
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Illustration of Safe and Unsafe State Using

Transition Table and Java Simulation

October Lambert Kekebou Erefaghe

Email: octoberlambert[at]gmail.com

Abstract: The burden of allocation and utilization when it comes to system resources lies completely in the domain of the operating

system. Giving resources to processes as they require them for execution is a necessary task that demands all conscientiousness as it

pushes the system to different states because the limitedness of system resources don’t leave processes or programs with ample supply of

their desired demand of resources to be allocated when needed, this implies that there is always a wait pull or queue for system

resources as long as processes keep requesting for resource. The crucial aspect in allocating or de - allocating resources is the

technicalities involved that pertains to ensuring that processes are not holding resources other processes will need without making use

of them. When this two task allocation and de - allocation is not sufficiently managed many processes can be resource deficient waiting

on the system for resources to be allocated that are kept by processes which are waiting for more resources which leads to concept

starving, and the resultant effect of this is called unsafe state in which processes cannot execute to completion for not getting more

resources, and it can be worsen a deadlock state which no execution of process is possible. However, with efficient algorithms and

techniques a system can allocate its resources to all request and all waiting processes can run to completion. There is always a sequence

or order to follow to successfully allocate resources to processes for to avoid unsafe state leading to deadlock state, this sequence is

known as safe sequence. This research work is to illustrate safe and unsafe state using transition table, and simulate how a system can

be in safe state using the deadlock avoidance algorithm implemented in java programming language.

Keywords: safe state, unsafe state, deadlock avoidance, processes, resources, transition table

1. Introduction

The operating system is the brain and controller of system

resources and executable programs or application, this is

seen as the most important task in systems because without

which users can system activities. The operating system

manages different types of resources which can be

semaphores, files, input/output devices, CPU cycles etc. the

limitedness of these resources demands proper utilization

and management for task that will request for them. Process

execution is made happen by resources, hence, the concept

resources and processes are inseparable in OS [1]. A process

can be defined as an instance of a computer program in

execution, which undergoes frequent state and attribute

changes. It’s an active entity as opposed to program which is

considered to be a passive entity. The trajectory wise fashion

followed by the operating system for any computational task

is properly guided by set of instructions called programs.

The actual performing or carrying of the instructions is what

we tag process. How and when these set of operations or

activities are enforced to execute are part of the sole

managerial responsibilities of the operating system. On the

other hand, a resource is an inclusive term of all system

resources such as Memory space, CPU cycles, I/O devices

(like printer, tape drive etc.), files and semaphores. Some

resources are used by processes that require uninterrupted

resource utilization to be completed while other resources

require operating system control for processes to safely

exchange the utilization of the resource [1].

A process using a resource goes through three sequences of

events Request event, Use event and Release event [6].

When the operating system is tasked to provide resources by

a process is called Request event, in an instance where the

resource is unavailable the process waits. In the Use event,

the process does whatever operation it need to do using the

resources that it requested. The usage of resources by a

process is characterized with Release event after

successfully utilizing the resource which is a returnable.

One necessary condition for all processes to be completed is

proper allocation and de - allocation of resources resident in

the system. A proportion or whole of the resources requested

by a process can be occupied by another process and

sometimes the process only keep the resources while waiting

for more depending on the need, when this happen processes

waits longer periods to get executed or sometimes never

executed, this is a conflict that is pertinent when allocating

resources. This is where carefulness and proper allocation is

applicable and considered to be very important for processes

to be completed. A system state can be classified into safe,

unsafe and deadlocked through resource allocation and

utilization. A resource allocation that will be satisfy or go

round all active request in an orderly fashion to avoid

plunging the system to deadlock state is called safe state,

that is it’s a state where processes even being starved a bit

will still be served. An unsafe state means that some of the

pending processes will not be serviced, and the danger of

reaching a deadlock state is imminent [2]. An unsafe state

may lead to deadlock but not all unsafe state guarantee

deadlock. Since safe state cannot lead to deadlock, we can

avoid unsafe state by giving the operating system prior

notice of what resources a process may request.

The significance of safe and unsafe state is for handling of

deadlock problems because the challenge of deadlock is very

serious and as such must be clearly understood and handled

properly in different environments cutting across

multiprogramming systems, database environments,

distributed systems, networking, hence, a clear illustration of

safe and unsafe states is needed in which deadlock is

categorized as a subset of unsafe state, in this regard this

paper uses the concept of transition table to illustrate safe

and unsafe state to give explicit comprehension and a

Paper ID: SR201211165245 DOI: 10.21275/SR201211165245 29

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

simulation of safe and unsafe state using the Bankers’

algorithm in the modern programming language java.

