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Abstract: Coastal ecosystems are the natural systems with high biotic production ranging from coral reefs to seagrass meadows, sand 

dunes, mangroves, salt marshes, tidal flats, lagoons and estuaries. The most common form of detections and monitoring of coastal 

aquatic systems are water quality, Chlorophyll –a, biomass of aquatic vegetation and Phytoplankton, which include in - situ sampling 

and laboratory analysis. Historical water quality data are seldom available in many instances. To overcome these limitations, remote 

sensing in coastal aquatic resources can be a helpful tool. It can be used in a more effective and efficient manner to monitor and 

identify large - scale regions and water bodies that suffer from qualitative problems. The remote sensed data in the digital form helps to 

carry out the digital spatial analytical process. Remote sensing approaches combined with the Geographic Information System have 

been extensively used for terrestrial and aquatic ecosystems monitoring. This review summarizes the basic concepts and remote sensing 

applications in coastal water bodies, with special reference to water quality and chlorophyll - a detection.  
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1. Introduction  
 

"A remote sensing instrument collects information about an 

object or phenomenon with the instantaneous –field - of - 

view (IFOV) of the sensor system without being in direct 

physical contact with it [1]". In the early 1920s, the remote 

sensing of the coastal environment relied on aerial 

photographs [2] mainly used to map mangroves [3] and 

changes in the coastline. The major drawback of aerial 

photography is its limited area of coverage and high cost [4]. 

However, the launch of Landsat in 1972 triggered the remote 

sensing applications of coastal regions [2]. Since then, 

remote sensing has been widely used to detect changes in 

coastal environments and for environmental sensitivity 

mapping such as mangroves distribution, 

algal/phytoplankton mapping, surface water quality 

monitoring, aquatic vegetation monitoring, etc. [1]. The 

applications of coastal remote sensing have been made using 

different satellites covering areas of interest at regional scale 

with different spatial, spectral and temporal resolutions such 

as Landsat series (2 - 8) (MSS/ TM/ ETM+ and OLI), SPOT 

(1 - 4), IKONOS, Sentinel 1 - 2, etc.  

 

The following table 1 summarizes the non - commercial 

earth observation (EO) satellites and their characters used in 

the environmental mapping.  

 

Although in - situ measurement offers high accuracy, it is a 

labour intensive and time consuming process and only able 

to represent a restricted level of point estimations. Obtaining 

spatial and temporal variations of quality in large water 

bodies is almost impossible. Due to its topographic situation, 

monitoring, forecasting and managing entire water bodies 

might be inaccessible in in - situ measurements. The 

accuracy and precision of collected in - situ data can be 

questionable due to field sampling and laboratory errors [6].  

 

Kallio et al. [7] has indicated that applying remote sensing 

in along with other monitoring programs benefit a synoptic 

view of the entire water body for more effective monitoring 

of the spatial and temporal variation, able to synchronize 

view of the quality parameters in a group of water bodies 

over a vast region, provides a comprehensive historical 

record of missing information in an area and represents 

trends over time through historical archives of satellite 

imagery and prioritizes sampling locations and field 

surveying times.  

 

The applications of remote sensing in coastal environments 

have limitations. The most common problem is cloud 

infestation in the images and the Turbidity of the coastal 

waters.  
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Table 1: A comprehensive summary of non - commercial EO satellites and sensors visit 

 
(Extracted from [5] Earth Observation: Data, Processing and Applications)  
 

In the past, the cost of obtaining multiple sets of imagery 

was high, but Landsat and Sentinel imagery are freely 

available. Most early studies used Landsat images with a 

medium spatial resolution that gave satisfactory results. Still, 

more recently, images with a high spatial resolution (i. e., 

WV - 2 and IKONOS) for coastal environments are yielding 

good results in mapping [8, 9]. However, the suitability 

depends on the nature of the research problem [2].  

 

2. Overview of multispectral remote sensing 

methods on coastal water bodies 
 

Multispectral remote sensing is the technique that uses 

radiometers and spectroradiometers to record several broad 

channels in optical wavelengths [1, 5]. Multispectral 

scanners (MSS) are the devices that sense and digitally 

record radiation in multiple defined wavelength regions of 

the visible and infrared parts of the electromagnetic 

spectrum using imaging radiometers or imaging 

spectroradiometers.  

