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Abstract: The extension of the forecast time is an essential requirement for real-world applications, which includes early caution for 

severe climate conditions. In this paper, we come up with a new approach to time series forecasting. The time-series data is generic in 

lots of disciplines and engineering. Time series prediction is a vital assignment in time-series data modeling and is an important area of 

deep learning. We have developed a novel technique that makes use of a Transformer-based deep learning model for the prediction of 

time-series data. This technique works with the aid of self-attention mechanisms to study complicated patterns and dynamics from time-

series data. Moreover, it is a preferred framework and may be implemented in univariate and multivariate time series data, in addition to 

time series embedding. Using natural disasters such as flood forecasting as a case study, we show that the forecast outcomes produced 

using our technique are similar to the state-of-the-art. 
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1. Introduction 
 
Flood forecasting enables flood managers to predict with 

high precision when local floods are likely to occur. The 

overall performance of flood forecasting models should be 

evaluated periodically and a continuous cycle recalibration 

of the model should be performed after a new flood event to 

offer an up-to-date, beneficial, and accurate flood 

forecasting tool. River flooding can cause loss of life, 

devastating property damage, and adverse economic and 

environmental impacts. Although flood risks cannot be 

completely ruled out, real-time flood forecasting models, as 

an essential part of a flood caution service, can assist in 

providing flood warnings to the public in a timely manner 

with enough time to minimize the damage caused by 

flooding. This research uses time series prediction [18] with 

Transformer, a deep learning model, to predict floods in 

Australia. The aim of time series forecasting is to predict the 

potential values of a time series based on its historic values.  

 

It is now generally accepted that flood risks may be 

decreased however by no means absolutely eliminated. 

Therefore, in latest years there was a big improvement from 

a flood protection method to a flood threat control strategy; 

Therefore, it’s far vital to offer a powerful and dependable 

flood caution service as a part of the flood threat control 

process. Flood warnings must be furnished with an 

affordable wait time to the general public and emergency 

offerings so that you can take steps to reduce flood damage.  

 

In this work, we've advanced a novel approach to time series 

forecasting primarily based on the Transformer architecture. 

On contrary to sequence-oriented models, Transformer no 

longer processes data in an orderly manner. Rather, it 

processes the whole data stream and makes use of self-

attention mechanisms [17] to analyze the dependencies 

within the data stream. Thus, transformer-based models have 

the capacity to model complex dynamics of time-series data 

which can be challenging for sequence models. In this paper, 

we display that a transformer-based model can be efficiently 

carried out to the time series prediction function and 

outperforms many existing prediction techniques.  
 

2. Literature Survey 

 
The survey that has been conducted consists of the existing 

technology and studies associated with the topic of our 

project. It is an attempt to apprehend the efforts which have 

been made into this area of study, and additionally to 

apprehend where our efforts ought to be centered at the time 

of developing this project. 

 

Due to the great importance of time series prediction, a 

variety of models have been developed. Most of the time 

series forecasting methods make use of some of the classical 

tools [15] like ARIMA, RNN, etc. ARIMA [1] solves the 

prediction problem by converting non-stationary processes 

into stationary processes through differentiation. A filtering 

method [7] has also been introduced for series prediction [4]. 

In addition, the recurrent neural network (RNN) model was 

used to model time dependencies for time series [10]. 

DeepAR [12] combines autoregressive and RNN methods to 

model the probabilistic distribution of future series. LSTNet 

[8] puts together the convolutional neural networks (CNNs) 

along with recurrent skip connections in order to capture 

both short and long-term temporal patterns. RNNs involving 

the attention layer [14] introduce temporal attention for 

exploring the long-term dependencies for forecasting. 

Moreover, many projects based on temporal convolution 

network (TCN) [13] try to model temporal causality with 

causal convolution. This in-depth predictive model focuses 

primarily on modeling temporal relationships using repeated 

connections, temporal attention, or causal convolution. 

Recently, transformers based on self-attention mechanisms 

have shown great power in sequential data, such as natural 

language processing [2], audio processing [3], and also 
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computer vision [5]. 

 

Shengdong Du [6] developed an encoder-decoder model 

with temporal attention in order to solve the problem of 

multivariate time series forecasting. This model is based on 

Bi-LSTM layers to learn long-term dependency. [9] Bryan 

Lim adopted a new attention-based architecture named 

Temporal Fusion Transformer (TFT). It makes use of 

recurrent layers and self-attention layers enabling high 

performance. R Mohammdi Farsani [11] proposed a method 

to make the predictions at larger intervals more accurate. 

The transformer network model can provide desired results 

with a better network configuration and better adjustment of 

attention. 

 

3. Objectives 
 

We have advanced a general Transformer-based model for 

predicting time series. The paper shows that our method is 

better than the other models like Recurrent Neural Network 

(RNN). It has been shown that the Transformer-based model 

can accurately predict natural calamities like floods using 

various functions. The work of the Transformer-based model 

proves to achieve state-of-the-art forecasting results. 

