
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Survey on Different IP Address Lookup

Approaches

Manohar Nelli V

Department of Computer Science and Engineering, Jawaharlal Nehru National College of Engineering, Shivamogga, India

manohar[at]jnnce. ac. in

Abstract: Due to the rapid growth of traffic in the Internet, backbone links of several Gigabit/sec are commonly deployed. To handle

Gigabit/sec traffic rates, the backbone routers must be able to forward millions of packets per second on each of their ports. Fast IP

address lookup in the routers, which uses the packets destination address to determine for each packet the next hop, is therefore crucial

to achieve the packet forwarding rates required. IP address lookup is difficult because it requires a longest matching prefix search. In

the last couple of years, various algorithms for high performance IP address lookup have been proposed. A survey of IP address lookup

algorithms is presented here.

Keywords: Host address caching, Multibit, GPU, CUDA

1. Introduction

The primary role of routers is to forward packets towards

their final destination. To this purpose, a router must decide

for each incoming packet where to send it next. More

exactly, the forwarding decision consists in finding the

address of the next - hop router as well as the egress port

through which the packet should be sent. This forwarding

information is stored in a forwarding table that the router

computes based on the information gathered by routing

protocols. To consult the forwarding table, the router uses

the packet’s destination address as a key; this operation is

called address lookup. Once the forwarding information is

retrieved, the router can transfer the packet from the

incoming link to the appropriate outgoing link, in a process

called switching. The exponential growth of the Internet has

stressed its routing system. While the data rates of links have

kept pace with the increasing traffic, it has been difficult for

the packet processing capacity of routers to keep up with

these increased data rates. Specifically, the address lookup

operation is a major bottleneck in the forwarding

performance of today’s routers. This paper presents a survey

of the latest algorithms for efficient IP address lookup. Here,

various approaches to lookup IP addresses efficiently are

presentedwhich helps to understand the address lookup

problem and it also provides a suitable solution for every

problem which is occurring due heavy and explosive internet

traffic that has given rise to many problems.

2. High - Performance IP Routing Table

Lookup Using CPU Caching

Tzi - cker Chiueh and Prashant Pradhan [1] proposed

Suez project to demonstrate that general - purpose CPU can

serve as a powerful platform for high - performance IP

routing. Suez’s routing table lookup algorithm is based on

two data structures; a destination host address cache (HAC),

and a destination network address routing table (NART).

Both are designed to use CPU cache efficiently. The

algorithm first looks up the HAC to check whether the given

IP address is cached in the HAC because it has been seen

recently. If so, the lookup succeeds and the corresponding

output port is used to route the associated packet. If not, the

algorithm further consults the NART to complete the

lookup.

a) Host Address Caching

Typically multiple packets are transferred during a network

connection’s lifetime, and the network route a connection

takes is relatively stable. Therefore the destination IP

address stream seen by a router exhibits temporal locality.

That is, the majority of the routing table lookups are

serviced directly from the HAC. Data flow of HAC is as

shown in fig 1.

Minimizing the HAC hit access time is crucial to the overall

routing table lookup performance. Rather than using a

software data structure such as a hash table, Suez’s HAC is

architected to be resident in the Level - 1 (Ll) cache at all

time, and to be able to exploit the cache hard - ware’s

lookup capability directly. As a first cut, 32 - bit IP

addresses can be considered as 32 - bit virtual memory

addresses and simply looked up in the L1 cache. Suez’s

HAC lookup algorithm takes a combined software and

hardware approach. To reduce virtual address space

consumption, Suez only uses a certain portion of each IP

address to form a virtual address, and leaves the remaining

bits of the IP address as tags to be compared by soft - ware.

This approach makes it possible to restrict the number of

virtual pages reserved for the HAC to a small number.

Figure 1: Data flow of HAC

Paper ID: SR211008105414 DOI: 10.21275/SR211008105414 368

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

If they hit in the L1 cache, the lookup is completed in one

CPU cycle; otherwise an NART lookup is required.

b) Network Address Routing Table

If the HAC access results in a miss, a full - scale NART

lookup is required. The guiding principle of Suez's NART

design is to trade table size for lookup performance. This

principle is rooted in the observation that the L2 cache size

of modern microprocessors is comparatively large for

storing routing tables and the associated search data

structures, and is expected to continue increasing over time.