 

Multispectral scanners can be divided into sub - categories 

based on their spatial resolution as low resolution (> 80 m), 

medium resolution (10–80 m), high resolution (< 10 m) and 

very high resolution (< 1m) [5]. Most optical radiation 

intercepted by water surfaces is absorbed or transmitted 

rather than reflected (Figure 1). Water bodies generally 

reflect 1–15% of the downwelling radiation, with most only 

reflecting 2–6% [10]. Water bodies include inland water 

(dams, rivers, lakes, and reservoirs) and maritime waters 

(estuaries, lagoons and oceans). In water bodies, reflectance 

generally decreases with increasing water depth, although 

for some substrata, such as dark seagrasses, the reverse 

relationship may occur. The strong absorption of NIR 

energy in the first few centimeters of water clearly defines 

land/water boundaries in EO imagery, in contrast to the high 

reflectance of soil and vegetation at this wavelength [11]. 

The reflectance properties of the water column are 

determined by the water colour, the water column and the 

water depth. Both suspended sediments and dissolved matter 

determine water colour. These constituents can be organic 

(such as Phytoplankton or dead and/or decaying particulate 

matter) or inorganic (such as minerals). In optically shallow 

water, the reflective properties of the substratum are also 

relevant to the observed reflectance from the surface of a 

water body [11].  

 

The presence of suspended particles in water is typically 

indicated by an increase in reflectance in visible and NIR 

wavelengths (depending on the colour of the solids). 

Organic constituents, such as coloured dissolved organic 

matter (CDOM), Chlorophyll, and phycocyanins, also 

display distinctive spectral absorption characteristics. 

Characteristics of the water surface, that is, the air/water 

interface, also impact reflectance from water bodies. Water 

texture, sunglint and sky glint, floating layers (such as algal 

blooms and pollutants) and foam all change the spectral 

characteristics of surface waters. These attributes can 

complicate EO studies focused on the water column and 

substratum but are used in some applications to determine 

water movement and quality.  

 

 
Figure 1: Idealized spectral signatures (Source: [11]) 

 

Therefore, various models have been developed to exploit 

the relationship between water reflectance properties and 

water body variables such as [12] Chlorophyll —indicator 

for phytoplankton biomass, trophic and nutrient status, 

Cyano - phycocyanin and cyano - phycoerythrin —
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indicators for cyanobacterial biomass common in harmful 

and toxic algal blooms in inland and marine waters, 

Coloured dissolved organic matter (CDOM) for optically 

measurable component of dissolved organic matter in the 

water column and Total suspended matter (TSM) and non - 

algal particulate matter (NAP) for assessing water quality 

and a significant factor controlling the light environment of 

aquatic environments. These EO methods have been used to 

map water quality, create global ocean colour maps, monitor 

ocean productivity and map chlorophyll concentration in the 

ocean and inland water bodies.  

 

3. Overview of thermal infrared (TIR) remote 

sensing on coastal water bodies 
 

Thermal infrared remote sensing is the technique that the 

radiometers record a few broad channels in middle and 

thermal infrared wavelengths. Thermal infrared radiometers 

detect energy emitted from the Earth's surface in a 3–15 mm 

wavelength range. It should be noted that EO thermal 

sensors record emittance from the upper layer of the Earth's 

surface, possibly as thin as 50 mm, which may or may not be 

characteristic of the thermal properties of the observed 

features [13]. TIR imagery can be acquired at any time of 

the day or night.  

 

TIR imagery is used for a wide range of engineering and 

environmental applications, including assessing heat loss, 

thermal efficiency and insulation effectiveness in residential, 

commercial and industrial buildings, thermal water 

pollution, dam seepage and fire hotspots. Since thermal 

emissions are closely related to moisture content, TIR 

imagery is also valuable for mapping soil moisture, 

evapotranspiration, surface temperature and vegetation 

stress. TIR remote sensing has particular value for a variety 

of geological applications, including sediment transport, 

volcanic landform interpretation, lithological mapping and 

surface roughness [14, 15]. Different surface materials can 

vary markedly in terms of their thermal behaviour. Water, 

for example, retains heat, cools slowly at night and warms 

gradually during the day, whereas rocks and soils absorb 

heat quickly during the day and release heat rapidly at night. 

The thermal behaviour of Earth surface materials is 

influenced by many factors, including Sun angle variations, 

topography, rainfall, climatic conditions, and the 

composition, texture and density of each material [16].  

 

The following table 2 mentions the thermal imaging sensors 

that are used in the TIR remote sensing in assessing coastal 

aquatic bodies. The thermal wavelengths that can be used to 

estimate surface temperature are limited by atmospheric 

absorption to various ranges; 3–5 μm—measures peak 

emissions from bushfires, 3–4 μm - mine fires and power 

stations, 8–14 μm—measures peak emissions from land, 

waterbodies (including thermal water pollution) and 9–10 

μm urban infrastructure.  

