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Abstract: Reflection of points across lines is commonly taught in schools, but the intuitive qualities of the transformation do not 

necessarily align with its formal definition. This paper explores the extension of this notion of quasi-reflection, separate from the 

canonical mathematical sense of the term, by graphical properties. Through the presentation of examples, insight into the relationship 

of degrees of curves under this process is derived. 
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1. Introduction and Motivation  
 

The notion of what will be called “quasi-reflection” is 

considered here. It may help to start with the limiting case, 

in which quasi-reflection reduces to the conventional 

reflection, the inspiration for this paper: the reflection of a 

point across a line. When such a reflection occurs, there are 

a few important factors, which are the guiding principles of 

the transformation described by quasi-reflection; a joining 

line passing through the point, normal to the curve (a line, in 

this case), and the equidistance of the image and the point to 

the curve. 

 

There is a significant gap in the mathematical canon of the 

description of such a process. There is little to no literature 

following this path towards defining reflection, a 

shortcoming that this paper hopes to remedy by providing an 

overview of its basic properties and structure. In exploring 

this untested and therefore somewhat obscure field, insight 

may be shed onto the existing relationships between 

common curves in differential geometry and additional 

properties related to quasi-reflection. 

 

2. Initial Definitions 
 

There are three main components to the process of quasi-

reflection. The first is the reflectend, the object that is to be 

reflected. The second is the reflector, which is the 

differentiable curve or surface across which the reflectend 

will be reflected. The last is the image, which is directly 

derived from the previous two, and is the resulting object 

from the quasi-reflection. 

 

Consider first the case where the reflectend is a point (point 

quasi-reflection).Obtaining the image involves finding all 

possible normals to the reflector that pass through the point. 

Having found these, and the points on the curve to which 

they correspond (the reflection points), one projects the 

reflectend across the reflection points, ensuring that the 

image and the reflectend are equidistant to the reflection 

point. 

 

Then, generalizing to a curve as a reflectend, the process is 

analogous; the point quasi-reflection is applied to each point 

in the curve, and the resulting locus of points is the image. 

In the special case where the reflector is a point, quasi-

reflection defined in this manner becomes the same as 

inversion in a point, since all lines through the reflector are 

normals. 

 

It should be noted that quasi-reflection is not, in general, an 

isometry, nor is it even a function. Most accurately, it is a 

homogeneous binary relation between points in some space. 

That is, the operation in an arbitrary vector space   can be 

described as a subset of    . This is true given a 

reflector. 

 

Most generally, then, point quasi-reflection is a binary 

heterogeneous relation with domain     and codomain 

 , where    is the space of differentiable curves in the 

appropriate vector space. It is denoted using the Greek 

qoppa: 

                                             
 

To summarize, there are two defining principles to point 

quasi-reflection, given a reflector. 

A1. The line joining the image and the reflectend is normal 

to the reflector. 

A2. The distances from the image and from the reflectend to 

the reflector across this joining line are equal. 

  

The rest of this paper is organized as follows. Section 

3presents the case of reflecting across a parabola, exploring 

the nuance that arises from the deviations from canonical 

notions of reflection. Section 4 looks at the case of the 

reflector being the unit circle. Section 5 details the adjacent 

idea of the evolute and its property of classifying points 

based on the number of images they have. Section 6 explores 

quasi-reflection in higher-dimensional spaces, briefly 

looking at the example of the paraboloid. Section 

7summarizes results on the relationship between degrees of 

the reflectend and reflector. Section 8 concludes the paper 

with a summary of the conclusions and insights obtained in 

this work and a brief discussion on the future course of this 

research. Henceforth, all references to “reflection” are to 

quasi-reflection, unless otherwise specified. 
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3. Reflecting Across a Parabola 
 

The specific case that will be illustrated here is that where 

the reflector is the parabola with equation     , with 

vector space     . First, point quasi-reflection will be 

derived. Consider the general point           and a 

potential reflection point          . The reflection point 

is the point on the reflector across which reflection is carried 

out; it is the midpoint of the line segment joining the image 

and the reflectend. For the parabola,      
 . 

