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Abstract: In this paper, an analytical solution of an advection- dispersion equation for the concentration of pollutant in one - 

dimension is derived. The Laplace transform technique has been used to solve the advection dispersion equation with taking added 

pollutant rate along the river zero. It is obtained that the concentration of the pollutants decreases continuously with increasing 

distance of the river for constant as well as different time and velocity at the origin. 
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1. Introduction 
 

Water pollution is a big problem for the human beings and 

environment. Water pollution affects not only to the 

individual species and populations but also to the natural 

biological communities [17]. 

 

We people and all living species are facing bad effect of 

contaminated water [1].Water pollutants are biological waste 

materials that experience several biological and 

biodegradation steps using dissolved oxygen [10]. Several 

analytical and mathematical models have used to predict the 

concentration of water pollution. 

 

Kumar et al. have given an analytical solution of one-

dimensional advection equation in longitudinal semi-infinite 

homogeneous porous media applying Laplace 

transformation method [7]. Huang et al. obtained an 

analytical solution for one-dimensional transport in 

homogeneous porous media for scale dependent dispersion 

applying Laplace transformation technique [3]. 

 

There are several works in one -dimensional advection 

diffusion equation to describe the dispersion of water 

pollutants. Some of works have been collected [Rounds 

[12],Smith [15],Marine [8],Demuth [2], Yadav et al. [18], 

Jaiswal et al. [5], Kumar, A.et al.[6], Jaiswal.et.al.[4], 

Mourad, F.D. [9], Pimpunchat, et al. [11], Savoris, S. [13], 

Sirin, H. [14], Wagmare, R.V. and Kiwne, S.B.[16]]. 

 

In this paper, we solved the advection-diffusion equation 

using Laplace technique and examined the concentration 

profile of water pollutants with taking ‘p’ initial rate of 

pollutants and zero added pollutants rate along the river. 

 

2. Mathematical Formulation and Solution: 
 

An equation which describes an unsteady flow of water 

pollutant concentration in one- dimension can be given by a 

differential equation as Pimpunch et al. [9]: 
𝜕 𝐴𝐶 

𝜕𝑡
= 𝐷𝑥

𝜕2 𝐴𝐶 

𝜕𝑡2 −
𝜕 𝑈𝐴𝐶 

𝜕𝑥
− 𝑘1

𝑋

𝑋+𝑘
𝐴𝐶 + 𝑞;  0 ≤ 𝑥 <

𝐿,     𝑡 > 0   (1) 

 

where U is the velocity of water in x- direction, 𝐴 is the 

cross-section of area of river,𝐶(𝑥, 𝑡) is the pollutant 

concentration, 𝐷𝑥  is the coefficient of dispersion of pollutant 

in x- direction,𝑞 is the added pollutant rate along the river,  𝑘 

is the half-saturated oxygen demand concentration for 

pollutant decay, 𝑘1 is the degradation rate of coefficient of 

pollutant and 𝑋 is the dissolved oxygen concentration within 

the river. Wealso assume the stream reach is taken to be 

homogeneous system. So, we take the parameters 𝐴, 𝑈, 𝐷𝑥 ,
𝑘1 as constants over time and space. We take𝐷𝑥 =
0 𝑎𝑛𝑑 𝑘 = 0. 

 

For much greater pollutants 𝐷𝑥 is approximately zero and so 

we take  𝐷𝑥 = 0. Applying above mentioned conditions, the 

equation (1) becomes: 
𝜕 𝐴𝐶 

𝜕𝑡
= −

𝜕 𝑈𝐴𝐶 

𝜕𝑥
− 𝑘1𝐴𝐶;   0 ≤ 𝑥 < 𝐿,     𝑡 > 0    (2) 

 

Equation (2) is solved with the following conditions: 

𝐶 𝑥, 0 = 𝑝   ;           𝑥 ≥ 0                   (3) 

𝐶 0, 𝑡 = 𝑟   ;           𝑡 > 0                     (4) 

where the initial rate of pollution along the river is 𝑝 and  𝑟 

is the rate of pollution at the origin. 