 

Table 2: Commonly used thermal imaging sensors 

 
(Extracted from [5] Earth Observation: Data, Processing and Applications)  

 

Estimation and modeling surface temperature at global 

scales is relevant to a wide range of climate and 

environmental studies. A number of processing methods 

have been developed to calibrate TIR data to indicate 

apparent surface temperature. This technique is commonly 

used for inland water temperature, sea surface temperature 

(SST) mapping, land surface temperature (LST) and 

meteorological applications.  
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4. Discussions  
 

1) Remote sensing applications on estimating water 

quality of the coastal aquatic system 

The term water quality indicates the physical, chemical and 

biological characteristics of the water, including 

temperature, Chlorophyll, Turbidity, total suspended and 

dissolved solids (TSS & TDS), nutrients (Total and Ortho 

Phosphate, Total Nitrogen, Ammonium Nitrogen), coloured 

dissolved organic matter (CDOM), dissolved oxygen 

(including BOD & COD), pH, total organic carbon, salinity, 

etc. [6]. Multispectral imagery collected by space - borne 

satellite platforms have provided a valuable tool for rapidly 

assessing the spatial variability of inland  

and coastal water quality parameters over synoptic scales 

[17].  

 

In remote sensing, water quality parameters are estimated by 

measuring changes in the optical properties of water caused 

by the presence of the contaminants. Therefore, optical 

remote sensing has been commonly used to calculate the 

optically active water quality parameters, which depends on 

whether it belongs to Case 1 or Case 2 waters [18]. 

According to the definitions by [19] Case 1 waters are those 

"waters whose optical properties are determined primarily 

by phytoplankton and related coloured dissolved organic 

matter (CDOM) and detritus degradation products" and Case 

2 waters are "everything else, namely waters whose optical 

properties are significantly influenced by other constituents 

such as mineral particles, CDOM, or microbubbles, whose 

concentrations do not covary with the phytoplankton 

concentration. " These types highly define the bio - optical 

state [18] of the Chlorophyll and water quality parameters in 

remote sensed studies.  

 

The monitoring of inland and coastal aquatic systems can be 

highly affected by inappropriate satellite sensors [20]. Ocean 

colour sensors like the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Medium Resolution 

Imagining Spectrometer (MERIS) have frequent revisit time 

(1–3 days) and sufficient radiometric resolution (12 - bit) 

needed for dark objects like water bodies. However, the 

spatial resolution of these sensors (300–1000 m) was 

suitable only for large aquatic systems while, the majority of 

the water bodies on Earth are small [21, 22]. Toming et al. 

[23] mention that Landsat series (Landsat 1–7) satellites had 

good spatial resolution (30–79 m) but the limited 

radiometric resolution (6–8 bits) being used to a certain 

extent for mapping water quality parameters of 

lagoons/lakes. However, compared to the other medium 

resolution satellites, Landsat 8 has a higher spatial resolution 

of 30 m and radiometric resolution is 12 - bit compared to 

Landsat 5 TM and Landsat 7 ETM+ (8 bits). It is suitable for 

remote sensing of even dark (CDOM - rich) lakes and 

coastal sediment concentrations at high resolution and 

accuracy due to its higher signal - to - noise ratio (S/N) 

compared to previous Landsat images [22, 23].  

 

Perivolioti et al. [24] used a series of 30 years Landsat 

images to develop water Quality Element (QE) of Lake 

Koronia and compared it against in - situ data, specifically 

for the determination of water Temperature and pH. The 

temperature was estimated from all Landsat images, using 

the respective thermal bands and standard calibration 

followed by linear regression analysis for the complete, 

unified time series of the temperatures of Lake Koronia. 

Several remote sensing studies have been devoted to 

retrieving total suspended solids (TSS) and Turbidity in the 

aquatic system [25]. From the study by [22], spatiotemporal 

variation of Turbidity at Cam Ranh Bay and Thuy Trieu 

Lagoon was assessed using remote sensing data (Landsat 8). 

The algorithm for turbidity retrieval was developed based on 

the correlation between in - situ measurements and the red 

band of Landsat 8 OLI showed the correlation of R
2
 = 0.84 

(p < 0.05).  