 

Then, condition A1 gives that the following relationship 

must be true: 

    
  
    
     

                                         

 

And the condition A2 gives that the image can be expressed 

as follows: 

           
                                   

 

Manipulating Eq. (3.1) gives: 

  
   

     
 

    
  
 
                              

 

And so, the property earlier stated is discovered; there can 

be multiple images of a given point under quasi-reflection. 

In this case, there can be up to 3 distinct images. 

 

It is useful for the intuition to be able to visually place one 

such process. As such, setting the reflectend to      , Figure 

1 is obtained after solving the cubic in Eq. (3.3): 

 

 
Figure 1 

 

Take for example the point    
 

 
 . There are three reflection 

points:       ,      , and      . They result in the distinct 

images     
 

 
 ,     

 

 
 , and    

 

 
 , as shown below in 

Figure 2. 

 

 
Figure 2 

 
3.1 Reflecting         

 

It is now possible to reflect an entire line across this 

parabola. The case of a horizontal line is illustrated here 

(this specific case is convenient for the resulting cubic). In 

this case, A1 gives: 

  
  

  
 
                                             

 

The general image for any point     
 

 
  is then: 

   
  
 

 
      

  
 

 

 

 
 

 
                                     

 

Finally, then, solving to eliminate    to obtain the equation 

of the reflected line, the following is obtained: 

  
    

 
 

 

 

                                      

 

So, substituting into the expression for the first co-ordinate, 

    
    

 
 

 

 

   
    

 
 

 

 

 

                                           
 

This gives us an expression for the equation of the image. 

Observe that, in reflecting a linear equation across a 

quadratic equation, a third-degree equation was obtained. 

Figure 3 illustrates this reflection, with the image 

represented by the dashed curve. 

 

 
Figure 3 
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3.2 Reflecting       

 

Another case that of the vertical line, is now illustrated. In 

particular, the reflectend is the axis of the reflector; this case 

will be further generalized in Section 6. Eq. (3.3) now 

becomes: 

 

  
   

     

 
                   (3.8) 

 

As such, the roots are as follows: 

       
     

 
                                      

 

The solution of zero corresponds to the reflection across the 

vertex of the parabola (whose normal coincides with the axis 

by definition). It is easy to see that this will result in the axis 

itself in the image. The other images can be expressed as 

follows: 

    
     

 
                                           

 

The equation of the points described by this parameter then: 

    

 
     

  
  

 
 
 

 
                                         

 

The image when the reflectend is the axis is then the union 

of the transformed parabola with the original axis    . 

This is represented in Figure 4. 

 
Figure 4 

 

3.3 Reflecting      

 

The case here is that of the parabola itself; the reflectend is 

the same as the reflector. While this is typically trivial in the 

canonical sense of reflection, yielding an image that equals 

the reflectend, quasi-reflection means that this auto-

reflection of the parabola is more complicated. 

 

The general point is now       
  , so the usual cubic in Eq. 

(3.3) is now as follows. 

  
   

     
 

 
    

  
 
                         

It is clear that the horizontal co-ordinate of the point itself, 

  , is always a root of this equation. Factoring Eq. (3.12) 

yields the equation below. 

 

          
       

 

 
           (3.3) 

The first root corresponds to the image that is the reflectend 

itself; this will always be part of the image, but, under quasi-

reflection, this is not necessarily the only image. Solving the 

quadratic obtains the value of the other two roots. The co-

ordinates of the reflection points are stated below. 

    
  
 
 
   

   

 
                              

   
  
   

 
 
     

   

 
                     

 

The expression for the co-ordinates of the image        is 

then as below, using Eq. (3.2). 

 
           

    (3.1) 

 
           

    (3.2) 

Eliminating the parameter from these equations through 

repeated squaring leaves the following result for the 

equation of the image curve. 

  
                       
 

(3.3) 

Thus, the image is the union of this fourth-degree curve with 

the original parabola, as shown in Figure 5. 

 

 
Figure 5 

 

3.4 Classification by number of images 

 

It is natural to turn to the question of classifying all points in 

the plane by the number of images they have under this 

operation. Return to the original cubic in Eq. (3.3), restated 

below: 

  
   

     
 

    
  
 
                              

 

Consider the cubic discriminant, which is negative when 

there is one real root, zero when there are two distinct real 

roots, and positive when there are three distinct real roots. 

