Heapsort

Non- comparison sort:

In non-comparison algorithms, they are not sorted based on

comparing with other elements. Instead, each algorithm uses

its approach.

Non-comparison based algorithms

1) Counting sort

2) Bucket sort

3) Radix sort

3.1. Bubble sort

Bubble sort is also referred to as comparison sort, and it is a

simple and the slowest sorting algorithm. Bubble sort works

by iterating the first element to the last, comparing every

element in the list with its neighboring elements, and

swapping them if they are in undesirable order. This process is

repeated until the algorithm has gone through the entire list

without swapping any elements, indicating that the list is

sorted. When the size of the input n is increased, the algorithm

works slower. Hence it is considered the most inefficient

sorting algorithm with a large amount of data.

Implementation:

void bubbleSort(int array[], int size) {

 for (int pass = 0; pass < pass - 1; ++pass) {

 // loop to compare array elements

 for (int i = 0; i < size - pass - 1; ++i) {

 if (array[i] > array[i + 1]) {

 int temp = array[i];

 array[i] = array[i + 1];

 array[i + 1] = temp;

 }}

}}

Example:

Figure 1: Example of Bubble Sort

3.2. Optimized Bubblesort:

In a regular Binary search, all the comparisons are made even

if the list is sorted, and it increases execution time. To solve,

we need to introduce a variable swapped. If there occurs

changing of elements, then the value of the swap is set to true.

Otherwise, it is said to be false.

Implementation:

void BubbleSortImproved(int A[], int N){

int pass, i, temp, swapped = 1;

for(pass = N – 1; pass >=0&& swapped; pass--)

swapped = 0;

for(i = 0; i <= pass; i++){

if(A[i] > A[i+1]){

temp = A[i];

A[i] = A[i+1];

A[i+1] = temp;

Swapped = 1;

}}}}

Advantages:

 It is easy to understand and simple to write, and takes few

lines of code.

Disadvantage:

 It takes more time to execute.

 It is inefficient for the large volume of data.

3.3. Selection sort

Selection sort is a fundamental sorting algorithm, and it is an

in-place comparison-based approach that separates the list into

two halves, the sorted part on the left end and the unsorted part

on the right. Initially, the sorted list is empty but, the unsorted

list is the whole list.

The smallest element in the unsorted array is picked and

swapped with the leftmost element, and that element becomes

Paper ID: SR211114140358 DOI: 10.21275/SR211114140358 1045

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

a part of the sorted array. This procedure is continued until all

items have been sorted.

Implementation:

void selection(int A[], int N){

int I, j, temp, min;

for (i = 0; i < N-1; i++){

min = i;

for(j = i+1; j < N; j++){

if(A[i] < A[min]){

min = j;

}

temp = A[min];

A[min] = A[i];

A[i] = temp;

}}

Example:

Figure 2: Example of Selection Sort

Advantages

 Selection sort is easy to implement.

 Selection sort does not require additional memory.

Disadvantages:

 It is not efficient for a large amount of data

3.4. Insertion sort

In Insertion sort each iteration removes one element from the

input data and inserts it into the proper place in the final sorted

list by comparing it to the adjacent elements. This operation

continues until the list is sorted in the desired order. Insertion

sort is an in-place algorithm and only needs a constant amount

of additional memory.

Insertion sort takes

comparisons and

 swaps in the average

case, and in the worst case, they are double.

Implementation:

void InsertionSort(int A[], int n){

int i, j, v;

for(i=1; i <s= n-1; i++){

v = A[i];

j = i;

while(A[j-1] > v && j >= 1){

A[j] = A[j-1];

j--;

}

A[j] = v;

}}

Example:

Figure 3: Example of Insertion Sort

Advantages:

 Simple to implement.

 Efficient for small data.

 Maintains relative order of input data if the keys are the

same.

Disadvantages:

 Inefficient for a large amount of data.

