In Vitro Evaluation of the Antioxidant Activities in the Seeds Extract from *Citrus Medica* L.

Shikha Rani¹, Dr. N. S. Gill²

Department of Pharmaceutical Chemistry, Rayat Institute of Pharmacy, Railmagra

Email: shikhavishalthakur[at]gmail.com

Abstract: From classical times, plants are wealthy source of effective and safe medicines. Herbal medicines have been the main source of primary health maintenance in many nations. The benefits of natural products with medicinal properties is as ancient as human advancement and, for a long time, mineral, plant and animal products were the main origins of drugs. The reasons for this were that pure compounds were easily obtained, structural modulations to manufacture potentially more active and safer drugs could be easily executed and the commercial power of the pharmaceutical companies was increasing. *Citrus* fruits are surrounded by the most extensive horticultural products enjoying universally as item of diet. They are rich in vitamin C, minerals and carries distinct flavors. *Citrus medica* L., Generally called as a Citron in English and Bijapur in Ayurvedic literature is member of Rutaceae family. Several parts of *Citron* are generally used in Indian traditional system of medicine. Leaves are useful to induce sleep. In earliest literature *citron* was observed as an antidote of each kind of poison. *Citrus medica* L. leaves carries anthelmintic and estrogenic activities; fruit has analgesic, anticancer and antulcer activities; peel carries many characteristics including hypoglycemic, anti - cholinesterase, hypocholesterolemic, hypo - lipidemic, antimicrobial and antihelmintic properties; seed has anti - diabetic, hypocholesterolemic, hypolipidemic and estrogenic activities. Apart from medicinal uses, the plant has high scale value because of its edible and nutritious fruit, useful wood, latex and bark and provides generous occupations support to local citizens.

Keywords: Citron, *Citrus Medica* L., Rutaceae, Phytochemistry, Pharmacological activities

1. **Introduction**

Natural products have been the origin of most of the active elements of medicines (Alan. L. Harvey, 2008). They (secondary metabolites) have been the most fruitful origin of unrealized drug leads (Mishra B. B, et al., 2011). Natural products imply huge and different secondary metabolites with an entire choice of organic actions those have confirmed with their various methods, especially in human and veterinary and also in agriculture. Natural products are derived from microorganisms, marine animals, and also from plant sources. Natural products that are sold as herbal and/or food additives for medications cover - up half of the main 50 drugs sold in European pharmacies. Ayurveda, the traditional Indian medicine remains the most earliest, with sound rational root. The use of Natural products as health - care administration system might be showed a great objection in early human development (Adhikari P. P, et al., 2017).

Plants provide rich natural antioxidants. Antioxidants are abundant in fruits and vegetables, as well as in other foods including nuts, grains and some meats, poultry and fish (Kebede Muluken, et al., 2019). Antioxidants are the substances that obstruct oxidation. Oxidation is a chemical reaction that can manufacture free radicals, thereby leading to chain reactions that may harm the cells of organisms. Antioxidants such as thols or ascorbic acid (vitamin C) restrict these chain reactions (Dabelstein W, et al., 2007). Antioxidants have important preventive roles, not only on undesirable changes in the flavor and nutritional quality of food, but also on tissue damage in various human diseases. They are effective in prevention of degenerative illnesses, such as different types of cancers, cardiovascular and neurological diseases, cataracts and oxidative stress dysfunctions (Sharma. S. K, et al., 2013).

Citrus is a genus of flowering trees and bushes in the rue family, Rutaceae. Plants in the genus produce *citrus fruits*, like Citrus Sinensis (Sweet Orange), Citrus Limon (Lemon), Citrus Aurantium (Bitter Orange), Citrus Paradisi (Grape fruit), Citrus Medica (Citron) (Wu, Guohong Albert, 2017). The *Citrus* genus is consisting of various species and each species has many varieties. Taxonomic description is very difficult and the accurate number of species is still not clear because there are many spontaneous and commercial hybrids. According to the Swingle system, 16 species were identified and the Tankana system identifies 156 species in the genus (AC Matheyambath, 2016). All species of *Citrus* have traditional medicinal value. *Citrus* preparations, in case for prepared or fresh fruit products, from the biggest producing countries are an important materials for universal trade and of fabulous economic value and impact. In addition to the use as a food or drink source, *citrus* products from some of the wild species not grown commercially are also of value as agents of traditional medicinal and healthy utilization. In spite of the diversity of fruit types, however, nearly 70% of the world’s *citrus* production is sweet orange (Manuel T, et al, 2008).

