
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Comparison of Multiple Slam Algorithms using

ROS

Saandeep Sreerambatla

Department of Electrical Engineering, Case Western Reserve University, Cleveland, OH, USA

Email: sxs2452[at]case. edu

Abstract: This paper presents a comparative analysis of mapping and localization techniques for a single robot in a home environment.

The TurtleBot3 robot, simulated in the Gazebo environment, is employed to generate maps, and the visualization of the mapping process

is performed using RViz. Initially, a map is created by moving the robot using teleoperation and employing the Gmapping algorithm. The

movement parameters are recorded and replayed to generate a map using the Hector SLAM algorithm. The final maps produced by these

two algorithms are compared by overlaying them on the actual map, highlighting their respective advantages and limitations.

Keywords: mapping techniques, localization techniques, TurtleBot3 robot, Gmapping algorithm, Hector SLAM algorithm

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a critical

functionality in robotics, involving the continuous estimation

and adjustment of a map based on data from a mobile robot,

while simultaneously positioning the robot on this map. An

effective and precise SLAM algorithm is essential for

navigation and other high - level tasks. Different SLAM

algorithms utilize various techniques for mapping and

localization, relying on diverse sensory information equipped

on the robot for accurate map representation. This study aims

to compare the Gmapping and Hector SLAM algorithms to

understand their respective strengths and weaknesses. The

project leverages the Robot Operating System (ROS), a

flexible framework that controls robotic components from a

computer. ROS consists of various nodes that communicate

based on a publisher/subscriber model, offering robust tools,

libraries, and conventions to facilitate the creation of reliable

robotic behaviors.

2. Simultaneous Localization and Mapping

(SLAM)

Simultaneous localization and mapping (SLAM) is the

computational problem of constructing or updating a map of

an unknown environment while simultaneously keeping track

of an agent’s location within it. While this initially appears to

be a chicken - and - egg problem there are several algorithms

known for solving it, at least approximately, in tractable time

for certain environments [3]. In probabilistic view, the SLAM

problem has two main kinds which are online SLAM and full

SLAM. Online SLAM involves estimating the posterior over

a brief time that is: p (xt, m | z1: t; u1: t) where xt is the

position of robot at time t, m is the map, z1: t is a set of

measurement data acquired from 1 to t, and u1: t is the

sequences of control data from time 1 to t. Online SLAM

eliminates the previous measurements and controls once it has

estimated the map [3]. The other form, full SLAM involves

estimating the posterior over the entire path the robot has

travelled, x1: t: p (x1: t, m | z1: t; u1: t) Unlike online SLAM,

full SLAM doesn’t discard the previous measurement and

control data.

3. Gmapping

Gmapping solves the Simultaneous Localization and

Mapping (SLAM) problem using the Particle Filter (PF)

technique, which is a method for model - based estimation. In

SLAM, we estimate two things: the map and the robot’s

position within the map. Each particle in the PF is assumed to

be a candidate solution to the problem. By using multiple

particles, we estimate the true probability distribution through

Importance Sampling.

The key idea of using a particle filter is to estimate a joint

posterior of a map p (x1: t, m∣z1: t, u1: t−1) and the trajectory

𝑥1: 𝑡=𝑥1, …, 𝑥𝑡x1: t=x1, …, xt of the robot. This estimation

is performed given the observations 𝑧1: 𝑡=𝑧1, …, 𝑧𝑡 and the

odometry measurements u1: t−1=u1, …, ut−1 obtained by the

mobile robot.

The Rao - Blackwellized particle filter for SLAM makes use

of the following factorization:

p (x1: t, m∣z1: t, u1: t−1) =p (m∣x1: t, z1: t) ⋅p (x1: t∣z1: t, u1:

t−1)

This factorization allows us to first estimate only the

trajectory of the robot and then compute the map given that

trajectory. Since the map strongly depends on the pose

estimate of the robot, this approach offers efficient

computation. This technique is often referred to as Rao -

Blackwellization.

4. Hectorslam

Hector mapping leverages the high update rate of modern

LIDAR systems, such as the Hokuyo UTM - 30LX, and

provides 2D pose estimates at the scan rate of the sensors

(40Hz for the UTM - 30LX). While the system does not offer

explicit loop closing capability, it is sufficiently accurate for

many real - world scenarios. The system has been

successfully used on Unmanned Ground Robots, Unmanned

Surface Vehicles, and Handheld Mapping Devices.

Hector SLAM is considered to be using the state - of - the -

art particle filter, which works well even in the absence of

odometry information. Additionally, it performs effectively in

scenarios where roll, pitch, and yaw are present in the system.