3.5. Merge sort

Merge sort uses Divide and Conquer strategy to solve a given

problem. It works by splitting the unsorted array into several

sub-lists in which each sub-list consists of one element.

Generally, an array with one element is considered to be

sorted. Finally, it merges each sub-array to generate a sorted

array. Merge sort is a stable sort, implying it keeps the relative

order of elements with the same key. Merge sort may also be

implemented non-recursively, although most people prefer the

recursive technique since non-recursive is inefficient.

Implementation:

void mergeSort(int a[], int start, int end)

{

 int mid;

 if(start<end)

 {

 mid = (start+end)/2;

Paper ID: SR211114140358 DOI: 10.21275/SR211114140358 1046

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 mergeSort(a,start,mid);

 mergeSort(a,mid+1,end);

 merge(a,start,mid,end);

 }}

void merge(int a[], int start, int mid, int end)

{

 int i=start,j=mid+1,k,index = start;

 int temp[10];

 while(i<=mid && j<=end)

 {

 if(a[i]<a[j])

 {

 temp[index] = a[i];

 i = i+1;

 }

 else

 {

 temp[index] = a[j];

 j = j+1;

 }

 index++;

 }

 if(i>mid)

 {

 while(j<=end)

 {

 temp[index] = a[j];

 index++;

 j++;

} }

 else

 {

 while(i<=mid)

 {

 temp[index] = a[i];

 index++;

 i++;

} }

 k = start;

 while(k<index)

 {

 a[k]=temp[k];

 k++;

} }

Example:

Implementation of merge sort is performed with 8 elements in

the list.

 Figure 4: Example of Merge Sort

Advantages:

 Fast for large arrays, unlike insertion, selection, and a

bubble sort, it doesn't traverse the whole array many times.

Disadvantages:

 Merge sort is works slow for small arrays.

 The algorithm does the whole working process even if the

array is sorted.

 It requires extra space to store sub arrays.

3.6. Quicksort:

Quicksort is a highly efficient sorting algorithm, and it uses a

divide and conquer approach. The name "Quicksort" comes

from the fact that it can sort the data elements significantly

faster than any other sorting algorithm. It works by selecting

an element from the unsorted array named pivot and splitting

it into two parts called sub-arrays, one with elements greater

than the pivot and the other with elements smaller than a

pivot. Repeat the algorithm repeatedly for both halves of the

array. Quicksort is also called a partition exchange sort.

Implementation:

void QuickSort(int A[], int low, int high){

int pivot;

if(high > low){

pivot = Partion(A, low, high);

QuickSort(A, low, pivot – 1);

QuickSort(A, pivot + 1, high);

}}

int Partion(int A, int low, int high){

int left, right, pivot_item = A[low];

left = low;

right = high;

while(left < right){

while(A[left] <= pivot_item)

left++;

while(A[right] > pivot_item)

right--;

if(left< right)

swap(A, left, right);

}

A[low] = A[right];

A[right] = pivot_item;

return right;

Paper ID: SR211114140358 DOI: 10.21275/SR211114140358 1047

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

}

Example: Implementation of Quick sort is shown below.

Figure 5: Example of Quick Sort

Randomized Quick sort:

In order to reduce the probability of getting the worst case in

quicksort, we can add randomization to the algorithm. We can

add randomization by randomly choosing an element in the

input data for a pivot. We will use a randomly chosen element

from the subarray A[low..high] in the randomized version of

Quicksort.

Advantages:

 Quicksort is fast and efficient when dealing with a large

amount of data.

 Quicksort is an in-place in which no additional storage is

required.

Disadvantages:

 If the list is already sorted, then bubble sort is more

efficient than quicksort.

 Quicksort's worst-case performance is the same as average

performances of the bubble, insertion, and selection sorts.