This is as follows, for the general depressed cubic      
 : 

                                          
Setting equal to zero will give us a boundary, above which 

points will have three real roots, on which points will have 
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two real roots, and below which they will have one real root. 

This yields: 

   
     

 
 
 

     
  
 
 
 

                    

 

Substituting for the co-ordinates in order to obtain an 

equation in the Cartesian plane: 

                 (3.4) 

 

    
  

  

 

 
 

 
 

(3.5) 

This curve will henceforth be referred to as   .An important 

exception to note is that the point    
 

 
  has only one 

distinct image, though it does have two real roots. This is 

due to a repeated root case, but is assured only to exist at 

singularities such as the cusp of this curve. It is a rotated 

semicubical parabola shifted by 
 

 
 up the vertical axis.It is 

also the evolute of the reflector, a note that will be pertinent 

later. Note that the first point reflected in Section 3was 

below   , hence the existence of only one image. Figure 6 

illustrates examples of the three possible cases below. 

 

 
Figure 6 

 

3.5 Reflecting    

 

The reflection of    is relatively simple to derive, since 

each point reflection results in exactly two images. In 

general, for a depressed cubic        with a repeated 

root    and other root   , the following expression holds. 

    
 

 

 

       
 

 

 

                                

 

The proof is as follows. Equating equivalent forms of the 

cubic equation yields: 

              
                                       

 

Equating the coefficients of the quadratic and constant 

terms, 

  
         

 

         (3.6) 

      
    (3.7) 

Substituting Eq. (3.25) into Eq. (3.26) yields the following. 

   

     
  

 

    
 

 

 

 (3.8) 

   
This is as was desired; simple substitution verifies the 

expression for   . 

 

Applying this formula to the cubic in Eq. (3.3), the following 

values for the reflection point’s horizontalco-ordinate are 

obtained. 

     
  
 

 
     
                                     

 

For the first value, the co-ordinates of the image are as 

follows, using the equation of   . 

      
      

 

 
 
  
 

 

 

 
 

 
                           

For the second value, the expression is the following. 

      
     

 

 
 
  
 

 

 

 
 

 
                             

Solving for their Cartesian equation shows that the image 

when the reflectend is    is the union of the following two 

equations, which correspond to the first and second values 

above respectively. 

              

                                          
 

Therefore, the reflection of a third-degree equation, the 

semicubical parabola, across a quadratic can yield two third-

degree equations for the image. This is shown in Figure 7. 

 

 
Figure 7 

 

4. Reflecting Across A Circle  
 

Another case study is now shown, one that is simpler in 

some respects, but more complex in others. Reflection 

across the unit circle in the Cartesian plane is now 

considered; generalization to any circle is trivial. 

 

It is obvious that the transformation for any point is simply a 

multiplication of both co-ordinates by some factor; the 

desired normal will always be the line through the origin and 

the reflectend. Every point will have precisely two images 

corresponding to each “side” of the circle, save for the 

origin, whose image will be considered later. Geometrically, 
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the equation of the normal for any non-origin point 

          is: 

  
        
 

(4.1) 

Then, the reflection points will be as follows (effectively 

normalizing the position vector). 

 
  

   
    

 
 

  

   
    

 
  

 
   

   
    

 
 

   

   
    

 
                             

 

These yield the images after applying the condition A2. 

Expressed more concisely, they are scaled versions of the 

reflectend by the factors    and   , whose values are stated 

below. 

   
 

   
    

 
   

   
  

   
    

 
                                   

 

4.1 Reflecting the origin 

 

The case of the origin is now considered. Every line through 

the origin is a normal. For each, the reflection point is the 

intersection with the unit circle. The distance from the 

reflectend to the reflection point is then always 1. Thus, the 

distance from the reflectend to every possible image must be 

2. It then becomes clear that the following equation gives the 

image of      , which is a circle of radius 2 centered at the 

origin. 

                       (4.4) 

 

4.2 Reflecting a circle 

 

The reflection of a circle centered at the origin across the 

unit circle is fairly simple; it is clear that the multiplying 

factors in Eq. (4.3) are constant across the reflectend in this 

case. They reduce to the following in terms of the radius   

of the circle. 