The citron is a fragrant fruit with the botanical name *Citrus medica* L., which spreads to both the Swingle & Tankana system. It is an enlarged member in the genus *Citrus*, belonging to Rutaceae or Rue family, sub - family Aurantioideae (Meena A. K, et al., 2011). The family Rutaceae consist of aromatic & medicinal plants, which are used in traditional medicine. Citron developed in Assam, central India & Western Ghats of India (Kalpesh Panara, et al., 2012). It is more often present in the Mediterranean region, Central & Southern part of America. It is also available in Japan, China, Bangladesh, Arabia, Australia, tropical & subtropical areas, in the month October to January (Beatriz AA, et al., 2005). *Citrus* has long been known to carries many essential nutritional ingredients such
as phenolics, flavanones, ascorbic acid (vitamin C), and pectin, which are known as potent antioxidants. It is a potent antiscorbutic and used for evacuating poison and correcting noxious breath. Thus, we can use some fruits like citron (Citrus medica L.) in several formulations and can promote its health potential in lowering the prospect of various common diseases (Navnidhi Chhikara, et al., 2018).

2. Material and Method

2.1 Collection of plant

The fruits of Citrus medica L. Were collected in the month of November and December from the village Joh of district Una, Himachal Pradesh (India). After that, seeds were separated from the fruits by removing their pulp. The healthy seeds were selected from them for future procedure.

2.2 Chemicals

![Flow chart for seed’s extract](image)

Figure 2.1: Flow chart for seed’s extract

2.4 Preliminary phytochemical screening of the extract

Phytochemical tests were carried out for various constituents like Flavonoids, Tannins, Alkaloids, Steroids, Sterols, Carbohydrates, Glycosides, Anthraquinone Glycosides, Saponin glycosides, Cardiac glycosides, Amino acids, Proteins and volatile oil.

2.4.1 Test for Alkaloids

- **Dragendorff’s test**: To 1 mL of test filtrate, two drops of Dragendorff’s reagent (Potassium bismuth iodide solution) were added and observed for the formation of prominent reddish - brown precipitates.
- **Hager’s Reagent test**: Hager’s reagent (picric acid solution) was added to the extract, yellow coloured precipitates were observed.
- **Mayer’s Reagent test**: Mayer’s reagent (potassium iodide solution) was added to the extract, cream coloured precipitates show the presence of alkaloids.
- **Wagner’s test**: To 2 - 3 mL the test solution, few drops of Wagner’s reagent was added, reddish brown coloured precipitates show the presence of alkaloids.

2.4.2 Test for Steroids

- **Salkowski test**: To this extract, 2mL of Chloroform and 2mL of concentrated sulphuric acid were added, shaken well and observed the coloration of chloroform and acid layers. Chloroform layer as red in color and acid layer as greenish yellow fluorescence.
- **Sulfur test**: Small amount of sulfur powder was added to the extract solution, it sinks at the bottom.

2.4.3 Test for Flavonoids

- **Shinoda test**: To the test solution, few magnesium turnings and concentrated hydrochloric acid was added dropwise, pink scarlet or crimson red colour observed.
- **Alkaline Reagent test**: To the extract solution, few drops of sodium hydroxide solution was added, intense yellow colour was formed which turns to colourless on addition of few drops of dilute acetic acid indicate presence of flavonoids.
- **Zinc Hydrochloride test**: To the extract solution, mixture of zinc dust and conc. Hydrochloric acid was added. It gives red colour after few minutes.

2.4.4 Test for Amino Acid

- **Millon’s test**: To the extract, about 2mL of Millon’s reagent was added. White precipitates indicate the presence of amino acids.
- **Ninhydrine test**: To the extract, Ninhydrine solution was added & boiled. Violet colour indicates the presence of amino acids.
2.4.5 Test of Glycosides
About 50mg of the extract was hydrolyzed with concentrated hydrochloric acid for 2 hours on a water bath, filtered. The filtrate was subjected to the following tests.

a) Test for Cardiac glycosides
Baljet’s test: The test solution was treated with picric acid or sodium picrate, orange colour was formed.

b) Test of Saponin Glycosides
Foam test: Filtrate was taken and 20mL of distilled water was added and shaken for 15 min in a graduated cylinder and observed for formation of a layer of stable foam.

c) Test for Anthraquinone Glycosides
- Brontragger’s Test: Dilute sulphuric acid was added to 3 mL extract, boiled for 10 min and filtered, to the cold filtrate chloroform was added and shaken well, organic layer was separated which indicates the presence of Anthraquinone glycoside.
- Nitric Acid Test: To the test solution, concentrated nitric acid was added, orange brown colour formed which indicates the presence of Anthraquinone glycoside.