3.7 Heap sort

Heap sort is based on the heap data structure and in-place

sorting algorithm. Heap is a specialized tree-based data

structure that satisfies the heap property binary tree is the most

commonly used. Heap sort works by first constructing a heap

from the input array, then removing the most significant

element from the heap and storing it at the end of the array,

i.e., at the n-1 position. When it eliminates the heap's

maximum element, it restores the heap property until the heap

is empty. As a result, it removes the second largest element

from the heap and places it in position n-2, and so on. The

algorithm repeats this operation until the array is sorted.

Heapsort is not a stable sort because it does not preserve the

relative order of elements with equal keys.

Implementation:

void heapify(int A[], int size, int i)

{

int largest = i;

int left = 2*i + 1;

int right = 2*i + 2;

 if (left < size && A[left] >A[largest])

largest = left;

if (right < size && A[right] > A[largest])

largest = right;

 if (largest != i)

{

 int temp = A[i];

 A[i]= A[largest];

 A[largest] = temp;

heapify(A, size, largest);

}}

 void heapSort(int A[], int size)

{

int i;

for (i = size / 2 - 1; i >= 0; i--)

heapify(A, size, i);

for (i=size-1; i>=0; i--)

{

int temp = A[0];

 A[0]= A[i];

 A[i] = temp;

heapify(A, i, 0);

} }

Example: Implementation Heap sort is shown below with 10

elements in the array.

Figure 6: Example of Heap Sort

Advantages:

 Heap sort can be implemented as an in-place sorting

algorithm.

 Heap sort is widely used because of its efficiency, and

memory utilization is minimal.

Disadvantages:

 Heap sort is not a stable sort.

 In many cases, Quicksort is more efficient than Heap sort.

Paper ID: SR211114140358 DOI: 10.21275/SR211114140358 1048

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.8. Counting sort

Counting sort is an integer sorting algorithm with linear

running time complexity. For some integer K, counting sort

assumes that each element is an integer in the range 1 to K. It

works by counting the number of occurrences of each element

in the input, usually called keys, and store this information in

another array, we need to modify the array to identify the

location of each key value in the output sequence, use the

prefix sum on the counts. Counting sort is not a comparison

sort, and it preserves the relative order of the elements with

equal keys.

In counting sort, A[0 ..n – 1] is the input array with length n,

and we need two more arrays: let us assume array B[0 ..n – 1]

contains the sorted output and array C[0 ..K – 1] provides

temporary storage.

Implementation:

void CountingSort(int A[], int n, int B[], int K){

int C[k], i, j;

for(i=0; i<K; i++)

C[i] = 0;

for(j = 0; j < n; j++)

C[A[j]] = C[A[j]] + 1;

for(i=1; i < K; i++)

C [i] = C [i] + C[i-1];

for(j = n-1; j >= 0; j--){

B[C[A[j]]] = A[j];

C[A[j]] = C[A[j]] – 1;

}}

Example:

Figure 7: Example of Count Sort

Advantages:

 Count sort has a Linear Time Complexity. Since it is not a

comparison-based sorting, it is not lower bounded by

O(nlogn).

Disadvantages:

 Counting sort is not suitable for extensive input data.

 Counting sort cannot be used for an array with non-integer

elements.

3.9. Bucket sort:

Bucket sort is a sorting algorithm that divides the unsorted

array elements into several buckets. Each bucket is sorted

independently, either using various sorting algorithms or

recursively implement the same technique. Bucket sort finally

gathers the elements in the sorted order.

Bucket sort can be understood as a scatter-order-gather

approach because elements are first scattered in buckets,

ordered within them, and finally gathered into a sorted list.

Implementation:

#define BUCKETS 10

void BucketSort(int A[], int array_size) {

int i, j, k;

int buckets[BUCKETS];

for(j = 0; j < BUCKETS; j++)

buckets[j]=0;

for(i=0; i< array_size; i++)

++buckets[A[i]];

for(i=0,j=0;j<BUCKETS; j++)

for(k= buckets[j]; k >0; --k)

A[i++] = j;

}

Example:

Figure 8: Example of Bucket Sort

Advantages:

 Each bucket may be processed individually using bucket

sort. As a result, after sorting the primary array, you'll

usually need to sort much smaller arrays as a subsequent

step.