 

The Multispectral Imager (MSI) of Sentinel 2A (S2A) 

contains channels useful for water quality monitoring. S2A 

MSI and LS8 OLI sensor specifications in terms of spectral 

band - centers are very similar. The improved spatial 

resolution of the MSI sensor (10, 20 m) regarding OLI (30 

m) allows for a better separation of small - scale features. It 

enables the observation of smaller river inlets and ponds 

[26]. The resampling technique helps the MSI match OLI 30 

m spatial resolution to examine the spectral patterns 

retrieved by these two sensors, which can be cross - 

calibrated to increase the temporal resolution for more 

frequent monitoring of water quality parameters [23]. For 

example, findings from the study of Toming et al. [23] 

indicates that a good correlation was obtained between band 

ratio algorithms calculated from Sentinel - 2 MSI data and 

lake water parameters like Chl a (R
2
 = 0.83), CDOM (R

2
 = 

0.72) and DOC (R
2
 = 0.92) concentrations as well as water 

colour (R
2
 = 0.52) from the mapping of nine small and two 

large lakes.  

 

Another study conducted by Nhamo et al. [27] indicates the 

use of multispectral satellite images with a digital elevation 

model (DEM) to delineate wetland extent and the seasonal 

variations of the flooded area were assessed through an 

analysis of monthly water indices derived from the NDWI 

from Landsat and MODIS for the period of 2000 - 2015. The 

study of water quality seasonal variability (2000 to 2015) in 

Yangtze River Estuary and its adjacent coastal area was 

carried out by using MODIS/Terra and MODIS/Aqua 

satellite sensors to map the Suspended sediment 

concentration (SSC) and to calculate the Diffuse attenuation 

coefficient at 490 nm (Kd490) where the values were seemed 

to be higher during the dry season than during the flood 

season [28].  

 

A similar study was conducted at Florida Bay [29], 

investigating the spatial and temporal changes of biophysical 

parameters associated with water quality, including 

Turbidity, chl - a, total phosphate (TP) and total nitrogen 

(TN) using the application of integrated remote sensing, GIS 

and statistical techniques. Landsat TM and Landsat 8/OLI 

were used to assess temporal and spatial patterns and the 

results were validated with in - situ measurements. The 

findings show a good correlation in the multiple linear 

regression models both in dry and wet season (R
2
=0.86 for 

chl - a, R
2
=0.84 for Turbidity, R

2
=0.74 for TP and R

2
=0.82 

TN in dry season) and (R
2
=0.66 for chl - a, R

2
=0.63 for 

Turbidity, R
2
=0.69 for TP and R2=0.82 for TN in wet 

season) which can be used as a prediction model for the 

spatiotemporal variations of the selected water quality 
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parameters in Florida Bay. The findings by Markogianni et 

al. [30] also emphasize the utilization of Landsat 8 images 

on the temporal studies of chlorophyll - a, CDOM and 

nutrient concentrations (nitrate, nitrite, phosphate and total 

nitrogen) of Trichonis Lake (Greece) for 2013/2014. The 

multiple linear regressions among reflectance measures and 

in - situ measurements of the above quality parameters 

indicate an excellent correlation to develop prediction 

models.  

 

2) Remote sensing applications on Chlorophyll –a 

detection on coastal aquatic system 

Algal blooms in both fresh and brackish water systems are 

directly related to chl - a concentration [6]. Chl - a is the 

primary indicator of trophic state because it acts as a link 

between nutrient concentration, particularly phosphorus and 

algal production. Chl - a mainly reflects green and absorbs 

most energy from wavelengths of violet - blue and orange - 

red light. Thus, many researchers frequently use the visible 

and near - infrared bands in their investigations to obtain 

strong correlations between water column reflection and 

chlorophyll concentration (Phytoplankton) in different water 

bodies [31, 32]. However, the determination of chl - a 

concentration is much more complex and less accurate in 

Case 2 waters due to the complexity of the constituents in 

water and requires advanced approaches and techniques.  

 

Various visual spectral bands (Blue (0.40–0.50 µm), Red 

(0.60–0.70 µm)) and Green (0.50–0.60 µm)) and their ratios 

(Green (0.50–0.60 µm) and Red (0.60–0.70 µm), NIR and 

Red, Green and Blue, Blue (0.40–0.50 µm) and Red (0.60–

0.70 µm)) are widely used to quantify chl - a [6]. Spectral 

band ratios can reduce irradiance, atmospheric and air - 

water surface influences in the remotely sensed signal [12, 

33]. The prominent scattering - absorption features of chl - a 

include strong absorption between 450–475 nm (blue) and at 

670 nm (red) and reflectance reaches to peak at 550 nm 

(green) and near 700 nm (NIR) [6]. Moses et al. [34] 

indicate that the reflectance peak near 700 nm and its ratio to 

the reflectance at 670 nm have been used to develop a 

variety of algorithms to retrieve chl - a in turbid waters and 

concluded that the 700 nm reflectance peak was necessary 

for the remote sensing of inland and coastal waters, 

especially for measuring chlorophyll concentration.  