The same above said approach as in case of HAC (host

address caching) is implemented for NART (network

address routing table).

The main advantage is that, it speeds up the lookup process

of an IP address by avoiding visiting unrelated routing table

entries. By treating IP addresses as virtual memory

addresses, one can exploit CPU caching as a hardware assist

to speed up routing table lookup significantly. Suez’s

routing table lookup algorithm is simple and fast and does

not require backtracking to support longest prefix match.

This makes easy to traverse Suez’s routing table at an

increased speed which will serve in forwarding pockets at a

faster rate.

Disadvantage is that, more complex machinery is required to

twist the CPU cache as a routing table lookup cache,

because the "tags" of IP addresses are of variable length,

whereas existing CPU cache hardware only supports fixed -

length tags. There is much less spatial locality in the

destination host address stream compared to the memory

reference stream in typical program execution.

3. An Improvement of IP Address Lookup

based on Rule Filter Analysis

Perez, K. Guerra, Xin Yang, and SakirSezer [16]
proposed a rule filter analysis to improve IP address lookup.

A rule is composed of five or more fields and it defines an

action. When an input packet matches against a rule, the

corresponding action is applied to the input packet. A set of

determined rules is called a filter. Consequently, different

kinds of filters are examined: Accesses Control List (ACL),

Firewall (FW) and IP Chain (IPC), with different sizes. The

size of the rule filters is named as 1 K, 5 K and 10 K rules in

order to simplify the denomination of rule sets.

a) Original Multi - bit Search Trie

Each node of the original Multi - bit Search Trie represents a

determined n - bits prefix in the trie algorithm. Each leaf

node stores a list of rules and the highest priority matching

rule (HPMR) is found using a simple linear search. Using

this methodology, it is expected that memory space as well

as long lookup time will be inefficient due to the list of rules

stored in each trie node. However, supposing there are no

repeated rules, this experiment runs at a fast insertion

process. Different scenarios are studied for IPv4 using tries

with four levels per dimension, in order to acquire the

optimal parameters values.

b) Multi - bit Trie with labelled rule fields Experiment 1

(EXP_1)

Experiment 1 (EXP_1) is based on an improved structure of

the original Multi - bit Search trie algorithm. According to

the rule filter analysis, EXP_1 performs the lookup process

using the label method. It demonstrates that the number of

unique rules is lower than the total number of rules. Thus,

the label represents all rules containing this field. The main

idea of this work is to label each unique rule field. By

storing the labels instead of the entire rule information,

memory consumption can be significantly reduced. Here, a

label is assigned to the unique 16 bit partitions of each rule

field that must be stored in the multi - bit tries.

Consequently, each trie links with a certain label filter. The

independent filter information is composed of a label. This

will require less memory storage than original Multi - bit

trie.

With this method, we expect that this experiment will

require less memory storage than original Multi - bit trie.

Furthermore, the lookup process is expected to be faster.

However, the update processes can be compromised by the

corresponding label lookup into the filters.

c) Multi - bit Trie with labelled nodes Experiment 2

(EXP_2)

Experiment 2 (EXP_2) uses label method on a multi - bit

trie. In this case, the trie nodes are labelled instead of the

unique field. After all search results are available from each

trie, the final lookup is performed in another label filter with

combinations of labels. The experiment demonstrates not

only a reduction of memory space, but also an improved

lookup speed. Since leaf nodes do not contain any rule list,

the goal of EXP_2 is also to avoid the linear search into the

trie. Moreover, the corresponding label does not have to be

searched through a filter beforehand. The label will be

retrieved when the leaf node is reached.

Advantage of this approach is that, multi - bit tries still do

linear search on lengths, but since the trie is traversed in

larger strides the search is faster. This method reduces the

depth of the trie and it is an easy hardware solution mapped

into pipeline stages. It reduces the update time in

comparison with other trie structures.