Disadvantages:

 The performance of bucket sort depends on the number of

buckets selected, which may need some additional

performance adjustment compared to other algorithms.

 Bucket sort's efficiency is dependent on the distribution of

the input values. Thus it's not worth it if you have closely

clustered values.

Paper ID: SR211114140358 DOI: 10.21275/SR211114140358 1049

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.10 Radix sort

Radix sort is one of the sorting algorithms used to sort a list of

integer numbers in order. In Radix sort, first sort the elements

based on the least significant digit (last digit). These results

are again sorted by the next least significant digit(second

digit). Repeat for all numbers until we reach the most

significant digits. Use some stable sort to sort them by the last

digit. Then, stable sort them by the second least significant

digit, then by the third, and so on. If we use counting sort as

the stable sort, the total time is O(nd) ≈ O(n).

The number of passes required by the Radix sort algorithm

equals the number of digits contained in the biggest number in

the list of numbers. For example, if the biggest number is a

three-digit number, the list is sorted three times.

Implementation:

int getMax(int list[], int n) {

 int mx = list[0];

 int i;

 for (i = 1; i < n; i++)

 if (list[i] > mx)

 mx = list[i];

 return mx;

}

void countSort(int list[], int n, int exp) {

 int output[n];

 int i, count[10] = { 0 };

 for (i = 0; i < n; i++)

 count[(list[i] / exp) % 10]++;

 for (i = 1; i < 10; i++)

 count[i] += count[i - 1];

for (i = n - 1; i >= 0; i--) {

 output[count[(list[i] / exp) % 10] - 1] = list[i];

 count[(list[i] / exp) % 10]--;

 }

 for (i = 0; i < n; i++)

 list[i] = output[i];

}

void radixsort(int list[], int n) {

 int m = getMax(list, n);

int exp;

 for (exp = 1; m / exp > 0; exp *= 10)

 countSort(list, n, exp);

}

Examples:

Figure 9: Example of Radix Sort

Advantages:

 Radix algorithm works fast when the array elements have

less range of the values that they can possess, which results

in short keys.

 Radix Sort is a stable sort since it maintains the relative

order of elements with equal values.

Disadvantages:

 Radix Sort is not as flexible as other sorts since it is

dependent on numbers or letters. As a result, for every

different type of data must be rebuilt.

 Radix sort is not an in-place sorting algorithm, so it

requires extra additional space.4

4. Analysis of various Sorting Algorithms:

The comparison of various search algorithms is done based on

their time and space complexity is shown below.

Table 1: Analysis of Various Sorting Algorithms

5. Experimental Analysis

5.1. Case 1: Results of Case 1 is shown in Table 1. It shows

running time of O(sorting algorithms, the size of array

varied from 1000 to 10000.

Table 2: Comparison of O(Sorting Algorithms
Number of

elements

Bubble

sort

Optimized

Bubble sort

Insertion

sort

Selection

sort

1000 0.013 0.008 0.0021 0.004

2000 0.037 0.025 0.006 0.009

3000 0.069 0.047 0.0150 0.020

5000 0.180 0.124 0.0398 0.053

10000 0.705 0.507 0.156 0.215

Paper ID: SR211114140358 DOI: 10.21275/SR211114140358 1050

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Graph 1: Comparison of O (Sorting Algorithms

5.2. Case 2: Results of Case 2 is shown in Table 2. It shows

running time of O(nlogn) sorting algorithms, the size of array

is varied from 1000 to 10000.