2. Safe State

Safe state is used to describe when the system can be able to

allocate requested resources maximally to each process

demand that will satisfy all pending processes for complete

execution. The logical order followed for all pending

processes for resource request to be allocated is known as

the safe sequence. Resource request are viewed to know the

possibility of safe sequence if positive then the system is

safe. This means that all processes including pending ones

can get resources for complete execution.

Safe states are deadlock free, unsafe states leads to deadlock

which is a subset of unsafe state, implying not all unsafe

states lead to deadlock. Deadlock occurs in multiprocessing

and distributed environments, which is prompted by the

conditions “hold and wait”, “mutual exclusion”, “circular

wait”, and “no preemption”, which are necessary conditions

for the occurrence of deadlock [3].

3. Handling deadlock

Deadlock can be handled by avoidance, prevention, ignoring

and detection, in each case algorithms are used [3].

Indifferent mechanisms employed to proffer solution or

handle deadlock, avoidance method proves to be preferable

as it tries to only grants resource allocation request that will

retain the safe stateof system using efficient algorithms,

implying at all cost the deadlock possibility is avoided.

A. Avoiding deadlock

Deadlock is avoided through the usage of banker’s

algorithm. It consists of resource request algorithm and

safety algorithm to request for resources and test for safety

by simulating the allocation for predetermined maximum

possible amounts of all resources. The applying of the

algorithm is relying on the predetermined maxima of each

process’s demand and the allocation is done in the order of

safe sequence.

a) Resource Request Algorithm

The Resource Request Algorithm uses the following

variables.

Supposing processes count in the system is denoted as Pand

resources count is denoted as R

Available: - denote available resources number of each type.

Maximum: - denotes maximum resources for a process.

Allocation: - denotes resources supplied of each instances.

Need: - denotes the needed total resources for each process

[7].

Need [i] = Maximum [i] – Allocation [i]

Let Requesti be the request array for process Pi.

Requesti [j] = k means process Pi wants k instances of

resource type Rj. at the demand of Pi one option is invoked

for performance

1) If Requesti <= Needi, Goto step (2);

Else, indicate an error since maximum claim has been

exceeded.

2) If Requesti <= Available, Goto step (3);

Else P must wait as there are no more resources.

3) At this point take that allocation is supplied.

Compute accordingly as below:

Available = Available – Requesti

Allocationi = Allocationi + Requesti

Needi = Needi– Requesti

b) Safety algorithm

Some parameters used:

Need [i] – denotes the remaining resource need of each

process.

Work –denotes resources currently available

Finish [i] – indicator of a process if its analyzed or not.

1) Given Work and Finish be vectors of length ‘R’ and ‘P’

respectively.

Initialize: Work = Available

Finish [i] = false; for i=1, 2, 3, 4, …. n

2) Compute an i
th

 index such that both

a) Finish [i] = false

b) Need [i]<= Work

if no such i exists goto step (4)

3) Work = Work + Allocation [i]

Finish [i] = true

goto step (2)

4) if Finish [i] = true for all i, then the system is in a safe

state

B. Illustration of Safe and Unsafe States using transition

table with single resource type
Supposing a system has ten (10) resources say magnetic tape

drive that are been allocated to three (3) processes , and

 as show in Table 1.0.

Table 1
Process Allocated Maximum Need

 3 9

 2 4

 2 7

Free: 3

For instance, if process made request for more tape drives

and more two (2) tape drive is allocated then process has

all its resources and then will be executed completely and

release all the four (4) tape drives back to the system which

will make the total free tape drives to be five (5). With

Available five (5) tape drives process can get all its

needed tape drives then complete its task and return the total

seven tape drive to the system, and lastly process can get

its request and finish the task. So the safe sequence for table

1.0 above is < >. This is illustrated in the transition

table diagram in Figure 1.0.

Paper ID: SR201211165245 DOI: 10.21275/SR201211165245 30

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Safe state transition table diagram of a multiple

instances of a resource

In the transition table in figure 1.0, the direction of the arrow

head denotes allocation of resources and the small box with

numbers indicate the number of resources allocated to the

process.

Supposing process request for more tape drives and the

system give 1 drive to out of the 3 free drives, process

 will not still run to completion since it need more 5 drives.