Limitation is the requirement of intensive design tasks on

time/space complexity, a very large number of rules, high

speed, scalability, flexibility. This method requires higher

latency and more storage with a larger address width. There

is a need to store children nodes for each new created node,

denoting an inefficient memory usage. This is not suitable

for a large number of entries and it does not support

incremental update.

4. An On - Chip IP Address Lookup

Algorithm

Sun, Xuehong, and Yiqiang Q. Zhao [3]proposes a new

data compression algorithm to store the routing table in a

tree structure using very little memory. The data structure

used in this method is tailored to a hardware design

reference model presented here.

Paper ID: SR211008105414 DOI: 10.21275/SR211008105414 369

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

a) Hardware design reference model

The IP destination address enters the chip as a key for

looking up the next hop information. The output of the chip

is an index to the external SRAM where the port information

can be found. The chip is an ASIC that consists of a memory

system and an ALU part. The memory system uses on - chip

SRAM. Using an IBM blue logic Cu - 08 ASIC process, the

I/O width of the SRAM to the control logic unit can be as

wide as 144 bits. The memory access time can be as low as

1.25ns. The size of the on - chip memory is about 1 Mbits.

Assuming there are 144 bits in each row, the chip has less

than 213 rows altogether. This means 13 bits is enough to

index into any row of the memory. The ALU receives keys

from outside and produces outputs to the outside. It may

access the memory of the system and it performs some

simple logic and arithmetic operations. According to

different design goals, the chip can be configured or

programmed. In fact, this reference model shown in fig 2

can be modified to be tailored to different situations.

Figure 2: Hardware design reference model

The reason to choose SRAM instead of DRAM as the on -

chip memory is that the SRAM access time is several times

faster than the DRAM. The on - chip SRAM memory size

can be made more than 100M bits large, which is well

suitable for any IP lookup task.

Advantage is that, the on - chip memory access latency is

very low. It provides larger bus width to on - chip memory

than that to off - chip memory. The number of pins of the

chip is smaller if the memory goes on chip rather than off

chip. The algorithm can be implemented in one single chip.

Updating process will not interfere with the searching.

Disadvantage is that, the memory cannot be large, only

suitable for smaller memory. Memory requirement increases

proportionally to the increase of the number of prefixes. Due

to the lack of techniques to compress and optimize the data

structures, number of memory accesses is more.

5. IP Address Lookup by Using GPU

Hung - mao chu, Tsung - hsien li, Pi - chung wang [4]
proposes a system which uses a CUDA based architecture

which has an inherent hazard that one copy of all data and at

least one device function must be acquired from the main

memory of the computer system via PCIe bus. When the

computing task is accomplished, the results are duplicated

and transmitted reversely. When the data must be retrieved

from other components like NICs, the PCIe bus becomes a

bottleneck for transmitting the data for CUDA computing. In

order to solve this problem, GPUDirect remote direct

memory access (RDMA) technology is contrived to enable

third party endpoints directly communicate each other.

CUDA GPUs implement a base address register (BAR)

which allows devices directly access the internal memory of

a GPU device without passing through system memory or

CPU.

a) Proposed Architecture

The conceptual architecture of the proposed GPU based IP

forwarding engine is shown in fig 3, where the GPU is only

responsible for performing IP address lookups. In this

architecture, NICs directly transfer headers of packets to the

global memory of GPU by the fast on - board memory bus.

Although transmitting IP addresses via a PCIe bus is

possible, the bus bandwidth (8 GB/s per direction with 16

lanes) is not sufficient, as demonstrated. The CPU constructs

and transmits the data structure to the global memory via

relative slow PCIe bus. By instructing CUDA compiler, the

searchable data structure is stored in the texture memory to

benefit from the texture cache and shortens the access

latency. Both packet headers and the searchable data

structure are accessed through the CUDA memory bus.

Figure 3: GPU based IP forwarding engine

The number of threads which execute the IP address lookup

procedures simultaneously according to the packet buffer

size is determined. For instance, each gigabit Ethernet (GbE)

port is equipped with 42 MB buffer for Juniper L3 switch.