2.4.6 Test of Carbohydrates
Molisch test: 1mL of test solution was taken and two drops of alcoholic solution of α - naphthol (Molisch’s reagent) was added. The mixture was shaken and 1mL of conc. H2SO4 was added slowly from the sides of the test tube. The test tube was cooled in ice water and allowed to stand. Then the test tube was observed for violet - purple ring formation at the junction.

Fehling solution Test: 1 ml of Fehling’s A and 1 ml of Fehling’s B solution were mixed, then boiled for 1 min. Equal volume of test solution was added and heated in boiling water bath for 5 - 10 min. Appearance of first yellow and then brick red precipitate indicates the presence of reducing sugars.

2.4.7 Test of Proteins
Biuret test: To 2 mL test solution, about 2mL Biuret reagent was added, Violet colour indicates the presence of proteins.

Xanthoproteic test: To 5mL of test solution, 1 mL of concentrated nitric acid was added and boiled, yellow precipitates formed. After cooling it, 40% sodium hydroxide solution was added, orange colour was formed.

2.4.8 Test of Sterols
Molischott test: A few mg of the extract was heated with 1mL mixture of sulphuric acid and water (5: 1), red violet colored confirmed the presence of sterols

2.4.9 Detection of tannins
Ferric chloride test: A few mg of extract was added to the distilled water, and then filtered it. To the filtrate few drops of ferric chloride was added, bluish green or brownish green colour appears which indicates the presence of Tannins.

2.4.10 Detection of Volatile Oils
Sudan III test: To the small amount of test sample, SudanIII solution was added. Red colour obtained by globules indicates the presence of volatile oil (Anonymous, 2001; Evans, 2002; Kokate, 2006; Khandelwal, 2010).

2.4 Antioxidant Activity
In vitro evaluation of free radical scavenging activities is done by following 2 methods:
1) DPPH Method
2) NO Method

2.4.1 Quantitative Evaluation of DPPH Free Radical Scavenging Activity
Reagents
0.1Mm DPPH Solution
Phosphate buffer saline pH 7.4

The free radical scavenging activities of extracts was measured by 1, 1 - diphenyl - 2 - picryl hydrazyl (DPPH) method. Various concentrations (25, 50, 75, 100μg/ml) of extract and ascorbic acid were prepared in ethanol in different test tubes. Volume of the samples and ascorbic acid were adjusted to 3 ml by adding ethanol. Methanolic solution of DPPH (100 μM or 0.1 mM) was prepared and 1 ml of this solution was added to each test tube, shaken vigorously and were allowed to stand at 27°C for 30 min. A control was prepared as described above without samples or standard. Absorbance was measured at 517 nm. All the tests were performed in triplicate and the results averaged (Kurian et al., 2008).

Radical scavenging activity was expressed as the inhibition percentage and was calculated by using the formula.

\[
\text{% Radical scavenging activity} = \frac{\text{Absorbance of Control} - \text{Absorbance of test sample}}{\text{Absorbance of Control}} \times 100
\]

2.4.2 Quantitative Evaluation of NO Free Radical Scavenging Activity
Reagents
10 mM sodium nitroprusside
Phosphate buffer saline pH 7.4

Griess Reagent:
30 ml of 0.1% (1mg/mL) solution of N - (1 - naphthyl) ethylenediamine dihydrochloride (Component A).
25mL of 1% (10mg/mL) solution in 5% O - phosphoric acid (Component B)

Procedure
To 1ml of sodium nitroprusside, 2.5 ml, phosphate buffer saline pH 7.4 was added and mixed with 1 ml of extract at various concentrations (25, 50, 75, 100μg/ml), then the mixture was incubated at 25˚C for 180 minutes. The extract was mixed with 3ml of freshly prepared Griess reagent. Control samples without the extracts but with an equal volume of buffer were prepared in a similar manner as was done for the test samples and the absorbance was measured at 546 nm (Sreejayan & Rao, 1997). Ascorbic acid was used as a standard. All the tests were performed in triplicate and the results averaged.
The percentage inhibition of nitric oxide radical generated was calculated by using the following formula:

\[
\% \text{ Radical scavenging activity} = \frac{\text{Absorbance of Control} - \text{Absorbance of test sample}}{\text{Absorbance of Control}} \times 100
\]