 

4. Transformer Model 

 
4.1. Methodology 

 

The primary concept supporting the Transformer model is 

self-attention: it is the capacity to pay attention to different 

positions in an input sequence to compute an illustration of 

that sequence. Transformers create stacks of personal 

attention levels. The self-attention block encodes each new 

input concerning all other previous inputs, placing the accent 

based on the relevance calculation with respect to the current 

token. 

 

Figure 1: Illustration of self-attention architecture encoding 

the new inputs 

 

The input to the transformer is time series specified. For 

each new input, the model returns a new estimate for the 

next timestamp. The transformer model is described as  

1) Multi-Head Attention: The multi-head attention level 

consists of h parallel attention levels. Each layer is called 

a head. For each head, we use three solid layers with 

hidden dimensions pq, pk, and pv to project their 

respective queries, keys, and values, before feeding the 

attention layers. The outputs of these h heads are 

combined and then projected from another solid layer.  
2) Position-wise Feed Forward: A position-wise feed-

forward network accepts three-dimensional input with 

shapes (batch size, sequence length, characteristic size). 

It consists of two solid layers that apply to the last 

dimension, which means that the same solid layer is used 

for each positioning element in the sequence, therefore it 

is called position-wise. Along the lines of multi-head 

attention, a positional feed-forward network will only 

change the final dimension of the input. Also, if the two 

elements in the input sequence are identical, the 

corresponding outputs will also be identical.  

3) Positional Encoding: Both the multi-head attention level 

and the positional feed-forward network calculate the 

output of each element in the sequence independently. 

This property allows us to compute in parallel but is 

inefficient for modeling sequence information. The 

transformer model then adds position information in the 

input sequence. 

 

4.2. Model Architecture 

 

The proposed Transformer-based prediction model is 

developed along the lines of the original Transformer 

architecture inclusive of encoder and decoder layers.  
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Figure 2: Transformer-based model architecture depicting the encoder and decoder layer 

 

Encoder: The encoder includes an input level, a positional 

encoding level, and a stack of four similar encoder levels. 

The input layer maps the input time-series data to a 

dimensional vector dmodel across a fully connected network. 

This step is important for the model to use the multi-headed 

attention mechanism. Position coding with sine and cosine 

functions is used to encode sequential information in time-

series data by adding an input vector element to the position-

coding vector. The output vector is then fed into a four-level 

encoder. Each encoder level consists of two sublevels: a 

self-attention sublevel and a fully connected feedforward 

sublevel. Each sublevel is accompanied by a normalized 

level. The encoder generates a dmodel dimensional vector to 

be fed to the decoder.  

 

 Decoder: We use a decoder design identical to the original 

transformer architecture. The decoder additionally includes 

an input layer, four identical decoder layers, and an output 

layer. The decoder input starts with the last data point of the 

input passed to the encoder. The input layer maps the 

decoder input to a dmodel dimensional vector (Wu, N., et. al, 

2020). Along with the two substrates in each encoder layer, 

the decoder inserts the third substrate in order to apply a 

self-attention mechanism to the encoder output. Finally, 

there is an output layer that maps the output of the last 

decoder level to the target timeline. We use lookahead 

masking and offset the position between the decoder input 

and the destination output within the decoder to make sure 

that the data point prediction in the time series depends only 

on the previous data point. 

 

5. Research Work 
 

After training the model, we try to predict one day into the 

future. The graph below shows the training target, validation 

target, and test target. 

 

 
Figure 3: Plot showing the train, valid, and test target 
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The original model was trained on 200 epochs, and high 

accuracy was achieved with training_loss: 0.0015 and 

val_loss: 0.0012. 

 

6. Experimental Results 
 

6.1 Experimental Data Set 

 

The experimental data set that has been used in the paper is 

the flood.csv which was extracted from Kaggle and consists 

of approximately 150,000 entries from various cities in 

Australia. Flood forecasts are made based on many factors 

such as minimum/maximum temperature, Evaporation, 

Sunshine, Wind Gust direction and speed, Humidity, 

Pressure, Clouds, etc. It consists of the data for the years 

2008 to 2020. 

 

6.2 Performance Analysis 

 

The time series visualization for the original transformer 

model is shown below: 
 

 

 
Figure 4: Time series visualization for the original Transformer model 

 

This indicates that both actual results and predicted results 

are quite close. The increase and decrease in time series are 

consistent. 

 
Figure 5: Comparison of Means for the original 

Transformer model 

 

The above comparison indicates that the actual mean is 

higher than the predicted mean. 

 

 
Figure 6: Comparison of Standard Deviation for the 

original Transformer model 

 

The above plot shows that the actual standard deviation is 

quite close to the predicted standard deviation for this 

model. 
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Figure 7: Interquartile Range for the original Transformer 

model 

 

The overall results indicate that the Interquartile Range 

(IQR) is almost the same for both actual and predicted. 

