International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2019): 7.583

Calculate Square Root of Any Two Natural Numbers at a Same Time Using a Single Binomial Expansion

Biki Tikader*

Srikrishna College, University of Kalyani, Bagula - 741502, India

Abstract: This short mathematical note describe an appropriate mathematical process for finding square root of any positive natural number using binomial expansion. This paper will be meaningful to those with a background in binomial theorem.

Keywords: Negative Numbers, Euler's Equation, Binomial Expansion, Natural Numbers

1. Introduction

In this note I do not refer to any article over on the calculation and laws of binomial theorem. A polynomial with two terms is called a binomial. Bi nomial theorem tells us that the expanded expression of the form

So we can say the formula is

 $(a+b)^{n}=n_{x=0} \Sigma^{n}C_{x} a^{n-x}b^{x}$

2. Mathematical Note

Considering n=0.5 and x= 0, 0.1, 0.2, 0.3, 0.4, 0.5 we can calculate $(1-2)\frac{1}{2}$ in this way -

 $\begin{array}{l} (1\text{-}2)^{0.5} = (^{0.5}\text{C}_{0}\text{x}1^{0.5}\text{x}2^{0})\text{-} \\ (^{0.5}\text{C}_{0.5}\text{x}1^{0.4}\text{x}2^{0.1})\text{+} \\ (^{0.5}\text{C}_{0.2}\text{x}1^{0.3}\text{x}2^{0.2})\text{-}^{0.5}\text{C}_{0.3}\text{x}1^{0.2}\text{x}20.3)\text{+} \\ (^{0.5}\text{C}_{0.4}\text{x}1^{0.1}\text{x}2^{0.4})\text{-}(^{0.5}\text{C}_{0.5}\text{x}1^{0}\text{x}2^{0.5}) \\ = 1\text{-}\{(2^{0.1}\text{x}0.5!)\%(0.1!0.4!)\}\text{+} \\ \{(2^{0.2}\text{x}0.5!)\%(0.2!\ 0.3!)\}\text{-}\{(2^{0.3}\text{x}0.5!)\%(0.3!0.2!)\}\text{+} \\ \{(2^{0.4}\text{x}0.5!)\%(0.4!0.1!)\}\text{-}2^{0.5} \\ = 1\text{-}\{(2^{0.1}\text{x}0.5\text{x}0.4!)\%(0.1\text{x}0!\text{x}0.4!)\}\text{+} \\ \{(2^{0.2}\text{x}0.5\text{x}0.4\text{x}03!)\%(0.2\text{x}0.1\text{x}0!\text{x}0.3!)\}\text{-}(2^{0.3}\text{x}10)\text{+}(2^{0.4}\text{x}5)\text{-} \\ 2^{0.5} \\ = 1\text{-}(5\text{x}2^{0.1})\text{+}(10\text{x}2^{0.2})\text{-}(10\text{x}2^{0.3})\text{+}(5\text{x}2^{0.4})\text{-}2^{0.5} \\ = 0 \dots \dots \dots \dots \dots \dots (1) \end{array}$

In this same way,

 $\begin{array}{l} (7-2)^{0.5} = 7^{0.5} \text{-} (5x7^{0.4}x2^{0.1}) \\ + (10x7^{0.3}x2^{0.2}) \text{-} (10x7^{0.2}x2^{0.3}) \\ + (5x7^{0.1}x2^{0.4}) \text{-} 2^{0.5} \\ = 0 \end{array}$

So we get,

(a-b) $\frac{1}{2} = 0$, where a and b can be any natural number (2)

From (1) adding the first five terms we get –

 $1-5x2^{0.1}+10x2^{0.2}-10x2^{0.3}+5x2^{0.4}=1.414$

which is equal to $\sqrt{2}$ (3)

And adding the last five terms, we get

 $(-5x20.1+10x0.2-10x20.3+5x20.4-20.5)=(-1)\dots(4)$

From (3) we can say

 $b^{1/2}$ = expansion till fifth term of $(a-b)^{1/2}$, where a and b are any natural numbers.

From (4) we can say

 $a^{1/2}$ mod of expansion from second to last term of $(a-b)^{1/2}$, where a and b are any natural numbers.

3. Conclusion

Without using non terminating binomial series we can also calculate root of any natural number in this way. Even we can find root of two different natural numbers with a single binomial expansion.

4. Acknowledgments

I gratefully acknowledge Debashis Bala, Chayan Roy and Sudipto Roy for their significant contribution. Also thanks them for their comment on this math.

Reference

[1] Ganit - Chhaya 11 by Sourendranath Dey.

Volume 10 Issue 1, January 2021

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY