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Abstract: Tacrolimus (FK506) is a 23 membered polyketide macrolide, a potent immunosuppressant, and a useful secondary 

metabolite that exhibits 10 - 100 times more efficient than cyclosporine. It becomes an important therapeutic drug not only in 

transplantation but also used frequently in the treatment of severe atopic dermatitis, and secondary lymphedema. Biosynthesis of 

Tacrolimus is a multifaceted process involved in many essential pathways, but low productivity of tacrolimus fromStreptomyces sp. is a 

major concern regarding its increased global demand. To boost Tacrolimus production, many steps such as alteration in the 

biosynthetic pathway, strain improvements, optimizing culture conditions, and use of tacrolimus precursors have been adapted. This 

review focuses on different approaches at the nutritional and genetic engineering level to scale up the titer of tacrolimus.  
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1. Introduction 
 

In the field of medicine and surgery, organ transplantation is 

the key to save the lives of many patients affected with end - 

stage and irreversible organ damage and improving the 

quality of their life [1]. Somewhere between 1000 and 800 

BC, transplantation was meticulously documented in the 

Charak Sanhita, written by Sushruta, known as the father of 

plastic surgery for his unparalleled efforts for successful 

nasal reconstruction [2]. Transplantation is a painstaking 

process where chances of three types of graft rejection such 

as hyper - acute, acute, and chronic rejection may occur [3]. 

Several types of research have been carried out to identify 

drugs that can reduce the chances of graft rejection. The 

remarkable discoveries of immunosuppressant molecules 

have paved the way for successful organ transplantation. In 

the beginning, the discovery of cyclosporine followed by 

tacrolimus (FK 506) (Fig.1) had made a significant 

contribution in the field of transplantation science [4]. Due 

to certain limitations of cyclosporine, which include 

hypertension and hyperlipidemia [5]. Tacrolimus was found 

to be 100 times more potent and efficacious than 

cyclosporine that was approved by the US Food and Drug 

Administration for liver transplantation in 1994 [6, 7] 
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Figure 1: Structure of Tacrolimus FK506 

 

The word tacrolimus originated from tsukubaensis, 

macrolide, and immunosuppressant [8]. Tacrolimus (FK 

506) was isolated from a culture broth of Streptomyces 

tsukubaensis9993 in 1984 by Fujisawa Pharmaceutical at 

Tsukuba, Japan. It is a secondary metabolite and belongs to 

macrolides lactone antibiotics [9]. Tacrolimus suppresses 

immune cell functioning by acting as a calcineurin inhibitor. 

Calcineurin is a key protein required to allow transcription 

of Interleukin - 2 which results in T cell activation and 

proliferation. Tacrolimus binds to intracellular protein 

FKBP12 and forms a complex with other regulatory proteins 

that impede the phosphatase activity of calcineurin which 

inhibits the production of IL - 2 that restricts the 

proliferation of T cells, facilitate immunosuppressive 

activity, and finally prevent graft rejection [10]. Presently, 

tacrolimus reduces the chance of graft rejection in the 

transplantation of the liver, kidney, and heart. Other than 

transplantation, It has also been highlighted in the treatment 

of neuroprotective disorders [11]. Severe atopic dermatitis 
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[12]. and in the treatment of secondary lymphedema, caused 

by post - chemotherapy and radiation [13].  

 

Howbeit, the treatment cost of transplantation after using 

Tacrolimus is quite high due to the high demand and low 

productivity of tacrolimus by tacrolimus producing strains 

[14]. To increase the productivity of tacrolimus, some of the 

studies have been suggested such as alteration in the 

biosynthetic pathway, strain improvements, optimizing 

culture conditions, and the use of tacrolimus precursors. 

Despite this, significant research has not been found for 

enhancing the ways of tacrolimus production and its cost - 

effective methods. This review updates on considerable 

efforts made in the past, and elucidates various strategies at 

the supplementation and genetic engineering level for 

enhancing tacrolimus production in order to meet increasing 

demands globally.  

 

2. Metabolic regulation through 

supplementation of various compounds 
 

Many practices have been attempted in the past for the 

addition of supplements or precursors in the respective 

culture medium of containing microorganisms to elevate the 

activity of secondary metabolites production. It has also 

been seen as a rational approach to increase the productivity 

of tacrolimus through the addition of precursor of tacrolimus 

biosynthetic pathways in the medium. These ideas came up 

when the enhancement of production was seen with respect 

to penicillin - producing fungus Penicillin chrysogenum 

NRRL 1951 by modulation in cysteine biosynthesis [15]. 