 

Applying the Laplace transformation technique to (2) and 

(4); we have  

𝑠𝐶 𝑥, 𝑠 − 𝐶 𝑥, 0 = −𝑈
𝜕𝐶 𝑥,𝑠 

𝜕𝑥
− 𝑘1𝐶 𝑥, 𝑠 ; 𝑠 > 0  (5) 

𝐶 𝑥, 𝑠 =
𝑟

𝑠
                                                                     (6) 

where 𝑠 is the Laplace transform variable. 

 

Using equation (3) in equation (5); we have 

𝑠𝐶 𝑥, 𝑠 − 𝑝 = −𝑈
𝜕𝐶 𝑥, 𝑠 

𝜕𝑥
− 𝑘1𝐶 𝑥, 𝑠 ;       

On simplification, we get 
𝜕𝐶 𝑥,𝑠 

𝜕𝑥
+ (

𝑠+𝑘1

𝑈
)𝐶 𝑥, 𝑠 =

𝑝

𝑈
;      𝑠 > 0 (7)   

which is a linear differential equation in 𝐶,    

so 𝐼. 𝐹. = 𝑒 
𝑘1+𝑠

𝑈
𝑑𝑥 == 𝑒

𝑘1+𝑠

𝑈
𝑥
 

 

Using I.F. on (7) and integrating, we get 

𝐶 𝑥, 𝑠 𝑒
𝑘1+𝑠

𝑈
𝑥 =  

𝑝

𝑈
𝑒
𝑘1+𝑠

𝑈
𝑥𝑑𝑥  

       = 
𝑝

𝑈
 𝑒

𝑘1+𝑠

𝑈
𝑥𝑑𝑥  
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On simplification, we get 

𝐶 𝑥, 𝑠   =
𝑝

𝑘1+𝑠
+ 𝑐1𝑒

−(
𝑘1+𝑠

𝑈
)𝑥

 (8) 

where 𝑐1 is arbitrary constant. 

 

Now, using the condition (6) to equation (8), we get 
𝑟

𝑠
=

𝑝

𝑘1 + 𝑠
+ 𝑐1𝑒

− 
𝑘1+𝑠

𝑈
 .0

 

which gives 

𝑐1 =
𝑟

𝑠
−

𝑝

𝑘1 + 𝑠
 

 

Applying the value of 𝑐1 in equation (8), we get 

𝐶 𝑥, 𝑠  =
𝑝

𝑘1 + 𝑠
+ (

𝑟

𝑠
−

𝑝

𝑘1 + 𝑠
)𝑒−(

𝑘1+𝑠

𝑈
)𝑥

 

             =
𝑝

𝑘1 + 𝑠
+ {

𝑟

𝑠
−

𝑝

𝑘1 + 𝑠
}𝑒−(

𝑘1+𝑠

𝑈
)𝑥

 

 

Thus, we have 

 𝐶 𝑥, 𝑠 =
𝑝

(𝑘1+𝑠)
+

𝑟

𝑠
 𝑒−(

𝑘1+𝑠

𝑈
)𝑥 −

𝑝

(𝑘1+𝑠)
𝑒−(

𝑘1+𝑠

𝑈
)𝑥    (9) 

Using inverse Laplace transform to equation (9), we have 

𝐶 𝑥, 𝑡 = 𝑝𝑒−𝑘1𝑡 + 𝑟  𝑒−
𝑘1
𝑈
𝑥 . 𝐻  𝑡 −

𝑥

𝑈
  − 𝑝 𝑒

− 
𝑘1
𝑈
𝑥+𝑘1𝑡 . 

𝐻  𝑡 −
𝑥

𝑈
     

(10) 

where H is Heaviside function and we define 

𝐻  𝑡 −
𝑥

𝑈
 = 1     𝑖𝑓 𝑡 −

𝑥

𝑈
> 0;   . 