 

The review by Gholizadeh et al. [6] further elaborates that 

measured concentration of chl - a using all bands of Landsat 

- 5 TM and Band 1 (445–530 nm), Band 2 (520–610 nm), 

Band 3 (640–720 nm) and Band 4 (770–880 nm) of 

IKONOS data to estimate chl - a concentration in Istanbul, 

Turkey and Chl - a presented a good correlation with both 

Landsat 8/OLI bands and band ratio, with calculated R 

values for Bands 2, 3, 4 and band ratio (Band 5/Band 3) as 

0.66, 0.70, 0.64 and 0.64, respectively, at a significance 

level of p < 0.01. Zhang and Han [35] found that OLI bands 

1 to 4 and their combinations had a good correlation with chl 

- a concentration, while Band 2, Band 5 and a ratio of Band 

2/Band 4 to measure chl - a concentration. However, it 

revealed that the Landsat TM seems to be more appropriate 

and widely used for chl - a assessment. Temporal coverage 

and spatial resolution of TM and its easy accessibility can be 

the main reasons for selecting this sensor [30]. Two decadal 

trends of chlorophyll - a concentration (Chl - a) in Negombo 

estuary, Sri Lanka, were analyzed with satellite optical 

sensor (Landsat, MODIS Ocean Colour 3 and ASTER) data 

observed from 1987 to 2011 and in - situ measurements to 

generate 30m resolution and 15m resolution Chl - a 

distribution maps which could be used as chlorophyll 

prediction model [36].  

 

Furthermore, MODIS, SeaWiFS, MERIS, and RapidEye to 

estimate chl - a concentration in turbid waters using two - 

band and three - band models based on band ratios such as 

Red and NIR bands. While Moses et al. [34] compared 

MODIS and MERIS to estimate the concentration of 

chlorophyll - a in reservoirs related to Dnieper River and the 

Sea of Azov (Case 2 waters) using two - band and three - 

band models. Several algal bloom indices were used to 

distinguish the algal bloom waters from non - bloom waters 

and to develop new empirical chl - a algorithms for the large 

aquatic systems such as (1) normalized Rayleigh - corrected 

reflectance (Rrc) data with concurrent MODIS and field 

measurements (2) normalized green - red difference index 

(NGRDI) and atmospherically - corrected MERIS data (3) 

Normalized Difference Vegetation Index (NDVI), 

Chlorophyll Spectral Index (CSI), Floating Algae Index and 

the Normalized Difference algal Bloom Index (NDBI) in a 

shallow eutrophic lake, Lake Chaohu along with in - situ 

remote sensing reflectance (Rrs) and MODIS Rayleigh - 

corrected reflectance (Rrc) data in combination with data of 

local wind speed [37].  

 

However, multispectral sensors like SeaWiFS, Landsat 

ETM+, MODIS, ALI do not provide the resolution for 

distinguishing cyanobacteria from other algal species as 

these sensors cannot detect Phycocyanin (PC) pigment [38]. 

But, MERIS bands 6 and 7 allow detecting PC features only 

if the concentration of cyanobacteria is sufficiently high 

[39].  

 

The Multispectral Imager (MSI) of Sentinel 2A (S2A) 

contains channels useful for water quality models developed 

to quantify Chl - a concentrations such as the floating algal 

index (FAI) [40] and normalized difference chlorophyll 

index (NDCI). For example, Ha et al. [41] used field 

measurements and concurrent Sentinel 2A MSI imagery 

(S2A) over Lake Ba Be, in Vietnam to estimate Chl - a. The 

study further elaborates that S2A green - red band ratio 

(band 3 versus band 4) showed a strong positive correlation 

of corresponded field measured reflectance ratio with Chl - a 

by an exponential curve (r
2
 = 0.68). Chlorophyll - a were 

found using the two - band algorithm based on Sentinel - 

2/MSI and Sentinel - 3/OLCI also indicates a promising 

application on remotely estimate chlorophyll - a for coming 

decades in turbid inland waters [42].  

 

5. Summary and Conclusions  
 

Remote sensing can be combined with other geographic 

information sciences (GIScience), including Cartography, 

Surveying and GIS. The field has unique overlapping 

knowledge and intellectual activity areas as they are used in 

physical, biological and social science research. The 

majority of remotely sensed data collected for earth resource 

application results from sensors that record EM energy. The 

appropriate sensor selection for coastal remote sensing 
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depends on factors relating to spatial, spectral and temporal 

resolution.  
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