3. Results

3.1 Phytochemical Screening

Preliminary phytochemical screening of ethanolic extract of *Citrus Medica* L. seeds was done. The ethanolic extract of seeds indicated the presence of Carbohydrates, steroids, sterols, volatile oil, alkaloids and Anthraquinone glycosides.

| Table 3.1: Phytochemical screening of ethanolic extract |
|---------------------------|-------------------|
| S. No. | Phytoconstituents | Intensity |
| 1. | Alkaloids | +++ |
| 2. | Glycosides (G) | |
| 2.1 | Cardiac G. | - |
| 2.2 | Anthraquinone G | ++ |
| 2.3 | Saponin G | - |
| 3. | Carbohydrates | +++ |
| 4. | Steroids | ++ |
| 5. | Sterols | + |
| 6. | Tannins | + |
| 7. | Flavanoids | - |
| 8. | Amino acids | - |
| 9. | Proteins | - |
| 10. | Volatile Oils | + |

Here (-) indicates absence of chemical constituents/ (+) indicates presence of chemical constituents / (+++) indicates higher content of chemical constituents.

3.2 In Vitro Antioxidant Activity

3.2.1 Quantitative Estimation of Antioxidant Activity Using DPPH Method

DPPH is a free radical compound that has been widely used to determine the free radical - scavenging ability of various samples. DPPH decreases significantly upon exposure to proton radical scavengers (Yamaguchi, Takamura, Matoba, & Terao, 1998). The free radical scavenging potentials of extracts from citron and ascorbic acid at different concentrations were tested by DPPH method and the results are shown in Figures 5.2. Antioxidants react with DPPH, which is a nitrogen - centered radical with a characteristic absorption at 517 nm and convert to 1, 1 - diphenyl - 2 - picryl hydrazine (Jayaprabhakara et al., 2004).

| Table 3.2: DPPH Scavenging activity of *Citrus Medica* L. seeds |
|---------------------------|-------------------|
| S. No. | Concentration | Mean Absorbance (Test) | %age (Test) | Mean Absorbance (Standard) | %age (Standard) |
| 1. | 25 | 0.593 | 61.01 | 0.472 | 68.97 |
| 2. | 50 | 0.458 | 69.89 | 0.336 | 77.91 |
| 3. | 75 | 0.317 | 79.16 | 0.258 | 83.04 |

Ethanol extract of *Citrus Medica* L. seeds exhibited DPPH scavenging activity. With the increase in concentration of seed extract, the antioxidant activity increased proportionally with the maximum activity of 83.17% at 100μg/mL. The absorption decreased proportionally with the increase in the concentration of extract. The maximum absorption was found to be of control sample excluding drug.

3.2.2 Quantitative Estimation of Antioxidant Activity Using Nitric Oxide method

Nitric oxide scavenging activity was determined according to the method reported by Green et al, 1982. Sodium nitroprusside in aqueous solution at physiological pH spontaneously generates nitric oxide, which interact with oxygen to produce nitrite ions, which can be determined by the use of the Griess Illosvoy reaction. The nitrite ions produced diazotizes sulphanilamide and thenthe diazonium salt reacts with N, N - Naphthyl ethylene diamine dihydrochloride to give a pinkcolour chromophore which has a maximum absorption at 546 nm.

| Table 3.3: NO Scavenging activity of *Citrus Medica* L. seeds |
|---------------------------|-------------------|
| S. No. | Concentration | Mean Absorbance (Test) | %age Inhibition (Test) | Mean Absorbance (Standard) | %age Inhibition (Standard) |
| 1. | 25 | 0.061 | 66.14 | 0.057 | 68.33 |
| 2. | 50 | 0.052 | 71.11 | 0.043 | 76.12 |
| 3. | 75 | 0.046 | 74.45 | 0.035 | 80.56 |
| 4. | 100 | 0.038 | 78.88 | 0.028 | 84.44 |
Ethanolic extract of *Citrus medica* L. seeds exhibited NO scavenging activity. With the increase in concentration of seed extract, the antioxidant activity increased proportionally with the maximum activity of 78.8% at 100µg/mL. The absorption decreased proportionally with the increase in the concentration of extract. The maximum absorption was found to be of control sample excluding drug.

4. Conclusion

Citrus medica L. is the most ancient wild crop of citrus family known to have various pharmacological and nutraceutical properties. The presence of phytochemicals in different parts of plant is responsible for showing various activities. This study suggests that *Citrus medica* L. may be used to discover natural bioactive products which might lead to the development of new drugs with antioxidant properties in the field of medicine.

References

