Klinefelter Syndrome and Short Stature: An Atypical Presentation

Múnera Rosa¹, Wilches María², García-Bermejo Roberto³

¹,²Pediatrician, University of Cartagena; Cartagena, Colombia
³Pediatric Endocrinologist, University of Chile, Napoleon Franco Pareja Children Hospital; Cartagena, Colombia

Abstract: Klinefelter syndrome (KS) patients classically have tall stature and hypogonadotropic hypogonadism (HH). Short stature generally is not recognized as associated feature of the syndrome. We present a severe short stature patient with KS and its response to the use of growth hormone recombinant (GHR) treatment.

Keywords: Klinefelter syndrome; hypogonadotropic hypogonadism; Growth hormone recombinant

1. Introduction

KS is the most common sex chromosome disorder, characterized by HH and infertility. Children with KS have three main clinical characteristics: tall stature, small testes (for Tanner Pubertal Stage) and mental retardation and/or learning difficulties. There are few KS reports on the literature associated with short stature and this presentation represents a difficult diagnosis. In this article, an unusual case of KS is described.

2. Case Report

A 12.3 years - old male patient consulted to a pediatric endocrinologist because of short stature. His medical history reported a controlled pregnancy, born at 39 weeks of gestational age. Birth weight: 2000 gr (- 3.4 Standard Deviation [SD]), birth length: 46 cm (- 2.8 SD). He underwent a cardiac surgery due to a Tetralogy of Fallot. Father Stature: 163.5cm. Mother Stature: 150 cm. His physical exam revealed: stature 122.5 cm (- 4SD); weight 21.5 kg (- 3.0 SD). He also had a high palate and a 4 cm testicular volume. Additional exams showed mild cognitive deficit (IQ 64) and the following hormonal analysis: IGF - 1: 199 ng/ml (RV 113 - 261), IGFBP - 3: 3.6 µg/ml (RV 2.1 - 4.2), f - T4: 1.5 ng/dl; TSH: 0.69 µIU/ml, and cortisol: 79 ng/ml. Clonidine Growth Hormone (GH) Stimulation Test: basal GH 0.11 ng/ml; at 30`: 0.79 ng/ml; at 60`: 14.0 ng/ml and at 90`: 6.3 ng/ml. Bone - age (BA) was reported as being 8 years - old. Aninitial 25 - metaphases karyotype and a second 50 - metaphases karyotype were performed: 47 XXY. With these results, the following hormonal studies to evaluate hypogonadism were practiced: Inhibin B: 12.2 pg/ml, LH 4.3 mIU/ml (RV: 0.02 to 0.3), basal FSH: 27.6 mIU/ml (RV: 0.26 to 3). Testicular ultrasound showed: Both testes diminished in size with a bilateral 0.6 cm volume; the right testicle had smooth contours with decreased echogenicity and calcified images. Genetics suggests performing comparative genomic hybridization (NIM genetics), and this KS pattern was obtained: arr (X) X2, (Y). For his severe short stature, treatment with GHR was initiated at 45µg/kg/day - dose with a favorable response (Fig 1). At 15 years - old, his testes remained in 4cc. Bone densitometry (BD) was performed showing low bone density at lumbar Spine (- 2.1 SD). Hormone replacement therapy with testosterone - enantate was then initiated.

![Figure 2: Colombian Growth Chart. KS patient with GHR treatment (black thin arrow). White arrow: Target Size.](image)

3. Discussion

KS is the most frequent cause of HH in male patients [1, 2]. The classic form of KS, which is present in the 80–90% of the cases, is defined by a 47, XXY karyotype; the remaining 10 to 20% of the cases, are KS mosaics (e.g. 46 XX/XY), KS with higher - grade aneuploidies (e.g. 48 XXXY), and KS with a structurally abnormal X chromosome (e.g. 47, ixq, Y) [2, 3]. High stature and hypogonadism are the most repetitive clinicalKS manifestations [1, 2, 4]. The diagnosis is usually performed in a high - stature - adolescence with a lack of pubertal development (usually micropenes and/or testicular hypo/atrophy) [1, 2]. However, there are few studies that show association of KS and short stature [5]. Many of these short statures – KS patients, have been treated with GHR once GH deficit is demonstrated, with a yet unknown underlying mechanism. [6 - 9]. One karyotype variant has been associated with normal or short stature: Xqisochromosome [10, 11]. Therefore it is suggested to perform a karyotype to all children or adolescents with severe short stature associated with no progression of testicular volume and/or cognitive disabilities [6, 9].

Our patient had a 47XXX karyotype, mild cognitive deficit and severe short stature (without GH deficiency). Its GHR treatment was started and indicated due to his SGA record.

Volume 10 Issue 10, October 2021

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
At the beginning of the GHR treatment, his stature was at -4.0 SD and currently it is at -2.4 SD. Also GHR therapy has been used in patients with several genetic syndromes [14 - 16], with better treatment response if GHR is started at an early age. Sanz M, et al. Published a patient with KS without GHD, with good response to GHR treatment [17]. Being there only few reports on the literature of KS patients treated withGHR [5, 6, 9 - 11], the final height of this patient would be interesting.

4. Conclusion

The presence of short stature does not exclude the possibility of KS; it is important to consider performing a karyo type if short stature is associated with a lack of pubertal development and a cognitive disability.

References