𝐻  𝑡 −
𝑥

𝑈
 = 0    𝑖𝑓  0 > 𝑡 −

𝑥

𝑈
; 

 

For   𝑡 >
𝑥

𝑈
 , equation (10) becomes 

𝐶 𝑥, 𝑡 =  𝑝𝑒−𝑘1𝑡 + 𝑟𝑒−
𝑘1
𝑈
𝑥  −    𝑝 𝑒−(

𝑘1
𝑈
𝑥+𝑘1𝑡)           (11) 

 

Now, applying the quantities: 

𝑥′ =
𝑘1

𝑈
𝑥 ,     𝑡 ′ = 𝑘1𝑡 ,   𝑝′ = 𝑝, 𝐶 ′ 𝑥′ , 𝑡 ′ = 𝐶 𝑥, 𝑡  ,  𝑟 ′ = 𝑟 

 

Equation (11) becomes: 

𝐶 ′ 𝑥 ′ , 𝑡 ′ = 𝑝′𝑒−𝑡 ′ + 𝑟′𝑒−𝑥 ′ − 𝑝′𝑒− 𝑡 ′ +𝑥 ′    (12) 

 

3. Results and Discussion 
 

From the solution of an unsteady advection- dispersion 

equation (2), we studied the pollutant 

concentration 𝐶′ 𝑥, 𝑡 behavior. The concentration 𝐶′ 𝑥, 𝑡 is 

in 
𝑘𝑔

𝑚3  given by equation (12). The parametric values 

used in the analysis are taken as Pimpunchat et al. [8]. 

𝑡 ′ = 6.616 𝑡 = 0.8 𝑑𝑎𝑦 , 7.443 𝑡 = 0.9 𝑑𝑎𝑦 , 8.27 𝑡 =
1 𝑑𝑎𝑦.𝑘1=8.27 𝑝𝑒𝑟 𝑑𝑎𝑦,  

𝐴 = 2100 𝑚2  , 𝑝′ = 0.03, 0.05, 0.07 𝑖𝑛 
𝑘𝑔

𝑚3 . 

𝑟′ = 0.001,   0.002,      0.003   𝑖𝑛   
𝑘𝑔

𝑚3 . 

 

To show the behavior of the concentration of pollutants 

profiles, we display the concentration distribution 

graphically under different conditions. 

 

Figure 1 represents the concentration profile against the 

distance (0≤ 𝑥′ ≤ 5) for constant value of time(𝑡 ′ =
6.616 𝑡 = 0.8 𝑑𝑎𝑦  and constant velocity 𝑝′  at the origin. It 

is seen that as 𝑥 ′  increases the value of 𝐶′(𝑥, 𝑡) decreases. It 

reaches a constant value near the sink. The effect of time is 

dominant near the upstream and very small near the 

downstream.  

 
Figure 1: Variation of concentration for different 𝑟′ 

with constant 𝑡′ 
 

Figure 2 represents the concentration profile against the 

distance (0≤ 𝑥′ ≤ 5) for different value of 

𝑝′𝑎𝑛𝑑  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡 ′ .We found that as 𝑥 ′  increases, the value 

of 𝐶′(𝑥, 𝑡) deceases for any time. The concentration 

𝐶′(𝑥, 𝑡)reaches a constant value near the sink.We seen that 

as initial velocity increases the value of 

concentration 𝐶′(𝑥, 𝑡) increases at any cross section of the 

river.  

 

 
Figure 2: Variation of concentration for different 

𝑝′ and constant 𝑡′ 
 

Figure 3 represents the concentration profile against the 

distance (0≤ 𝑥′ ≤ 5) for different value of time and constant 

velocity at origin 𝑟′ = 0.001 .It is seen that as 𝑥′ increases, 

the concentration 𝐶 ′ 𝑥, 𝑡   decreases for any time. We also 

found that the effect of time in concentration of pollutants is 

very small near the upstream and dominant near the 

downstream. We observed that as time increases the value of 

concentration 𝐶′(𝑥, 𝑡)   increases at any cross section of the 

river.  
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Figure 3: Variation of concentration for different  

𝑡′ and constant velocity 

 

4. Conclusion 
 

It is observed that the concentration profile of water 

pollutant is high near the source but as the distance from 

source increases, the concentration decreases continuously.  

 

We have found that the concentration 𝐶′(𝑥, 𝑡) against the 

distance 𝑥 ′   for different value of 𝑡 ′  and constant velocity 𝑝′  

deceases for any time as 𝑥 ′ increases. Minimum value of 

𝐶′(𝑥, 𝑡) is seen near the downstream. As velocity at the 

origin increases, the value of concentration increases at any 

cross section of the river. The effect of time is dominant 

near the upstream and very small near the downstream. 

 

This model is useful in studying the effect of time and 

velocity along the river and at the origin to predict the 

concentration of pollutants in the river  
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