Paper ID: SR24608140045 DOI: https://dx.doi.org/10.21275/SR24608140045 1624

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:sxs2452@case.edu

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Experimental Model

5.1 Software Development

In this project, ROS (Robot Operating System) is used to

control the TurtleBot. The bot scans the area through a laser

scan and reports the environment. The laptop represents the

movement of the bot in Gazebo, and the visualization is

recorded in RViz. A Linux OS on an Ubuntu desktop is

required to run ROS. ROS utilizes the OS’s process

management system, user interface, file system, and

programming utilities. The mapping will be shown in the

RViz application, as depicted in Figure 1.

Figure 1: Sample rviz map

Robotic Operating System (ROS) is a system for controlling

robotic components from a computer. The ROS system is

comprised of a number of independent nodes, each of which

communicates with the other nodes using a publish/subscribe

messaging model. ROS is a flexible framework for writing

robot software. It is a collection of tools, libraries, and

conventions that aim to simplify the task of creating complex

and robust robot behavior across a wide variety of robotic

platforms. ROS was built from the ground up to encourage

collaborative robotics software development.

5.2 Implementation

In this project, a world was created using existing Gazebo

models, and a TurtleBot [4] was introduced into the world. By

using the teleoperation (teleop) feature of ROS, the robot was

moved around the environment to perform SLAM. The robot

utilized laser scans to understand the environment and

localize obstacles. SLAM was performed using the inbuilt

Gmapping algorithm, which employed default parameters

except for the updated Urange. The robot's movements (linear

velocity and angular velocity) were controlled via teleop

methods.

The robot's movements were recorded from beginning to end

using rosbag. Rosbag is a subscriber that subscribes to all the

movements of the robot in RViz2 and creates a record every

second. This record was saved for use with the Gmapping

algorithm. The next step in this project was to playback the

robot's movements, but this time using a different mapping

technique: Hector SLAM. Hector SLAM moved according to

the rosbag and performed SLAM on the environment. Figure

2 shows the map of the actual environment.

Figure 2: Actual Environment

6. Validation

In this project, the centers of the images from Gazebo were

taken, and the predicted centers were obtained using the

publish point feature in RViz for the centers of the objects.

The root mean squared error (RMSE) for the distance of each

object was calculated, as well as the cumulative error for all

the objects. A similar analysis was performed for both

mapping techniques, Gmapping and Hector SLAM. Below,

we present the graph representations of the error plots for the

algorithms. The error computation was done in Python, and

the graphs were generated using Matplotlib.

Figure 3: Map produced by Gmapping Algorithm

Figure 4: Map produced by Hector Slam

Paper ID: SR24608140045 DOI: https://dx.doi.org/10.21275/SR24608140045 1625

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://chatgpt.com/c/ba367a67-7aa6-4f44-a0a0-f66295852990#user-content-fn-4
https://chatgpt.com/c/ba367a67-7aa6-4f44-a0a0-f66295852990#user-content-fn-5

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

7. Results

Figure 5: Results for Gmapping actual vs predicted

Figure 6: Results for Hector slam actual vs predicted

The Gmapping algorithm performed slightly better compared

to the Hector SLAM algorithm. The next steps would involve

introducing a more complicated world and performing the

mapping algorithms to validate the behavior of the system.

Another step could be to perform Hector SLAM first to record

the rosbag and then playback for Gmapping to assess the

performance.

8. Conclusion

It can be concluded that performance testing of multiple

SLAM algorithms was successfully conducted in ROS using

TurtleBot and Gazebo. Both Gmapping and Hector SLAM

performed well, with Gmapping showing slightly better

results compared to Hector SLAM. However, several

assumptions were made in this experiment. Firstly, it was

assumed that all obstacles the robot might encounter are

stationary. Secondly, friction was not considered. During real

- time application, the predicted state of the robot based on

constant velocity may be inaccurate.

Total error of gmapping vs hectorscan

Acknowledgement

I would like to express my sincere gratitude to Prof. M. Cenk

Cavusoglu for his guidance and patience.

References

[1] http: //www2. informatik. uni - freiburg. de/

stachnis/pdf/grisetti07tro. pdf

[2] S. Thrun, W. Burgard, and D. Fox, “Probabilistic

robotics (Intelligent Robot and Autonomous agents) ”,

MIT Press, 2005

[3] https: //emanual. robotis.

com/docs/en/platform/turtlebot3/overview/

[4] http: //wiki. ros. org [2]rviz

[5] https: //answers. ros. org/question/239143/how - does -

gmappingwork/

Paper ID: SR24608140045 DOI: https://dx.doi.org/10.21275/SR24608140045 1626

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