The buffer is increased to 512 MB for each 10 GbE port.

Cisco XR 12000 series routers are equipped with

512MBforbothone - port10GbEand10 - portGbE linecards.

These line cards use buffers to transmit and receive packets.

According to these specifications, more than 350K packets

can be stored in a router per 10 Gbps throughput.

Considering the number of packets is significantly higher

than the number of allowable GPU threads, here the number

of threads is maximized in the experiments. The packet

latency may be increased because of the long lists of packets

Paper ID: SR211008105414 DOI: 10.21275/SR211008105414 370

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

waiting for the results of IP address lookups. However,

experimental results show that a GPU can achieve sufficient

throughput to support more than one thousand GbE ports.

Thus, the packet latency can be reduced significantly to

make the configuration feasible. The packet path in the

proposed architecture in the data plane and the control plane

is described. The path of data plane is listed below. The

incoming packets received by a NIC are stored in the buffer.

A batch of packet headers is transmitted to global memory.

Streaming multiprocessors (SMs) read the headers from

global where each header is assigned to one thread. SMs

search the data structure in the texture cache/memory to

determine the next - hops of all headers. The lookup results

for each batch are stored in another pre - assigned address of

the global memory. The lookup results in the global memory

are pushed back to the corresponding NICs to accomplish

packet forwarding.

Besides packet forwarding, routers also need to provide

control plane and management plane functions. For

example, a router needs to ensure that the contents of the

forwarding table reflect the current network topology by

receiving route update messages from neighbouring routers.

When the NICs receive packets for control or management

plane, these packets are forwarded to the CPU for further

processing. The CPU may also transmit control messages to

other routers. These messages are transmitted to one or more

NICs through theglobal memory of CUDA. The packet path

of the control messages is listed below. NICs identify that

the received packets are control messages. The control

packets in NICs are transferred to a designated region in the

global memory. The control packets in the global memory

are moved to the system memory through PCIe bus. The

CPU processes control packets and generates response

packets in the system memory. The response packets are

delivered to the global memory via PCIe bus and transmitted

to the packet buffer of NICs for forwarding as a general data

packet.

The next - hops of the control packets are determined by the

CPU itself to avoid interfering the procedure of data plane.

Since only a small percentage of packets are control packets,

the lookup overhead of CPU and the bandwidth

consumption of both PCIe bus and global memory are

acceptable.

6. Conclusion

This paper describes different approaches used for IP

address lookup at a faster rate. High - performance software

- based IP routing table lookup algorithm exploits CPU

caching aggressively. The algorithm uses a portion of the

CPU cache to support destination host address caching.

Another approach uses rule filter analysis to lookup IP

addresses and based on the specified rule, packets are

classified and then forwarded. On - chip algorithm has a

very small memory requirement. With this advantage,

routing table can be put into a single chip, thus, the memory

latency to access the routing table can be reduced which

improves the performance. Next approach for IP lookup is to

make use of CUDA, a programmable GPU which reduces

overhead on CPU and GPU memory has sufficient

bandwidth to fully utilize the computation capability of

processor to forward the packet with reduced latency.

References

[1] Chiueh, Tzi - cker, and Prashant Pradhan. "High -

performance IP routing table lookup using CPU

caching. " INFOCOM'99. Eighteenth Annual Joint

Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE. Vol.3. IEEE, 1999.

[2] Perez, K. Guerra, Xin Yang, and SakirSezer. "An

improvement of IP address lookup based on rule filter

analysis. " 2014 IEEE International Conference on

Communications Workshops (ICC). IEEE, 2014.

[3] Sun, Xuehong, and Yiqiang Q. Zhao. "An on - chip IP

address lookup algorithm. " IEEE Transactions on

Computers 54.7 (2005): 873 - 885.

[4] T. H. Li, H. M. Chu, P. C. Wang, "IP address lookup

using GPU", Proc. IEEE 14th Int. Conf. HPSR, pp.177 -

184, Jul.2013.

Paper ID: SR211008105414 DOI: 10.21275/SR211008105414 371

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

