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Abstract: A line closure function L(S) is defined as union of all lines connecting 2 distinct points A and B in S. L(S) order “n” is a 

function L(S) applied to a set S, n times. We explore the minimum amount of times we need to take a line closure of a set of n + 1 points 

in n space until the entire n-plane is covered. 

 

1. Introduction and Main Results 
 

Lemma- Suppose a set S that satisfies this condition lies 

within n-space, but not all points are on a single n-1 

dimensional hyperplane. I claim that S has to be an n 

dimensional hyperplane 

 

Proof - First, consider a set Kn of n+1 points from S which 

are not all on the same n-1 plane.  These points have to 

exist, since n points always lie on an n-1 plane, so if we 

couldn’t find such a set, all points in S would be in n-1 

space. Now, define the interative line closure 
n
(S) to be 

(((...(S)..))), where is applied n times. I claim that 
2n

(Kn) is 

the entire n-plane (note that this is a very loose bound.) 

However, since 
2n

(Kn) 
2n

 (S) = S, and S is enclosed in the n-

plane, it must be the entire n-plane, if this lemma is true. 

 

So, we wish to show: Given a set Kn of n + 1 points not all 

in the same n- 1 plane, 
2n

(Kn) is the entire n-plane which 

encloses it. We will show this result with induction. Clearly, 

the claim is true for n = 1, as 
2
(K1) is just the line connecting 

the two points in K1. Now, suppose Kn works, and Kn+1 = Kn 

∪ P, for some point P not on the same n-plane.  

 

We wish to find 
2
(

2n
(Kn ∪ P )) ⊇2 (

2n
(Kn) ∪ P ). 

 

First, look at (
2n

(Kn) ∪ P ). For any point Q in the n + 1 

plane determined by Kn+1, PQ will pass the hyperplane 

determined by Kn unless PQ is parallel to L
2n

(Kn). So, as 

long as PQ isn’t parallel to the n-plane, there exists a point R 

on 
2n

(Kn) such that PR goes through Q. This means (
2n

(Kn) P 

) is just the desired n + 1 plane, with an n-plane going 

through P and parallel to 
2n

(Kn) removed. (Denote this plane 

as Pp.) 

 

Now, of course, we have nearly all the points in the desired 

n + 1 plane, so we can fill in the remaining points with a 

second line-closure. For completeness, consider two planes 

parallel to Pp, one above and one below it, and both of  

which are within (
2n

(Kn) ∪ P ). Taking a line passing through 

corresponding points of the two n-planes will pass through 

the corresponding point of Pp, so 
2
(

2n
(Kn)∪P) contains every 

point in the n+1 plane determined by Kn+1. This line closure 

is a subset of 
2(n+1)

(Kn+1), however this iterated line closure 

does not exceed the n + 1 plane, so 
2(n+1)

(Kn+1) is also the n + 

1 plane, as desired. 

 

Now, we know that if the smallest dimension which contains 

a satisfactory set is n, then S is an n-plane. So, our solution 

set is precisely the set of n-planes as n ranges from 0 to 

infinity. It is obvious that they all are indeed their own line 

closures. 

 

Now, we will extend our results to general n dimensional 

space. In particular, we will attempt to find o(n), which 

denotes the minimum amount of times we need to take a line 

closure of a set of n + 1 points in n space until the entire n-

plane is covered. 

 

First, note that line closures take all possible linear 

combinations of points within a certain set. So, given a set 

of n points S, (S) contains linear combinations of 2 elements, 

then 
2
(S) contains linear combinations of at most 4 elements. 

In general, 
k
(S) has linear combinations composed of at most 

2
k
 elements of S. Therefore, we can get the bound o(n) 

>log
2
(n + 1), since there  are some points which can only be 

expressed as linear combinations of all the points, such as 

the centroid. In fact, this bound is generally tight. But before 

we show anything, we will prove a lemma: 

 

Lemma: Given a set of n + 1 points S, such that not all of 

them are on the same n − 1 plane, and two sets A, B ⊂ S 

with A∪B = S, A∩B /=Ø, define the hyperplane of 

dimension |A| − 1 determined by A to be PA, and similarly 

define PB. Then, (PA ∪ PB) is the n-plane determined by S. 

 

Proof:  Suppose the points in S are . Also 

WLOG the points in A are  and those in B are 

 (Of course, we can order the x suitably 

such that this is true.) Then, PA is just the set of all linear 

combinations of the m points contained in A, and likewise 

for PB. Now, given a linear combination of all k points, say 

(v1, v2, . . . , vk) with v1 +v2 +. . . +vk = 1, (using similar 

notation as before), I claim that the line closure (PA∪PB) will 

contain it. Indeed, consider the linear combination 

 of the elements of A, and the 

linear combination 

 of k elements 

of B. This point exists because A ∩ B /= ∅, so n > k − m. 