Even with the addition of methyl oleate in the culture 

medium of Streptomyces clavuligerus CKD 119, an 

increased yield of tacrolimus was noticed [16]. The use of 

soya oil as an additive had shown elevated production of 

tacrolimus in recent research [17]. Studies have shown 

increased tacrolimus production by the alteration of carbon 

and amino acid sources. It has been underlined in previous 

research that soya oil (30g/L) in combination with L - lysine 

(0.2 g/L) had significantly increased the production of 

tacrolimus by Streptomyces sp. MA6858 [18]. Further, the 

presence of amino acids such as lysine, leucine, proline 

threonine, and valine in the medium hasbeen shown to be an 

important factor for scaling up tacrolimus yield [19].  

 

Piperdine and pyrimidine derivatives play an important 

factor in the production of secondary metabolites synthesis. 

In this context, Picolinic acid and pipecolic acid are the 

direct precursors for the biosynthesis of tacrolimus. The 

addition of Picolinic acid and pipecolic acid in the optimized 

medium of Streptomyces tsubaensis augmented the activity 

of tacrolimus several - fold. Pyrimidine derivatives such as 

nicotinamide and nicotinic acid also positively influenced 

the growth of Streptomyces tsukubaensis [20]. Hence, it is 

clearly evident that the presence of the precursor and 

cofactor is essentially needed in terms of enhancement of 

tacrolimus production and growth of Streptomyces 

tsukubaensis.  

 

Association and well - regulated Citric acid pathways, 

Embeden - Meyerhof - Parnas (EMP), glycolysis, shikimate, 

and aminoacid metabolism play an essential role in 

tacrolimus biosynthesis. Precursors such as malonyl - COA, 

DHCHC, methylmalonyl – CoA, allymalonyl – CoA, 

methoxylmalonyl ACP synthesized in these pathways help 

for tacrolimus production [4]. Moreover, three - carbon 

compounds such as propylene glycol, propanol, or propionic 

acid promote the growth of S. tsukubaensis and eventually 

increase tacrolimus production [21].  

 

Brazil nut oil containing unsaturated fatty acids, oleic, and 

linoleic acid was tested in scale - up of tacrolimus 

production. Exogenous feeding of Brazil nut oil into the 

culture medium of S. tsukubaensis remarkably boosted 

tacrolimus yield without affecting biomass [22]. Not only 

the addition of compound, precursor, or supplements into the 

medium but also feeding time also acts as an important 

factor for tacrolimus production due to diauxic growth of S. 

tsukubaensis [4]. In fact, tacrolimus Sequential adaptation 

(600 to 1600 mg) into the medium facilitated the highest 

reported tacrolimus production (972mg/l) by Streptomyces 

sp. TST8 [23]. Statistical experimental strategies such as 

using highly fractionate factorial design (Plakett - Burmann) 

followed by response surface method proved as one of the 

feasible techniques for screening variables for media 

optimization [23, 24] Analysis of Dextrine white, cotton 

seed meal (CSM), and polyethylene glycol (PEG) - 400 are 

proved to be the most significant variables through statistical 

analysis [25]. Optimized medium conditions for S. 

tsukubaensis by statistical approach have increased 

tacrolimus production 2.94 folds in comparison to basal 

media. Maximum production of Tacrolimus achieved 574 

mg/l and 616mg/l at shake flask and 2.5 l bioreactor 

respectively [5].  

 

In previous research, it had clearly marked that stress 

response induces more secondary metabolite production. 

Dimethyl sulfoxide (DMSO) and sodium thiosulfate are the 

most effective stressing compound for activating polyketide 

synthesis [26] and improve tacrolimusscale - up in S. 

tsukubaensis NRRL 18488 [27]. Therefore, optimum media 

composition is one of the important factors for the 

tacrolimus production at shake flask and fermenter level. 

Hence, it is further demonstrated that using different 

precursors, that influence polyketide biosynthesis and their 

feeding timing, as well as the right variables of the 

composition of media, are the most critical parameters for 

tacrolimus yield enhancer.  