Table 3: Comparison of O(nlogn) Sorting Algorithms
Number of

elements
Quick sort

Randomized

Quick sort

Merge

sort
Heap sort

1000 0.0007 0.0005 0.0005 0.0004

2000 0.0009 0.0008 0.0009 0.0008

3000 0.0019 0.0010 0.0023 0.0012

5000 0.0022 0.0018 0.0024 0.0020

10000 0.0061 0.0037 0.0045 0.0042

Graph 2: Comparison of O (Sorting Algorithms

5.3. Case 3: Results of Case 3 is shown in Table 3. It shows

running time of Non-Comparison based sorting algorithms,

the size of array is varied from 1000 to 10000.

Table 4: Comparison of Non-Comparison Sorting Algorithms
Number of elements Counting sort Bucket sort Radix sort

1000 0.0030 0.0032 0.0012

2000 0.0034 0.0025 0.0014

3000 0.0027 0.0024 0.0021

5000 0.0031 0.0022 0.0039

10000 0.0029 0.0025 0.0062

Graph 3: Comparison of Non-Comparison Sorting

Algorithms

6. Conclusion

Sorting is used in a wide range of applications and on a wide

range of data. Because it is such a frequent and resource-

intensive activity, sorting algorithms and the development of

optimum implementations are an important area of computer

science. With the evolution of new technology and increased

Internet usage, data availability is also grown on the Internet,

creating demand for a fast and efficient sorting algorithm.

This paper discusses nine different sorting algorithms, along

with their implementation, benefits, drawbacks, and examples,

as well as actual performance findings. The experimental

results demonstrate that the theoretical performance behavior

of each sorting algorithm is related to its actual performance.

According to the experiment's findings, the algorithm's

behavior will vary depending on the size of the items to be

sorted.

In this paper, three different types of performance behavior

were investigated, such as O(class and O(nlogn) and non-

comparison class. In large data set, Non-comparison based

sorting algorithms outperform the comparison-based sorting

algorithms in large data sets, and O(nlogn) class outperforms

as O(class in large data set.

References

[1] Narasimha Karumanchi, ”Data Structures and

Algorithms”.

[2] Aditya Bhargava, “Grokking Algorithms: An Illustrated

Guide for Programmers and Other Curious People”.

[3] Thomas Niemann, “Sorting and Searching Algorithms”.

[4] https://en.wikipedia.org/wiki/Sorting_algorithm

[5] Hammad, J. A Comparative Study between Various

Sorting Algorithms, International Journal of Computer

Paper ID: SR211114140358 DOI: 10.21275/SR211114140358 1051

https://en.wikipedia.org/wiki/Sorting_algorithm

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Science and Network Security (IJCSNS), Vol 15, No. 3

(2015).

[6] Robert Sedgewick, “Algorithms in C++ Parts 1-4:

Fundamentals, Data Structure, Sorting, Searching”.

[7] Kurt Mehlhorn, “Data Structures and Algorithms 1:

Sorting and Searching Kurt Mehlhorn”.

[8] D. R. Babu, R. S. Shankar, V. P. Kumar, C. S. Rao, D.

M. Babu and V. C. Sekhar, "Array-indexed sorting

algorithm for natural numbers," 2011 IEEE 3rd

International Conference on Communication Software

and Networks, 2011, pp. 606-609, doi:

10.1109/ICCSN.2011.6014966.

[9] Robert Sedgewick, “Fundamentals, Data Structures,

Sorting, Searching, and Graph Algorithms. Bundle of

Algorithms in Java”, AddisonWesley Professional, Third

Edition.

[10] Cormen, T. H., Leiserson, C.E., & Rivest, R.L.

Introduction to Algorithms (3rd ed.). MIT Press and

McGraw-Hill (2009).

[11] Cormen, T.H., Leiserson, C.E., & Rivest, R.L.

Introduction to Algorithms (2nd ed.). Prentice Hall of

India private limited, New Delhi-110001 (2001).

[12] Niklaus Wirth, Algorithms + Data Structures =

Programs.

Paper ID: SR211114140358 DOI: 10.21275/SR211114140358 1052