Then process request is granted with the remaining 2 free

drives which only process will be completed and release

its allocated 4 drives, but neither process nor can be

completed as the free drives cannot meet the maximum

needs of either process, hence, the sequence < > is

an unsafe sequence. The unsafe sequence is represented in

the transition table diagram in figure 2.0.

Figure 2: Unsafe state transition table diagram for multiple

instances of a resource

For multiple instances of different resource types take a look

at Table 2.0.

Table 2
Process Allocation Max Available

A B C D A B C D A B C D

P1 3 6 2 1 6 8 8 5 4 3 2 2

P2 5 4 3 1 7 9 5 7

P3 2 5 0 4 5 8 4 9

P4 1 0 4 2 4 3 5 4

Table 2.0 contains four (4) processes and four

(4) different types of resources denoted as A, B, C, D. The

allocation, maximum need, available of each resource type is

given as presented in the table. The need variable is what we

have to calculate and it can be done with the formula

Max [4, 4]– Allocation [4, 4] = Need [4, 4]

Figure 3

Having gotten the need matrix, the illustration of the safe

state is in Figure 3.0.

Figure 4: Safe state transition table diagram of multiple

instances of multiple resources

In the transition table diagram in figure 4.0, the arrow points

to the processes that when its request is granted the system

can be in safe state. The new allocation is indicated by the

box in the available column for the four different resources

and the safe sequence is < > for the Table 2.0

4. Simulation of deadlock avoidance algorithm

A. System details

The coding is done using java programming language. The

Operating system used is 64 - bit Windows 10 with 6 GB

RAM. The simulation program was test in a personal system

and the screenshot of the output is displayed bellow. The

simulation was tested with different sizes of windows

command line inputs of processes and resources and there

were no observable limits of processes and resources.

Paper ID: SR201211165245 DOI: 10.21275/SR201211165245 31

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Screenshot 1.0

Screenshot 2.0

5. Conclusion

The concept of deadlock is very important in this advanced

stages of technological development especially for software

development, and having a clear understanding is a cutting -

edge advantage one can have to apply the principles of how

to handle deadlock in different fields of computing,

networking and in industries.

References

[1] G. Dimitoglou, 1998, Deadlocks and Methods for their

Detection, Prevention and Recovery in Modern

Operating Systems, ACM SIGOPS Operating Systems

Review available https: //www.researchgate.

net/publication/220623929

[2] P Kawadkar, S Prasad, and A D Dwivendi, 2014,

Deadlock Avoidance Based on Banker’s Alghoritm for

Waiting State Processes, Int. Journal of Innovative

Science and Modern Engineering (IJISME), vol 2

[3] A. S. Tanenbaum, Modern Operating Systems.

Englewood Cliffs, NJ: Prentice Hall, 1992, pp.233 -

300.

[4] E. W. Dijkstra, Co - operating Sequential Processes.

London, UK: Academic Press, 1965, pp.43 - 112.

[5] K. Hameed, et. al.2016, Resource Management in

Operating Systems - A Survey of Scheduling

Algorithms, Int. Conf. on Innovative Computing (ICIC),

(Pakistan: University of Management and Technology)

vol 1

[6] M. A. Khan, (2014, july) Comparison between

Proposed and Existing Algorithms for Deadlock

Avoidance and Recovery available: https:

//www.researchgate. net/publication/288592077

[7] https: //www.geeksforgeeks. org/bankers - algorithm -

in - operating - system - 2/.

Paper ID: SR201211165245 DOI: 10.21275/SR201211165245 32

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.researchgate.net/publication/220623929_Deadlocks_and_Methods_for_their_Detection_Prevention_and_Recovery_in_Modern_Operating_Systems?enrichId=rgreq-bf8c1bcb28636389f99c3750d85bd4d3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMzkyOTtBUzoxODgyODQxNDc4NzE3NDRAMTQyMTkwMTg0NzU2NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220623929_Deadlocks_and_Methods_for_their_Detection_Prevention_and_Recovery_in_Modern_Operating_Systems?enrichId=rgreq-bf8c1bcb28636389f99c3750d85bd4d3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMzkyOTtBUzoxODgyODQxNDc4NzE3NDRAMTQyMTkwMTg0NzU2NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220623929_Deadlocks_and_Methods_for_their_Detection_Prevention_and_Recovery_in_Modern_Operating_Systems?enrichId=rgreq-bf8c1bcb28636389f99c3750d85bd4d3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMzkyOTtBUzoxODgyODQxNDc4NzE3NDRAMTQyMTkwMTg0NzU2NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.geeksforgeeks.org/bankers-