 

7. Comparison and Discussion 
 

The performance of the transformer model is evaluated 

against other models. Not only does it compare time series 

datasets with alternative models, but it also tends to evaluate 

different configuration models in terms of hyperparameters. 

Different configurations tend to evaluate the dataset and its 

errors.  

 

The original transformer models have a built-in activation 

layer. Here, the first model is a simple repetitive neural 

network (RNN) model, omitting the activation level. The 

second setup starts the model with 100 epochs, the third with 

1000 epochs, and the newest model takes each day as a 

training set. 

       

7.1 Model 1: RNN 

 
Figure 8: Time series visualization for Simple RNN model 

 

In figure 8, the trend indicates closer estimates to the actual 

figure. 

 

 
Figure 9: Comparison of Means for the Simple RNN model 

 

Here, the actual mean and predicted mean are similar to the 

transformer model. 

 
Figure 10: Comparison of Standard Deviation for the 

Simple RNN model 

 

The standard deviations are also similar to the original 

transformer model. 
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Figure 11: Interquartile Range for Simple RNN - 

Actual vs Predicted trend 

 

In figure 11, the Box Plot illustrates that the trend of 

predictions is closer to the actual values. 
 

7.2 Model 2: 100 Epochs 

 
 

 

 

 

 

 

 

 

 
Figure 12: Time series visualization for a model trained on 100 epochs 

 

In figure 12, the model indicates a significant gap between 

actual and predicted values. 

 

 
Figure 13: Comparison of Means for the model trained on 

100 epochs 

 

 
Figure 14: Comparison of Standard Deviation for the model 

trained on 100 epochs 

 

The actual mean and the actual standard deviation are 

slightly higher than the corresponding predicted values. 
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Figure 15: Interquartile Range for the model trained on 100 

epochs 

 

In figure 15, the result is in sharp contrast with the original 

transformer result.  

 

7.3 Model 3: 1000 Epochs 

 

 

 

 

 

 

 

 

 

 
Figure 16: Time series visualization for the model trained on 1000 epochs 

 

From figure 16, it can be discerned that this is better than the 

model trained on 100 epochs but not as accurate as the 

original model with 200 epochs. 

 

 

 
Figure 17: Comparison of Means for the model trained on 

1000 epochs 

 

 
Figure 18: Comparison of Standard Deviation for the model 

trained on 1000 epochs 

 

Here, the model indicates that the actual standard deviation 

is almost the same as the predicted standard deviation. 
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Figure 19: Interquartile Range for the model trained on 

1000 epochs 

 

The shape of both box plots is approximately the same, and 

it also indicates that the median and the maximum are higher 

for predicted. 

 

7.4 Model 4: Alternative Day 

 

 

 

 

 

 

 

 

 
Figure 20: Time series visualization for the model trained on alternative days 

 

In figure 20, the predicted results do not clearly depict the 

overall trend of the actual distribution. 

 
Figure 21: Comparison of Means for the model trained on 

alternative days 

 

The predicted mean is higher, as the results show an average 

trend. 

 

 
Figure 22: Comparison of Standard Deviation for the model 

trained on alternative days 

 

This model has a predicted standard deviation lesser than the 

actual standard deviation. 
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Figure 23: Interquartile Range for the model trained 

on alternative days 

 

The overall predicted trend is better in the original 

transformer model. 

 

8. Summary 
 

 

 

 

 

 

 

 

 

Table 1: Standard measures deployed for the comparison of the different models 
 Actual Simple RNN Epochs 100 Epochs 1000 Alt Days 

Explained variance -8.34155E-12 -9648.477254 -0.108572254 6.19171E-13 -1.17167E-07 

Max error 0.01 97.55297985 0.999760027 1 0.999997734 

Mean absolute error 0.012497694 12.69669504 0.150480201 0.124976941 0.124975153 

Mean squared error 0.010818007 1054.369696 0.111598413 0.108180067 0.108179455 

Mean squared log error 0.005277282 2.794904892 0.055759299 0.052772816 0.052772369 

Median Absolute Error 0.001329402 2.061759311 0.028884304 0.013294015 0.013291372 

Coefficient of Determination (R2 score) 16.87456309 -11390.10018 -0.205676445 -0.168745631 -0.16873902 

Mean Poisson Deviance 0.523677967 24.2405738 1.797628019 5.759595777 2.868821389 

Mean Tweedie Deviance 0.010818007 1054.369696 0.111598413 0.108180067 0.108179455 

 

9. Conclusion and Future Scope 
 

The transformer model predicts flooding for the next day in 

Australia. Looking at the time-series graph, we can say that 

the transformer model has achieved promising accuracy. 

After comparing it with different models such as RNN 

(without activation layer), transformer model trained at 100 

epochs and 1000 epochs, transformer model trained on 

alternate days, we conclude that the original transformer 

model is the best model for predicting time series. 
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