Now, these two points are in PA, PB respectively, so the line 

closure will include the point 

 
 

as desired. The only way where this doesn’t work is if υ1+ . . 

. + υm or υm+1 + . . . + υk is equal to 0. However, this can be 

easily rectified.  

 

In the former case, we can instead choose 

and 

 for 

some very small epsilon, and this will be a valid 

construction.  (This is why it was very important for A, B to 
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have an intersection!) The same idea works for the latter, so 

the proof is complete. Note that even if PA and  PB have 

some point holes in them, (i.e. they are almost the entire 

plane, like in the solution we found for the previous part) 

this proof will still apply since if the construction falls on a 

hole, we can once again add small epsilons until it isn’t. 

This will be useful later. 

 

Now that the lemma is complete, we proceed to the main 

question. I claim that 

o(n) = [log2(n + 2)] 

 

for n > 1. Note that we originally got o(n) > log2(n + 1), so 

this claim is actually the minimum we got for all numbers 

except n = 2
k
-1. In the special case of n = 2

k
 -1, I claim that 

if we take the line closure only k times, we will get nearly 

the entire 2
k
 -1 plane,  but we  will miss a few points (like in 

the   n = 3 case.) For the proof we will use strong induction. 

We are already done with base cases n = 2, 3, so assume that 

the claim is true for all n < k. 

 

First, consider a set of k + 1 points Sk = (x1, . . . , xk+1) such 

that not all of them are in the same k − 1 plane. 

 

Suppose that k ≠2
a
 − 1 for some a. If  I  take  

[log
2
(n+2)]−1(Sk),  we  will  not get the entire k-plane by our 

inequality.  However, if we let m be the  largest power of 2 

less than or equal to k, we know by inductive hypothesis that 

this line closure contains nearly the entire hyperplanes 

determined by (x1, . . . , xm) and (xk−m+2, . . . , xk+1). We know 

that k < 2(m-1) based on definition of m, so these two sets of 

m points have a nonzero intersection. So, by our lemma, 

[log
2
(n+2)]−1(Sk)  = 

[log
2
(n+2)]  (Sk) is just the entire 

hyperplane, as desired. 

 

On the other hand, the proof for k = 2
a
−1 is very reminiscent 

of our derivation of 
2
({A, B, C, D}). Basically, we will once 

again consider the two sets of points {x1, . . . , x2
a−1

} and 

{x2
a−1

+1, . . . , x2a}.  These two sets determine two 2
a−1

-1 

hyperplanes, which are almost completely inside the image 

of 
a−1

(Sk), by inductive hypothesis. Let these two 

hyperplanes be A and B respectively.  We will now compute 

(A ∪ B). Using a similar vector based idea as before, we will 

get that all points P  = (υ1, υ2, . . . , υ2
a
 ) are in the line 

closure besides those  on hyperplanes υ1 + . . . + υ2a
−1

   = 0 

and υ2
a−1

+1 + . . . + υ2a   = 0.  However, (A∪B) does not 

accurately represent a subset of 
a
(Sk), since not the entire A 

or B was initially inside 
a−1

(Sk).  For example, suppose a 

point Q = (q1, . . . , q2
a−1

), which is a linear combination of 

the points x1, . . . , x2
a−1

 is in A but not in 
a−1

(Sk). 

 

Then, our vector solution tells us that any point (υ1, υ2, . . . , 

υ2a ) of the form 

υ1 : υ2 : · · · : υ2a−1   = q1 : q2 : · · · : q2
a−1 

where the colons refer to ratio. Note that to construct a point 

of this form, we can first choose υ2
a−1

+1, . . . , υ2
a
 , and then 

the remaining 2
a−1

 coordinates are determined. As we have 

2
a−1

 degrees of freedom, this is a 2
a−1

 – 1 plane. So, if we 

only consider the sets of points {x1, . . . , x2a−1 } and {x2a−1+1, 

. . . , x2a }, we see that 
a
(Sk) is the entire k-plane, minus 2k – 

1 planes and a finite amount of 2
a−1

−1 planes. 

After this process is repeated for all 2
a−1

 sized subsets of Sk, 

the final line closure is the entire k-plane, minus a few points 

which are part of all generated hyper- planes over all 

subsets. This is because a set of k k-1 planes have 

intersection at most a point, and the 2
a−1

 1 planes end up 

having negligible dimension.  (To show these points actually 

do exist, consider  So, we have 

shown that 
a
(Sk) contains the entire hyperplane minus a few 

points, as desired. 

 

The claim that 
a+1

(Sk) is the entire hyperplane follows 

trivially. 
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