   
 

 
   

    
 

 
                                         

 

As such, the images are two circles of radii with magnitudes 

    and    . This simplifies to the following expressions 

for the two image radii. 

 

         
                       (4.6) 

 

4.3 Reflecting a line 

 

A full description of the image of any point has now been 

given. Naturally, one turns to the images of possible lines. It 

is immediately clear that the image of any line through the 

origin is simply the reflectend itself. 

 

Further manipulation in order to find general equations of 

the images of other lines directly is algebraically difficult. 

To simplify matters, radial symmetry can be leveraged; only 

lines in a certain orientation must be considered, which can 

then be rotated. For ease, the lines of the form     are 

considered. In this case, the following equations are valid for 

the image curve. 

    
 

 
                                        

    
  

      
 
                             

       
   

     
  

  
  

   

      
                                 

 

Eliminating the parameter, the following explicit equation 

can be derived for the image by substituting Eq. (4.9) into 

Eq. (4.7) after squaring. 

   
  

  
 

   

      
     

                                           
 

Then, for the arbitrary line described by its minimum 

distance   from the origin and the angle   it makes with 

the positive horizontal axis, an anticlockwise rotation of Eq. 

(4.10) by   
 

 
 is required. Using the rotation matrix, the 

following expression is valid for this transformation. 

 
  
  
   

         
          

  
 
                       

 

                                        
 

Observe that the first bracket in the left-hand side of Eq. 

(4.10) is independent of rotation, representing the square of 

the distance to the origin. Therefore, the general image for a 

line parameterized in this manner is as follows. 

        
            

              
 
 

                

 

Given this expression, it is easy to convert it for the slope-

intercept form. The following equations aid in this 

conversion, for the equation       . They are derived 

from basic co-ordinate geometry. 

  
 

     
                                         

                        (4.15) 

 
This yields, after some manipulation, the following result, 

having substituted in Eq. (4.13). 

        
     

       
 
 

                          

 
4.4 Asymptotic behavior 

 

A separate conclusion that can be drawn is that it 

approximates asymptotically to inversion about the origin. 

That is to say, the image of the line with equation 

        has the asymptote as follows. 

                        (4.17) 
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The proof is simple; using the expressions for the 

multiplying factors in Eq. (4.3), it can be seen that the 

following is true as the reflectend grows far from the origin. 

      

                     (4.18) 

 

 

Thus, it must be the case that both images tend towards an 

inversion through the origin. One possible case of the 

reflection of the line with equation       is illustrated 

in Figure 8; the asymptotic behavior can be observed. The 

equation of the image is as follows. 

        
   

     
 
 

                   

 

 
Figure 8 

  

5. The evolute and classification by Number of 

Images 
 

More general results that will be valid for any possible 

reflector are now presented. More specifically, the 

classification of points based on the number of images they 

produce will be considered. 

 

It was observed in Section 3.3 that it was the evolute which 

determined the number of images a given point had under 

the reflection across the parabola. Since all parabolas are 

affine transformations of that considered earlier, it is easy to 

see that this must be the case for parabolas in general. 

 

It is required that a formal process is described, through 

which one may obtain the number of images of a given point 

for the arbitrary reflector in order to progress further. 

 

Given an arbitrary parameterized curve                  
in the two-dimensional plane, the normals are characterized 

by the following equivalent equations. 

 

                               (5.1) 

 

                                            
 

Therefore, the condition for some point       to be a 

reflection point given some reflectend         is obtained 

by substituting into Eq. (5.2) (5.1). 

 

                                       (5.3) 

 

One may then consider the general polynomial with 

equation       . For this class of reflector curves, it is 

the case that the classifying curve is simply the evolute. This 

can be proven by considering the evolute as the envelope of 

normals, an alternative definition to the union of centers of 

curvature. 

 

To find the evolute in this way, it is required that an 

expression is found for the general normal through the point 

        . This is as follows. 

                               (5.4) 

Now, define          so that equating to zero gives Eq. 

(5.4). 

 

                                (5.5) 

 

Solving for the envelope requires the following condition to 

be true [1]. 
  