 

3. Engineering of the genetic makeup of 

Streptomyces Sp. for boosting 

tacrolimusproduction 
 

Biosynthesis of tacrolimus is based on a hybrid system of 

polyketide 1 synthase and non - ribosomal peptide synthase 

(PKSI - NRPS) and regulated by a minimum of 19 genes of 

fkb cluster [28]. Short segment (fkbQ, fkbN, fkbM, fkbD, 

fkbA, fkbP, fkbO, fkbB, fkbC, fkbL, fkbK, fkbJ, fkbI, fkbH, 

fkbG, allD, allR, allK and allA) and extended segment 

(fkbG, allM, allN, allP, allO, allS) are locatedin the 5’ 

region and the genes tcs6 - fkbRand /or tcs67 in the 3’ 

region of the other species [29]. Some of these fkb gene 

clusters directly or indirectly play a unique role in the 

biosynthesis of intermediates or precursors involved in the 

tacrolimus production. The presence of genes such as allM, 
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allN, allP, allO, allS does not affect tacrolimus biosynthesis 

due to their low transcription level [30, 31]. However, 

overexpression or inactivation of other genes may have a 

significant effect on tacrolimus production. A detailed study 

on the transcriptome, proteome as well as metabolome level 

for the biosynthesis of polyketide has been carried out in the 

past globally [32, 33]. Overexpression of fkbO, fkbL, fkbP, 

fkbM, and fkdD genes in S. tsukubaensis D852 showed 

promising results on tacrolimus biosynthesis especially in 

the formation of starting unit (4R, 5R) - 4, 5 - 

dihydroxycyclohex - 1 - enecarboxylic acid (DHCHC), 

pipecolate, and other important reactions [32].  

 

The regulators fkbN, fkbR and allN regulate the fkb cluster. 

fkbN, fkbR and allN belong to the large regulatory protein 

of LuxR family [34], LysR [35], and AsnC family 

[36]respectively. After in - depth functional characterization 

of fkbN, fkbR and allN, it was found that fkbN and fkbR 

have shown a positive effect on tacrolimus production, while 

allN does not influence the biosynthesis of tacrolimus 

(Inactivation of fkbN and fkbR led to lack of tacrolimus 

production and decreased 20% yield respectively. Whilst 

overexpression of fkbN and fkbR markedly enhanced 

production of tacrolimus and increased the yield to 55% and 

30% respectively [37]. FkbNis located on a short and 

extended segment of fkb cluster and FkbRis only present on 

the extended version, therefore inactivation of fkbN results 

in lack of production of tacrolimusas fkbN regulates the 

expression of the maximum number of genes located on fkb 

cluster [30].  

 

Apart from this, genes involved in the synthesis of other 

intermediates in the biosynthetic pathway of tacrolimus were 

studied and found that inactivation of gdhA and ppc encoded 

to NADPH - dependent glutamate dehydrogenase and 

phosphoenolpyruvate carboxylase respectively boost the 

tacrolimus production [33]. Shikimate pathway and lysine 

arethe important factors required for the biosynthesis of 

tacrolimus with, acoC and dapA that play a crucial role. 

Hence the over expression of aroC and dapA stimulate the 

Tacrolimus production in Streptomyces tsukubaensis [38]. 

The review critically explores the roles of genes that may 

affect Tacrolimus production at the transcriptional level.  

 

4. Conclusion and Future Aspects 
 

Extensive research on tacrolimus and approval from FDA 

has opened a new way in the science of transplantation. 

However, its demand in the global market has increased day 

by day and the production cost has not matched its 

requirement. In order to resolve this problem, to enhance the 

production of tacrolimus, and to meet the global demand, an 

extensive strategy was used at the nutritional and 

transcriptional levels. At the nutritional level, altering the 

primary source of carbon and amino acid could enhance 

tacrolimus production [18]. Supplementation of oleate, soy 

oil, L - lysine, leucine, proline, threonine, valine, picolinic 

acid, pipecolic acid, brazil nut oil is some important 

practices to boost tacrolimus production. Stressing agents 

such as DMSO and sodium thiosulphate are also key 

players. At the transcription level, genes located on fkb 

cluster, outside of the cluster, and the regulatory proteins 

play a prominent role in scale - up tacrolimus production. 

FkbN is the essential target for increasing the activity of 

Tacrolimus [30]. Overexpression of fkbO, fkbL, fkbM, fkbP, 

FkbD [32] aroC, dapA [38] inactivation of gdhA, ppc [33] 

also have shown a major role in the enhancement of 

tacrolimus production. Integration of both nutritional aspect 

and transcriptional approach together may pave the way for 

the higher tacrolimus production. A gap between the two 

approaches should be filled and the use of a classical 

approach with metabolic engineering may be one of the 

excellent approaches to scale up tacrolimus production in 

near future.  
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