  
                                    

 

This effectively means a double root, so an equivalent step 

would be to set the discriminant of the function in   to zero. 

But this is the same as the condition required for the 

classifying equation, since it is derived by setting the 

discriminant to zero when      (which holds in this 

case). Hence, the evolute is the classifying curve when the 

reflector is a polynomial curve. 

 

Observe that this method does not extend to the general 

curve, since the discriminant connection does not exist. 

While a double root is still required for the evolute, it is not 

certain that points above and below the curve will behave in 

the same fashion as with the polynomial discriminant. 

 

An interesting consideration that arises from this work is the 

maximum number of images a point may have given a 

reflector. For a polynomial with degree  , it is clear that this 

is      by considering the degree of the right-hand side 

of Eq. (5.5). 

 

Another supporting fact of the connection between degree 

and the maximum number of images can be found when the 

reflector is set to be a sinusoidal curve. In this case, the 

equation        will be considered for simplicity. It is 

true that there is no maximum number of images for this 

case. The proof is as follows. 

 

Let the reflectend be the point            . Let        
be the value of the slope of the line joining the origin and a 

candidate reflection point           , and let        be 

the value of the normal slope to this candidate point. 

Consider the domain such that               
  

 
     . Then,    can be tightly bounded by the 

following inequality. It is also a strictly increasing function 

in the horizontal co-ordinate. 
     

     
     

  

    
  

 

                          

 

On the other hand,    is tightly bounded by the following 

inequality and is unbounded from below. It is a strictly 

increasing function in the horizontal co-ordinate. 

                         (5.8) 
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Consider, then, their difference                  
over the same range. This is also unbounded from below and 

continuous, but takes on the final value as below. 

      
  

 
  

  

    
  

 

                            

Then, if this value is greater than 0, the intermediate value 

theorem guarantees that there will be at least one point in the 

range such that              . This will be a valid 

reflection point, and therefore will generate a valid image.As 

such, it is clear by construction that the choice of a high 

enough value of    will yield as many images as desired. 

 

Why does this align with the previous intuition between the 

degree and maximum number of images? If one considers 

the Taylor expansion of the cosine function, it may be said 

that the degree is, in an informal sense, infinite. As such, the 

infinitude of the maximum number of images is also 

appropriate. 

 

6. Higher Dimensional Reflection 
 

The most general description of quasi-reflection outlined in 

Section 2 extends very well to higher dimensions. The 

derivation of explicit equations can grow increasingly 

laborious, however, requiring the elimination of more 

parameters, sometimes analytically impossible, as 

dimensions grow larger than 2. 

 

In the case of three dimensions, visualization remains 

helpful; the normal is simply the line through a given 

candidate reflection point which is normal to the tangent 

plane of a given three-dimensional surface. While visual 

intuition breaks down beyond this, the notion of the 

hyperplane allows us to describe the general normal. It is 

clear the reflector must be of dimension one less than the 

space in which it exists for quasi-reflection to remain well-

defined. 

 

An illustrative finding will be given here in higher 

dimensions. This is the dimensionally general case of the 

reflection in which the reflector is a hyperparaboloid and the 

reflectend is the axis of this hyperparaboloid. 

 

The equation of the  -dimensional paraboloid to be 

considered is as follows, relabeling the variables for ease. 

 

     
 

 

   
                                      

 

Of course, the axis itself will be part of the image, resulting 

from the universal reflection point at the origin. To find the 

other reflection points, using the linear order Taylor 

approximation near a given point                   to 

represent the tangent hyperplane, the equation of this is: 

 

             
 

   
                        

 

Since   is on the  -dimensional paraboloid, the following 

relationship holds. 

      
 

 

   
                                  

The vector normal to this hyperplane is then represented by 

the following equation, extracting the coefficients from the 

Cartesian expression in Eq. (6.2). 

 

                  
            (6.4) 

 

It is needed that the point   on the axis with “vertical” co-

ordinate    and other co-ordinates equal to zero is such 

that the difference between   and   is parallel to this 

normal. This simplifies to the following, using Eq. (6.3). 

      
 

 
    

 
 

   
 
 

 
                             

 

Geometrically, the locus of reflection points is a hypersphere 

of     dimensions as all points with the given vertical 

co-ordinate on the  -dimensional paraboloid will be valid 

reflection points. Similarly, the image is a similar sphere 

with double the radius. The equation of the image of the 

general axis point is then as follows. 

   
 

 

   
                                   

 

Thus, solving to eliminate the parameter yields the image of 

the axis as the union of the axis and a transformed  -

dimensional paraboloid, whose equation is given below. 

  
 

 
   

 
 

   
 
 

 
                                  

 

This aligns with the case in two dimensions that was verified 

in Section 3. 

 

7. Degrees of Components  
 

A relationship between the degrees of the equations of the 

reflectend, the reflector, and the image, if it exists would be 

a valuable finding. Whilst it is beyond the scope of this 

paper to derive such a relationship, possible combinations 

that have been derived either earlier, or exist previously in 

the mathematical canon are presented below. All further 

findings in this section are in    only. 

 

It first must be considered precisely what is meant by degree 

in this context. Restricting quasi-reflection to the two-

dimensional case, the degree of a curve refers to the degree 

of the expression       , where the equation of the curve 

can be written as         . 

 

An important case is, for example, the image of the axis of 

the parabola in Section 3. While it was described as the 

union of a degree-one and degree-two equation, this can be 

encapsulated by the degree-three equation as follows: 

 

    
 

 
 

  

 
                   (7.1) 

 

The union can thus be obtained simply by multiplying, so 

that there is a unique degree corresponding to each image 

which is the sum of individual degrees. Though operations 

such as squaring both sides arbitrarily increase the degree 

while keeping the equation constant, the fully “reduced” 

form will be considered here; that which has the minimum 

possible degree while maintaining integer exponents. 
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Denote a quasi-reflection with fixed reflector   by a 

subscript of this reflector:   . Now denote the induced 

relation between degrees by         . 

 

There is a notable property that should be mentioned, shown 

as follows. Holding the reflector constant, the following is 

true 

 

                                    (7.2) 

 

Taking the unions of the reflectends and the images provided 

neither is identical proves this. Thus, only quasi-reflections 

that cannot be derived in this trivial manner are presented in 

the table below. 

 
Reflected Degree Reflector Degree Image Degree 

  0   

  1   

1 2 1 

1 2 3 

1 2 4 

2 2 4 

2 2 6 

3 2 6 

  
The first two rows are elementary; the third row was derived 

in the case of lines through the origin across a circle. The 

fourth row refers to the reflection of both the axis and the 

earlier line across the parabola. The fifth row refers to the 

reflection of lines not passing through the origin across a 

circle. The sixth row is the reflection of a circle across the 

unit circle. The seventh row was the reflection of the 

parabola across itself. The eighth row corresponds to the 

reflection of    across the parabola. 

 

8. Conclusion and Future Work 
 

It has been shown that the concept of quasi-reflection holds 

depth. A general description of the process has been given, 

and specific results for the cases of parabola and circle 

reflectors have been presented. That the evolute of a curve 

with equation of one co-ordinate equal to a polynomial 

function of the other is the classifying curve has also been 

proven. Reflection of the axis of a hyperparaboloid across 

the hyperparaboloid itself has also been derived and 

demonstrated. Finally, insight into the relationship of the 

degrees of the components under quasi-reflection was 

presented based on the previous work throughout the 

examples. 

 

It is hoped that this paper will serve as the foundation for the 

study of this curious and surprisingly rich field of quasi-

reflection. Though quasi-reflection is more esoteric than 

canonical reflection and occasionally difficult to work with 

as a consequence of having lost traditionally required 

criteria, it holds novel challenges and connections as a 

result. The merit of such work lies not only in the 

straightforward applications to optics and visual perception 

in parabolic mirrors, for example, but also in the potential to 

discover new mathematics. 

Future directions for research are numerous and deep, as is 

natural in a nascent area of study. The relationship between 

the turning points and the number of images warrants further 

investigation. The component degree pattern is also 

suggestive of an underlying structure that is mathematically 

useful. Beyond these directions touched on within this paper, 

there are further extensions that exist; translating this 

process algebraically to the complex field, or defining quasi-

reflection rigorously for reflectors of an arbitrary dimension. 
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